JPS6314855B2 - - Google Patents

Info

Publication number
JPS6314855B2
JPS6314855B2 JP57057156A JP5715682A JPS6314855B2 JP S6314855 B2 JPS6314855 B2 JP S6314855B2 JP 57057156 A JP57057156 A JP 57057156A JP 5715682 A JP5715682 A JP 5715682A JP S6314855 B2 JPS6314855 B2 JP S6314855B2
Authority
JP
Japan
Prior art keywords
external electrodes
metal
capacitor
electrode
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57057156A
Other languages
Japanese (ja)
Other versions
JPS58173823A (en
Inventor
Akiteru Oonishi
Tsuneo Murata
Kenichiro Toda
Koichi Kitahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5715682A priority Critical patent/JPS58173823A/en
Publication of JPS58173823A publication Critical patent/JPS58173823A/en
Publication of JPS6314855B2 publication Critical patent/JPS6314855B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、積層コンデンサに係り、特に外部
電極の直流電圧の印加状態でのマイグレーシヨン
発生を防止するようにした積層セラミツクコンデ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer capacitor, and particularly to a multilayer ceramic capacitor that prevents migration from occurring when a DC voltage is applied to external electrodes.

積層セラミツクコンデンサの一般的な構造は、
第1図に示すように、セラミツクを用いた誘電体
層1と内部電極2を所要数重ね合せて焼成し、コ
ンデンサ本体3を形成すると共に、この本体3の
両端に外部電極4と5を、内部に埋設された内部
電極2と接続した状態で設けて構成されている。
The general structure of a multilayer ceramic capacitor is
As shown in FIG. 1, a required number of dielectric layers 1 made of ceramic and internal electrodes 2 are stacked and fired to form a capacitor body 3, and external electrodes 4 and 5 are placed on both ends of this body 3. It is configured so as to be connected to an internal electrode 2 buried therein.

従来上記のような積層コンデンサにおける外部
電極4,5には銀単独または銀とパラジウムの合
金等、銀を主成分とする金属が用いられている。
Conventionally, for the external electrodes 4 and 5 in the multilayer capacitor as described above, a metal containing silver as a main component, such as silver alone or an alloy of silver and palladium, has been used.

ところで、外部電極に銀を用いた場合、湿気中
において直流電圧の印加状態で電気化学的にマイ
グレーシヨン(拡散)をおこし、対向する外部電
極4と5間においてコンデンサ本体3表面に沿つ
て銀が析出し、ついには相手電極側に達してシヨ
ート状態に至ることはよく知られている。
By the way, when silver is used for the external electrode, migration (diffusion) occurs electrochemically under the application of DC voltage in humidity, and the silver spreads along the surface of the capacitor body 3 between the opposing external electrodes 4 and 5. It is well known that the metal precipitates and eventually reaches the other electrode side, resulting in a shot state.

このような問題を防止するには、外部電極に銀
とパラジウムの合金を用いると共に、この合金に
おいてパラジウムの比率を大きくすることが有効
な手段であるが、パラジウムは価格的に高く、使
用量の増大に比例して材料コストがかさむという
欠点がある。
An effective way to prevent such problems is to use an alloy of silver and palladium for the external electrode and to increase the ratio of palladium in this alloy, but palladium is expensive and the amount used is limited. The disadvantage is that the material cost increases in proportion to the increase.

また、銀は単独で用いるとハンダ付性が良く、
端子等の接続作業が容易に行なえるが、パラジウ
ムが多量混合されるとハンダ付性が悪くなり、取
付時の信頼性が低下するという問題が生じる。
In addition, silver has good solderability when used alone,
Although it is possible to easily connect terminals, etc., if a large amount of palladium is mixed in, solderability deteriorates, resulting in a problem that reliability during installation is reduced.

この発明は、上記のような欠点や問題点を解消
するためになされたものであり、湿気中において
も外部電極のマイグレーシヨンによる劣化の発生
を防止して高い信頼性を有し、しかも大量生産に
適し廉価に製作できる積層コンデンサを提供する
ことを目的とする。
This invention was made to solve the above-mentioned drawbacks and problems, and it has high reliability by preventing the occurrence of deterioration due to migration of the external electrode even in humidity, and is also suitable for mass production. The purpose of the present invention is to provide a multilayer capacitor that can be manufactured at low cost and suitable for

この発明の構成は、一対の外部電極を互いに導
電接続された2種の金属で形成し、この両外部電
極の互いにツキ合う先端部が少なくともマイグレ
ーシヨンを起さない金属で形成されるとともに、
両外部電極の主たる表面部分が銀を主成分とする
金属により形成され、信頼性が高く、端子等の接
続性を良好にするようにしたものである。
The structure of the present invention is such that a pair of external electrodes are formed of two types of metals that are electrically connected to each other, and the tip portions of both external electrodes that are attached to each other are formed of at least a metal that does not cause migration.
The main surface portions of both external electrodes are made of a metal containing silver as a main component, providing high reliability and good connectivity with terminals and the like.

以下、この発明の一実施列を第2図ないし第9
図にもとづいて説明する。
Hereinafter, one embodiment of this invention will be shown in FIGS. 2 to 9.
This will be explained based on the diagram.

第2図は、この発明に係る積層コンデンサの基
本構造を示しており、セラミツクを用いた誘電体
と内部電極を所要数積層したコンデンサ本体11
と、この本体11の両端に設けた外部電極12,
13とで構成され、外部電極12,13はそれぞ
れ銀を主成分とする金属(以下電気化学的に安定
な金属、という)14と、マイグレーシヨンを起
し難い金属(以下、電気化学的に不安定な金属、
という)15の互いに導電接続された2種で形成
されている。
FIG. 2 shows the basic structure of a multilayer capacitor according to the present invention, in which a capacitor body 11 is formed by laminating a required number of ceramic dielectrics and internal electrodes.
and external electrodes 12 provided at both ends of this main body 11,
13, and the external electrodes 12 and 13 are made of a metal 14 whose main component is silver (hereinafter referred to as electrochemically stable metal) and a metal that does not easily migrate (hereinafter referred to as electrochemically stable metal). stable metal,
) 15, which are electrically conductively connected to each other.

上記した電気化学的に安定な金属14として
は、例えば、白金、金、パラジウムあるいはそれ
らの合金または銀とパラジウムの合金でパラジウ
ムの含量が10%以上のもの等、外部電極12,1
3においてマイグレーシヨンを起し難い(あるい
は起さない)金属が使用でき、内部電極と同じも
のでもよい。
Examples of the electrochemically stable metal 14 include platinum, gold, palladium, an alloy thereof, or an alloy of silver and palladium with a palladium content of 10% or more.
In No. 3, a metal that does not easily (or does not) cause migration can be used, and may be the same as the internal electrode.

そしてこの発明では、2種で形成された外部電
極12,13の互いにツキ合う先端部を、電気化
学的に安定な金属14,14で形成するととも
に、外部電極12,13の主たる表面部分は電気
化学的に不安定な金属15,15で形成してい
る。このため両側の外部電極12と13におけ
る、両金属14と15は同電位となり、直流電圧
が印加されたとき、この金属14,14間におい
て電位差が生じ、従つて電気化学的に不安定な金
属15,15が対向電極に向つてマイグレーシヨ
ンを起す機会は全く失なわれることになる。同時
に外部電極12,13としての主たる表面部分は
不安定な金属15,15で覆われているので、外
部電極12,13の半田付性が損われることがな
い。
In this invention, the mutually attached tips of the external electrodes 12 and 13 formed of two types are formed of electrochemically stable metals 14 and 14, and the main surface portions of the external electrodes 12 and 13 are electrically It is made of chemically unstable metal 15,15. Therefore, both the metals 14 and 15 in the external electrodes 12 and 13 on both sides have the same potential, and when a DC voltage is applied, a potential difference occurs between the metals 14 and 14. Therefore, the metals 14 and 15 are electrochemically unstable. The opportunity for migration of 15, 15 toward the opposing electrode is completely lost. At the same time, since the main surface portions of the external electrodes 12 and 13 are covered with unstable metals 15 and 15, the solderability of the external electrodes 12 and 13 is not impaired.

次に、第3図ないし、第8図は外部電極の具体
的な形成方法のいくつかの例を示している。
Next, FIGS. 3 to 8 show some examples of specific methods of forming external electrodes.

第3図と第4図に示す第一の例は、先ずコンデ
ンサ本体11の両端部に内部電極の接続を兼ねる
下層を不安定な金属15を用いて形成し(第3
図)、この下層の先端部からコンデンサ本体11
にわたつて安定な金属14で上層を設けるように
したものである(第4図)。
In the first example shown in FIG. 3 and FIG.
), from the tip of this lower layer to the capacitor body 11.
The upper layer is made of a metal 14 which is stable over time (FIG. 4).

第5図と第6図に示す第2の例は、コンデンサ
本体11の両端部に安定な金属14で下層を形成
し(第5図)、この下層上にこの下層を越えない
範囲で不安定な金属15の上層を形成するように
したものである(第6図)。
In the second example shown in FIGS. 5 and 6, a lower layer of stable metal 14 is formed at both ends of the capacitor body 11 (FIG. 5), and an unstable metal 14 is formed on this lower layer to the extent that it does not exceed this lower layer. In this case, an upper layer of metal 15 is formed (FIG. 6).

第7図と第8図に示す第3の例は、コンデンサ
本体11の端部寄り周面に安定な金属14を環状
に取付け、(第7図)、この環状体上からコンデン
サ本体11の端部に不安定な金属15を設けて形
成したものである(第8図)。
In the third example shown in FIGS. 7 and 8, a stable metal 14 is attached in an annular manner to the peripheral surface near the end of the capacitor body 11 (FIG. 7), and the end of the capacitor body 11 is attached from above this annular body. It is formed by providing an unstable metal 15 in the portion (FIG. 8).

なお、何れの例においても外部電極12,13
の安定な金属14,14は、互いに相対向する安
定な金属側の先端部がコンデンサ本体11の周面
に連続するように形成される必要がある。
In addition, in any example, the external electrodes 12, 13
The stable metals 14, 14 need to be formed so that the tips of the stable metal sides facing each other are continuous with the circumferential surface of the capacitor body 11.

次に第9図に示す例は、中央の透孔16を貫通
端子17が貫通する貫通型コンデンサに適用した
場合であり、円形に形成されたコンデンサ本体1
8の外周に外側電極19と内周に内側電極20を
設けて構成され、両電極19と20の互いにツキ
合う先端部に電気化学的に安定な金属14が形成
されている。
Next, the example shown in FIG. 9 is a case where the capacitor is applied to a feed-through type capacitor in which the through-hole 16 in the center is penetrated by the feed-through terminal 17, and the capacitor body 1 is formed in a circular shape.
8, an outer electrode 19 is provided on the outer periphery of the electrode 8, and an inner electrode 20 is provided on the inner periphery of the electrode 8, and an electrochemically stable metal 14 is formed at the tip portions of the electrodes 19 and 20 where they are attached to each other.

以上のように、この発明によると、コンデンサ
本体の両端に設けられた外部電極の互いにツキ合
う先端部を電気化学的に安定な金属で形成したの
で、湿気中において外部電極に直流電圧を印加し
ても、電極のマイグレーシヨン発生が全くなく、
信頼性特に耐湿中負荷特性の高いコンデンサが得
られる。
As described above, according to the present invention, the mutually attached tips of the external electrodes provided at both ends of the capacitor body are formed of an electrochemically stable metal, so that a DC voltage cannot be applied to the external electrodes in humidity. However, there is no electrode migration at all.
A capacitor with high reliability, especially moisture resistance and medium load characteristics can be obtained.

また、外部電極の主たる表面部分は、電気化学
的に不安定な金属で形成しているので、外部電極
の端子や回路電極への接続に何ら支障が生じるこ
とがない。
Further, since the main surface portion of the external electrode is formed of an electrochemically unstable metal, there is no problem in connecting the external electrode to the terminal or circuit electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層コンデンサを示す縦断面
図、第2図はこの発明に係る積層コンデンサの基
本構造を示す斜視図、第3図乃至第8図の各々は
外部電極の形成方法の異なつた例を示す説明図、
第9図は同上の外部電極を貫通型コンデンサに適
用した縦断面図である。 11…コンデンサ本体、12,13…外部電
極、14…電気化学的に安定な金属、15…電気
化学的に安定な金属。
Fig. 1 is a vertical cross-sectional view showing a conventional multilayer capacitor, Fig. 2 is a perspective view showing the basic structure of a multilayer capacitor according to the present invention, and Figs. 3 to 8 each show different methods of forming external electrodes. An explanatory diagram showing an example,
FIG. 9 is a longitudinal sectional view in which the above external electrode is applied to a feedthrough capacitor. DESCRIPTION OF SYMBOLS 11... Capacitor body, 12, 13... External electrode, 14... Electrochemically stable metal, 15... Electrochemically stable metal.

Claims (1)

【特許請求の範囲】 1 内部電極が埋設され、外表面にこの内部電極
と導電的に接続された一対の外部電極が設けられ
た積層コンデンサにおいて、 前記一対の外部電極は、互いに導電接続され
た、銀を主成分とする金属15,19,20と、
マイグレーシヨンを起し難い金属14との2種で
形成され、この2種で形成された両外部電極の互
いにツキ合う先端部は、前記マイグレーシヨンを
起し難い金属14により形成され、両外部電極の
主たる表面部分は、前記銀を主成分とする金属1
5,19,20により形成されていることを特徴
とする積層コンデンサ。
[Claims] 1. A multilayer capacitor in which an internal electrode is buried and a pair of external electrodes are provided on the outer surface and are electrically conductively connected to the internal electrode, wherein the pair of external electrodes are electrically conductively connected to each other. , metals 15, 19, 20 whose main component is silver,
The tip portions of both external electrodes, which are formed of these two types and which are attached to each other, are formed of the metal 14 that does not easily cause migration, and both external electrodes The main surface portion of the metal 1 whose main component is silver
1. A multilayer capacitor comprising: 5, 19, and 20.
JP5715682A 1982-04-05 1982-04-05 Laminated condenser Granted JPS58173823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5715682A JPS58173823A (en) 1982-04-05 1982-04-05 Laminated condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5715682A JPS58173823A (en) 1982-04-05 1982-04-05 Laminated condenser

Publications (2)

Publication Number Publication Date
JPS58173823A JPS58173823A (en) 1983-10-12
JPS6314855B2 true JPS6314855B2 (en) 1988-04-01

Family

ID=13047698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5715682A Granted JPS58173823A (en) 1982-04-05 1982-04-05 Laminated condenser

Country Status (1)

Country Link
JP (1) JPS58173823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043166U (en) * 1990-04-21 1992-01-13

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067698B2 (en) * 1997-06-27 2000-07-17 松下電器産業株式会社 Manufacturing method of multilayer ceramic electronic component
KR100907285B1 (en) * 2007-10-11 2009-07-13 김영중 Control cable and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758267A (en) * 1955-06-22 1956-08-07 Du Pont Silver conductors
US3235939A (en) * 1962-09-06 1966-02-22 Aerovox Corp Process for manufacturing multilayer ceramic capacitors
JPS562436A (en) * 1979-06-16 1981-01-12 Bosch Gmbh Robert Device for limiting running speed of automobile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079945U (en) * 1973-11-21 1975-07-10

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758267A (en) * 1955-06-22 1956-08-07 Du Pont Silver conductors
US3235939A (en) * 1962-09-06 1966-02-22 Aerovox Corp Process for manufacturing multilayer ceramic capacitors
JPS562436A (en) * 1979-06-16 1981-01-12 Bosch Gmbh Robert Device for limiting running speed of automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043166U (en) * 1990-04-21 1992-01-13

Also Published As

Publication number Publication date
JPS58173823A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US4193106A (en) Monolithic ceramic capacitor with fuse link
US4097916A (en) Electrolytic capacitor lead terminal configuration
US4984130A (en) Passive electric component
JP2874380B2 (en) Chip type multilayer ceramic capacitor
US5045410A (en) Low phosphorus containing band-shaped and/or filamentary material
US6373684B2 (en) Ceramic electronic component having lead terminal
JPS6314855B2 (en)
JP3436127B2 (en) Terminal electrodes for electronic components and electronic components
EP0186765A2 (en) End termination for chip capacitor
JPS62130551A (en) Integrated circuit
CA1200585A (en) High capacitance laminated bus
JPS6015275Y2 (en) Composite thick film varistor
US5568354A (en) Chip type solid electrolyte capacitor
JPH0547446Y2 (en)
JPH0325925B2 (en)
JPS5858716A (en) Laminated ceramic condenser
JPH06140278A (en) Laminated ceramic capacitor
JP3458701B2 (en) Electronic component and method of manufacturing the same
JPS6130260Y2 (en)
JPH0115163Y2 (en)
JPS62112313A (en) Penetrating capacitor
JPH01302714A (en) High-voltage ceramic capacitor
JP2765237B2 (en) Chip type thermistor and method of manufacturing the same
JPH0353492Y2 (en)
JPH0229712Y2 (en)