JPS63143078A - Respiration supporting apparatus - Google Patents

Respiration supporting apparatus

Info

Publication number
JPS63143078A
JPS63143078A JP61289557A JP28955786A JPS63143078A JP S63143078 A JPS63143078 A JP S63143078A JP 61289557 A JP61289557 A JP 61289557A JP 28955786 A JP28955786 A JP 28955786A JP S63143078 A JPS63143078 A JP S63143078A
Authority
JP
Japan
Prior art keywords
blood
circuit
blood flow
extracorporeal circulation
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61289557A
Other languages
Japanese (ja)
Other versions
JPH0478312B2 (en
Inventor
弘幸 赤須
高瀬 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61289557A priority Critical patent/JPS63143078A/en
Publication of JPS63143078A publication Critical patent/JPS63143078A/en
Publication of JPH0478312B2 publication Critical patent/JPH0478312B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は膜型人工肺を用いた呼吸補助装置、特の呼吸補
助装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a respiratory assist device using a membrane oxygenator, and particularly to a respiratory assist device.

〔従来の技術〕[Conventional technology]

最近の膜型人工肺の開発の進歩は著しく、気泡型肺では
不可能だった体外循環による呼吸補助(ECMO)への
応用が可能になってきたoECMOは重篤な急性呼吸不
全、未熟児や新生児の胎児循環遣残症、羊水吸引、横隔
膜ヘルニア、先天性心疾患などに対する有力な治療手段
であるが、従来の靜動脈(V−A)、靜靜脈(V−V 
)のバイパス方式では生体に与える侵襲が大きく、かつ
ポンプを用いるため大がかりな装置を必要とし、患者の
維持管理にも多大の労力を要するという問題があった。
Recent advances in the development of membrane oxygenators have made it possible to apply them to extracorporeal circulation respiratory support (ECMO), which was not possible with bubble lungs. It is an effective treatment method for neonatal fetal circulatory dysfunction, amniotic fluid aspiration, diaphragmatic hernia, congenital heart disease, etc.
) The bypass method has the problem that it is highly invasive to the living body, requires large-scale equipment because it uses a pump, and requires a great deal of effort to maintain and manage the patient.

これに対しJ、 Thoraq Cardiovasc
、 S町(r595(1972)に開示された動静脈(
A−V)バイパス法はカニュレーションが容易で生体に
与える侵襲が小さいという利点を有している。
On the other hand, J. Thoraq Cardiovasc.
, Arteriovenous (arteriovenous) disclosed in S Town (r595 (1972))
A-V) The bypass method has the advantage of easy cannulation and minimal invasion to the living body.

また最近では膜型人工肺の高性能化に伴ないA−■バイ
パス方式を用い、自己心拍出で血液を環流させるボンプ
レス方式のECMOも提案されている。
Recently, as the performance of membrane oxygenators has improved, a bomb press type ECMO has also been proposed in which blood is perfused by the spontaneous cardiac output using the A-2 bypass method.

〔人工臓器11,284(1982)、人工臓器ユ呈、
358(1983)、  医器学旦、186(1985
)など〕(発明が解決しようとする問題点) 自己心拍出によるA−Vバイパスによる呼吸補助は、手
技が簡便で、溶血も少なく、病室で容易に行なれるとい
う利点をもっているが、従来のECMOでは体外循環血
流量の継時的な測定および体外循環血流量の変動に対す
る警報手段が具備されていないため実用上次のような問
題があった0すなわち血液の循環経路を増設する事にな
るため、心臓への負荷が増大し、血圧の尤進や心不全を
引きおこす恐れがある。患者が心不全をおこすと、必要
な体外循環血流量が安定して得られなくなシ、シかも体
外循環血流量が減りすぎると、膜型人工肺における血液
への酸素加量や、血液からの脱炭酸量が不足して呼吸補
助機能が低下し、患者の生命が危険にさらされる恐れが
ある。一方体外循環血流量が増えすぎると、脳、腎、肝
、肺などの体内の重要な諸臓器への循環血流量が低下し
、各臓器が機能不全を起したシ、手5足等の末梢での循
環不全を起す。
[Artificial Organs 11, 284 (1982), Artificial Organs Presentation,
358 (1983), Igakudan, 186 (1985)
), etc.] (Problems to be Solved by the Invention) Respiratory support using A-V bypass using spontaneous cardiac output has the advantage of being a simple procedure, causing little hemolysis, and being easily performed in a hospital room. Since ECMO does not have a means to measure extracorporeal blood flow over time or to warn against changes in extracorporeal blood flow, it has the following practical problems: In other words, an additional blood circulation route is required. This increases the load on the heart, which can lead to increased blood pressure and heart failure. When a patient develops heart failure, the necessary extracorporeal circulation blood flow may not be stably obtained. There is a risk that the amount of decarboxylation will be insufficient and the respiratory support function will decline, putting the patient's life at risk. On the other hand, if the extracorporeal circulation blood flow increases too much, the circulation blood flow to important organs in the body such as the brain, kidneys, liver, and lungs decreases, resulting in malfunction of each organ and peripheral organs such as the hands and feet. This causes circulatory failure.

したがって、ポンプレスのA−Vバイパス螢こよる呼吸
補助を、長期にわたって実施する場合蚤こけ、特に体外
循環血流量をモニターし、血流量の過度な変動を警報す
ることはA−Vバイパス裔こよるECMOを実施するた
めに絶対に必要である。本発明は上記機能を具備した呼
吸補助装置を提供することを目的としている。
Therefore, when implementing pump-less AV bypass respiratory support for a long period of time, it is important to monitor fleas, especially extracorporeal circulation blood flow, and to warn of excessive fluctuations in blood flow. Absolutely necessary to implement ECMO. An object of the present invention is to provide a breathing assistance device having the above-mentioned functions.

(問題点を解決するための手段) 本発明装置は動脈と静脈をバイパスする体外循環回路回
路冬こ膜型人工肺を設けて自己心拍出で血液を還流させ
る呼吸補助装置であって、該体外循環血液回路を流れる
血流量を継時的に測定する血流測定手段と、該血流量測
定手段からの信号と設定回路で設定された血流量の上限
および/lたは下限値を比較して、血流量が設定値を外
れたときに信号を発信する比較回路と、該比較回路から
の信号を受けて警報を発する警報回路を具備してなる呼
吸補助装置である。
(Means for Solving the Problems) The device of the present invention is a respiratory support device that is equipped with an extracorporeal circulation circuit that bypasses arteries and veins, and that circulates blood using spontaneous cardiac output. A blood flow measuring means that successively measures the blood flow flowing through the extracorporeal circulation blood circuit, and a signal from the blood flow measuring means is compared with the upper limit and /l or lower limit of the blood flow set in the setting circuit. This breathing assist device is equipped with a comparison circuit that issues a signal when the blood flow rate deviates from a set value, and an alarm circuit that issues an alarm upon receiving the signal from the comparison circuit.

(作 用) ボンプレスのA−Vバイパスによる呼吸補助において、
最も危惧すべき問題は、動静脈との連結部や、裏型人工
肺内部における血栓形成と、それにともなう体外循環血
流量の減少、あるいは停止である。こうした部位におけ
る変化は潜在的に進行するために発見しにくいが体外循
環血液流量のモニターに下限警報を設定しておくと、容
易に検出できる。また患者の心機能の低下などに伴なう
体外循環流量の減少も所望のレベルで警報を発せられる
ため、生命に危険が及ぶような重大率に至る前に対策を
とる事ができる。
(Function) In respiratory support using Bonpres's A-V bypass,
The most worrisome problem is thrombus formation at the arteriovenous connection or inside the back-type oxygenator, and the associated reduction or cessation of extracorporeal circulation blood flow. Changes in these areas are difficult to detect because they progress latently, but they can be easily detected by setting a lower limit alarm on the extracorporeal blood flow monitor. Furthermore, since a warning can be issued at a desired level for a decrease in the extracorporeal circulation flow due to a decline in the patient's cardiac function, countermeasures can be taken before the situation reaches a critical level that poses a life-threatening situation.

体外循環血液流量が下限値を割り、自己心拍による呼吸
補助が続行不可能になった場合は処理を中断する。また
必要なら体外循環回路にローリングチューブを取り付け
、このローリングチューブを直ちにポンプに組みこんで
、ポンプによるV−A。
If the extracorporeal circulation blood flow rate falls below the lower limit and it becomes impossible to continue respiratory support using the self-heartbeat, the process is interrupted. If necessary, attach a rolling tube to the extracorporeal circulation circuit, immediately incorporate this rolling tube into the pump, and perform VA using the pump.

またはA−Vバイパスに移行してもよい。Or you may shift to AV bypass.

上限警報が作動した場合には、体外循環回路に抵抗を付
与する事で体外循環血流量を適正レベルに戻すことがで
き、脳、腎、肝、肺などの主要臓器や、手足などの末梢
への血流量の不足を防止できる。また、接合部のゆるみ
、外れなどによる体外循環回路からの失血を検出するの
にも役立つ。
When the upper limit alarm is activated, by adding resistance to the extracorporeal circulation circuit, the extracorporeal circulation blood flow can be returned to the appropriate level, and the blood flow is delivered to major organs such as the brain, kidneys, liver, and lungs, and to peripheral organs such as the limbs. can prevent insufficient blood flow. It is also useful for detecting blood loss from the extracorporeal circulation circuit due to loosening or dislodging of joints.

(実施例) 次に本発明装置の一実施例を図面にて説明する。(Example) Next, one embodiment of the device of the present invention will be described with reference to the drawings.

!s1図は本発明装置のフロー図で′りシ、動脈と静脈
を膜型人工肺2を介してバイパスする体外循環血液回路
1と該血液回路内を流れる血流量を測定する血流量測定
手段3と、血流量の上限および/または下限を設定する
回路4と、該血流量測定手段3と設定回路4からの信号
を比較して、血流量が設定値を外れたときに信号を出す
比較回路5と、該比較回路からの信号を受けて警報を発
する警報回路6で構成されている。
! Figure s1 is a flow diagram of the device of the present invention, which includes an extracorporeal circulation blood circuit 1 that bypasses arteries and veins via a membrane oxygenator 2, and a blood flow measuring means 3 that measures the blood flow flowing through the blood circuit. a circuit 4 for setting the upper and/or lower limits of blood flow, and a comparison circuit that compares the signals from the blood flow measuring means 3 and the setting circuit 4 and outputs a signal when the blood flow deviates from the set value. 5, and an alarm circuit 6 which receives a signal from the comparison circuit and issues an alarm.

膜型人工肺2は公知の人工肺、通常中空糸型の人工肺が
用いられる。
As the membrane oxygenator 2, a known oxygenator, usually a hollow fiber oxygenator, is used.

血流量測定手段3としては、電磁血量計、超音波血流計
などの公知の血流針を用いることができる。
As the blood flow measuring means 3, a known blood flow needle such as an electromagnetic blood flow meter or an ultrasonic blood flow meter can be used.

血流量設定回路4では下限を患者の心拍出量00〜40
%、好ましくは5〜35%の範囲内に設定する0症例に
よっても異なるが上記範囲で十分な呼吸補助効果が得ら
れる。上限は心拍出量の10%〜80%1好ましくは1
5チ〜5oチの範囲に設定しておく事により重篤な心不
全の発生、完遂を防止する事が可能である。この範囲内
の体外循環流量下で、もし血液への酸素加能力が不足す
る時は、生体肺への持続陽圧呼吸法(CPAP )や、
呼気終末障王法(PEEP)などの人工換気法を併用す
る事が望ましい。また、もし炭酸ガス除去が不足するよ
うであれば、脱型人工肺へのガス流量を増加させる事に
よって、炭酸ガス除去量を増加させられる。
The blood flow setting circuit 4 sets the lower limit to the patient's cardiac output of 00 to 40.
%, preferably within the range of 5 to 35%. Although it varies depending on the case, a sufficient respiratory support effect can be obtained within the above range. The upper limit is 10% to 80% of cardiac output, preferably 1
By setting it within the range of 5 to 5 degrees, it is possible to prevent the occurrence and completion of serious heart failure. Under extracorporeal circulation flow rates within this range, if the ability to add oxygen to the blood is insufficient, continuous positive airway pressure (CPAP) to the living lungs,
It is desirable to use artificial ventilation methods such as end-expiratory ventilation (PEEP). Furthermore, if carbon dioxide removal is insufficient, the amount of carbon dioxide gas removed can be increased by increasing the gas flow rate to the demolding oxygenator.

警報回路6は光、音等の公知の警報手段を利用できる。The alarm circuit 6 can utilize known alarm means such as light and sound.

通常音によるものが最もわかシ易く好ましい。無線方式
により警報を看護婦詰所などに伝達、表示する方式も便
利である。
It is preferable to use normal sound because it is easiest to understand. It is also convenient to transmit and display the alarm to a nurse's office or the like using a wireless method.

呼吸補助をさらに精密に制御するために上記装置に、さ
らに血液ガス濃度(Oz、COzλ血液PH%心機能、
循環動態、呼吸状態、尿量、体温などの各種連続モニタ
ー類を具備してもよい。また、患者の出血をモニターし
、出血時には警報を発する漏血センサーなどの併用も実
際的である。
In order to control respiratory support more precisely, the above device is further equipped with blood gas concentration (Oz, COzλ, blood PH%, cardiac function,
Various continuous monitors such as hemodynamics, respiratory status, urine output, and body temperature may be provided. It is also practical to use a blood leakage sensor that monitors the patient's bleeding and issues an alarm in the event of bleeding.

上記装置で自己心拍による呼吸補助が続行できなくなっ
たときに、直ちにポンプでV−AまたはA−Vバイパス
に移行すれば安全に呼吸補助を続行できる。そのため血
液回路1にはロー2ポンプの取シ付は可能なローリング
チューブ7を設けておくことが好ましい。かかるローリ
ングチューブは人工肺の動脈側または静脈側どちらに取
シ付けてもよい。通常静脈側層こ取シ付けられる。
When the above-mentioned device becomes unable to continue respiratory support using the patient's own heartbeat, the pump can immediately switch to VA or A-V bypass to safely continue respiratory support. Therefore, it is preferable to provide the blood circuit 1 with a rolling tube 7 to which the Row 2 pump can be attached. Such a rolling tube may be attached to either the arterial or venous side of the oxygenator. Usually attached to the venous layer.

次に上記装置を用いた実験例について説明する。Next, an experimental example using the above device will be explained.

シバヤギ(体]i1.5kp、生後3時間)に筋弛緩剤
併用全身麻酔を行い、気管内挿管した。8Frのクラレ
社展シンウオールカテーテルをy!s帯動脈および同静
脈に各一本挿入し、第2図に示すように腰帯動脈、電磁
血流計3、膜型肺(シリコンコート膜)2、腰帯静脈を
連結して体外循環血液回路lを形成した。
A deer goat (body size: i1.5 kp, 3 hours after birth) was given general anesthesia combined with a muscle relaxant and endotracheally intubated. 8Fr Kuraray Exhibition Thin Wall Catheter! One each is inserted into the s-band artery and the same vein, and as shown in Figure 2, the lumbar artery, electromagnetic blood flow meter 3, membrane type lung (silicon coated membrane) 2, and lumbar vein are connected to create an extracorporeal circulation blood circuit l. was formed.

電磁血流計3の下限を心拍出量の10%、上限を同45
チに設定後、ボンブレスAVバイパス方式による呼吸補
助を行った。人工肺(0,25t/)に酸素1t/mi
nを流したところ、生体の炭酸ガス分圧は約33saw
H!?と低く、良好な水準を維持できたが、酸素ガス分
圧は約35■Hpと低かったので持続的陽圧呼吸法(C
PAP)を併用する事とし% 5c!RH20の陽圧酸
素を気管内挿管チューブに投入した。10分後に生体の
酸素ガス分圧は150鴎HP以上に上昇し、以降高水準
を維持し得た。この時の生体の炭酸ガス分圧は30wH
fで良好だった。
The lower limit of electromagnetic blood flow meter 3 is 10% of cardiac output, and the upper limit is 45% of cardiac output.
After setting the patient to 1, breathing assistance was performed using the bombless AV bypass method. Oxygen 1t/mi in artificial lung (0,25t/)
When flowing n, the partial pressure of carbon dioxide in the living body was about 33 saw.
H! ? However, since the partial pressure of oxygen gas was low at approximately 35 HP, continuous positive airway pressure (C) was applied.
PAP) should be used in combination with % 5c! Positive pressure oxygen at RH20 was administered to the endotracheal intubation tube. After 10 minutes, the oxygen gas partial pressure of the living body rose to more than 150 HP, and was able to maintain a high level thereafter. At this time, the partial pressure of carbon dioxide in the living body is 30wH
It was good at f.

約18時間後、血流計の下限警報が鳴った。これは別に
取りつけておいた心機能分析用ポリグラフ、および血圧
モニターより、心拍数の減少、血圧の若干の低下と認め
、予め血液循環回路1の屓帯靜脈側にとりつけておいた
ローリングチューブ7を第3図に示すように透析用血液
ポンプ101こ取シ付け、かつ除圧モニター11を設置
して、V−Aバイパスで体外循環を再開した。以降5時
間にわたシ体外循環血流量は心拍出量の約40%を安定
に維持することができて、血液ガスも炭酸ガス分圧26
■He、酸素ガス分圧240■H2と良好で、安定した
呼吸補助効果が得られた。
Approximately 18 hours later, the blood flow meter's low limit alarm sounded. A polygraph for cardiac function analysis and a blood pressure monitor installed separately confirmed that this was a decrease in heart rate and a slight decrease in blood pressure, and the rolling tube 7, which had been attached in advance to the ligamentary vein side of the blood circulation circuit 1, was inserted. As shown in FIG. 3, a dialysis blood pump 101 was installed, a decompression monitor 11 was installed, and extracorporeal circulation was resumed using the VA bypass. Over the next 5 hours, the extracorporeal circulation blood flow was able to stably maintain approximately 40% of the cardiac output, and the blood gas also had a partial pressure of carbon dioxide of 26%.
■He, oxygen gas partial pressure was good with 240■H2, and a stable respiratory support effect was obtained.

(発明の効果) 以上に述べたように、本発明装置は体外循環回路内での
血液の凝固、漏出や、患者の心機能低下に優れた安全な
ボンブレス方式による呼吸補助装置である。
(Effects of the Invention) As described above, the device of the present invention is a safe bombless respiratory support device that is excellent in preventing blood coagulation and leakage in the extracorporeal circulation circuit and in preventing deterioration of the patient's cardiac function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のフロー図であり、第2図及び第3
図は本発明装置を用いた実験例を示すフロー図である。 1・・・・・・・・・体外循環血液回路2・・・・・・
・・・脱型人工肺 3・・・・・・・・・血流量測定手段 4・・・・・・・・・設定回路 5・・・・・・・・・比較回路 6・・・・・・・・二警報回路
FIG. 1 is a flow diagram of the device of the present invention, and FIGS.
The figure is a flow diagram showing an experimental example using the apparatus of the present invention. 1... Extracorporeal circulation blood circuit 2...
... Demolding oxygenator 3 ... Blood flow measurement means 4 ... Setting circuit 5 ... Comparison circuit 6 ... ...Second alarm circuit

Claims (1)

【特許請求の範囲】 1、動脈と静脈をバイパスする体外循環血液回路に膜型
人工肺を設けて自己心拍出で血液を還流させる呼吸補助
装置であつて、該体外循環血液回路を流れる血流量を継
時的に測定する血流量測定手段と、該血流量測定手段か
らの信号と設定回路で設定された血流量の上限値および
/または下限値を比較して、血流量が設定値から外れた
ときに信号を発信する比較回路と、該比較回路からの信
号を受けて警報を発する警報回路を具備してなる呼吸補
助装置。 2、該体外循環血液回路にローラポンプ取着用のローリ
ングチューブが設けられてなる特許請求の範囲第1項記
載の呼吸補助装置。
[Scope of Claims] 1. A respiratory support device that includes a membrane oxygenator in an extracorporeal blood circulation circuit that bypasses arteries and veins, and that circulates blood using spontaneous cardiac output, the blood flowing through the extracorporeal circulation blood circuit. A blood flow measuring means that measures the flow rate over time compares the signal from the blood flow measuring means with the upper limit and/or lower limit of the blood flow set in the setting circuit, and determines whether the blood flow is from the set value. A breathing assistance device comprising a comparison circuit that sends out a signal when a disconnection occurs, and an alarm circuit that issues an alarm upon receiving the signal from the comparison circuit. 2. The respiratory assistance device according to claim 1, wherein the extracorporeal circulation blood circuit is provided with a rolling tube for attaching a roller pump.
JP61289557A 1986-12-03 1986-12-03 Respiration supporting apparatus Granted JPS63143078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289557A JPS63143078A (en) 1986-12-03 1986-12-03 Respiration supporting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289557A JPS63143078A (en) 1986-12-03 1986-12-03 Respiration supporting apparatus

Publications (2)

Publication Number Publication Date
JPS63143078A true JPS63143078A (en) 1988-06-15
JPH0478312B2 JPH0478312B2 (en) 1992-12-10

Family

ID=17744777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289557A Granted JPS63143078A (en) 1986-12-03 1986-12-03 Respiration supporting apparatus

Country Status (1)

Country Link
JP (1) JPS63143078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027868A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
WO2016027866A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
WO2016027852A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
WO2017115487A1 (en) * 2015-12-28 2017-07-06 テルモ株式会社 Cardiac function measurement system and extracorporeal circulation device provided with cardiac function measurement system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101893A (en) * 1977-02-18 1978-09-05 Iriyou Kougaku Kenkiyuushiyo K Device for supervising artificial dialysis
JPS55106829U (en) * 1979-01-22 1980-07-25
JPS60210721A (en) * 1984-04-04 1985-10-23 Kawasumi Lab Inc Disposable flowrate measuring apparatus for medical treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101893A (en) * 1977-02-18 1978-09-05 Iriyou Kougaku Kenkiyuushiyo K Device for supervising artificial dialysis
JPS55106829U (en) * 1979-01-22 1980-07-25
JPS60210721A (en) * 1984-04-04 1985-10-23 Kawasumi Lab Inc Disposable flowrate measuring apparatus for medical treatment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027868A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
WO2016027866A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
WO2016027852A1 (en) * 2014-08-20 2016-02-25 泉工医科工業株式会社 Blood circulation system
JP2016043256A (en) * 2014-08-20 2016-04-04 泉工医科工業株式会社 Blood circulation system
JP2016043259A (en) * 2014-08-20 2016-04-04 泉工医科工業株式会社 Blood circulation system
EP3167920A4 (en) * 2014-08-20 2017-08-02 Senko Medical Instrument Mfg. Co., Ltd. Blood circulation system
US10751463B2 (en) 2014-08-20 2020-08-25 Senko Medical Instrument Mfg. Co., Ltd. Blood circulation system
US10786617B2 (en) 2014-08-20 2020-09-29 Senko Medical Instrument Mfg. Co., Ltd. Blood circulation system
US11040132B2 (en) 2014-08-20 2021-06-22 Senko Medical Instrument Mfg. Co., Ltd. Blood circulation system
US11141519B2 (en) 2014-08-20 2021-10-12 Senko Medical Instrument Mfg. Co., Ltd. Blood circulation system
WO2017115487A1 (en) * 2015-12-28 2017-07-06 テルモ株式会社 Cardiac function measurement system and extracorporeal circulation device provided with cardiac function measurement system
JPWO2017115487A1 (en) * 2015-12-28 2018-10-18 テルモ株式会社 Cardiac function measurement system and extracorporeal circulation apparatus including the cardiac function measurement system

Also Published As

Publication number Publication date
JPH0478312B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
Wung et al. Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation
Wang et al. In vivo hemodynamic performance evaluation of novel electrocardiogram‐synchronized pulsatile and nonpulsatile extracorporeal life support systems in an adult swine model
Chevalier et al. Preliminary report: extracorporeal lung support for neonatal acute respiratory failure
Phillipson et al. Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load
Onizuka et al. Lymph flow pattern in the intact thoracic duct in sheep
JPS63143078A (en) Respiration supporting apparatus
Denault et al. Transesophageal echocardiography monitoring in the intensive care department: the management of hemodynamic instability secondary to thoracic tamponade after single lung transplantation
Galletti et al. Problems associated with long-lasting heart-lung bypass
Horton et al. Extracorporeal membrane oxygenation life support: a new approach
Kottenberg‐Assenmacher et al. Minimally invasive endoscopic port‐access™ intracardiac surgery with one lung ventilation: impact on gas exchange and anaesthesia resources
KOPMAN et al. Intraoperative monitoring of femoral artery pressure during replacement of aneurysm of descending thoracic aorta
Arensman et al. Extracorporeal membrane oxygenation
Ciesla et al. Lines, tubes, catheters, and physiologic monitoring in the ICU
Senra et al. A rat model of acute lung injury induced by cardiopulmonary bypass
Woodson Anesthesia for acute burn injuries
Ye et al. Clinical Nursing for Patients with Fulminant Myocarditis
Souron et al. Venous air embolism during orthotopic liver transplantation in a child
Gersony et al. Perioperative management of the infant with congenital heart disease
Gallagher et al. Posttraumatic pulmonary insufficiency: a treatable disease
Renner et al. Pumpless extracorporeal lung assist as supportive therapy in a patient with diffuse alveolar hemorrhage
Anagnostopoulos et al. Laparoscopic surgery in a child with a failing Fontan circulation
JAIMOVICH et al. Continuous cardiac output measurement by transtracheal Doppler technique in a pediatric patient with septic shock
Jotoku et al. Venovenous extracorporeal membrane oxygenation as an adjunct to surgery for empyema: report of a case
Rappaport et al. Daily Management of Patients on VV ECMO
Keshavamurthy et al. BICAVAL DUAL-LUMEN ECMO CANNULATION FOR LUNG TRANSPLANTATION

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees