JPS63140931A - Variable resistance switch driving circuit - Google Patents

Variable resistance switch driving circuit

Info

Publication number
JPS63140931A
JPS63140931A JP28656986A JP28656986A JPS63140931A JP S63140931 A JPS63140931 A JP S63140931A JP 28656986 A JP28656986 A JP 28656986A JP 28656986 A JP28656986 A JP 28656986A JP S63140931 A JPS63140931 A JP S63140931A
Authority
JP
Japan
Prior art keywords
circuit
resistance
resistor
tactile sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28656986A
Other languages
Japanese (ja)
Other versions
JPH0718765B2 (en
Inventor
Yoichi Kawashima
庸一 河島
Masato Kaneko
理人 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP28656986A priority Critical patent/JPH0718765B2/en
Publication of JPS63140931A publication Critical patent/JPS63140931A/en
Publication of JPH0718765B2 publication Critical patent/JPH0718765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To reduce the consumption of a battery by turning off a switch circuit when a resistance variation factor does not operate. CONSTITUTION:A tactile sensor 1 and a 2nd resistance body 2' are connected in series and a 1st resistance body connected in parallel to the tactile sensor 1 constitutes a detecting circuit by interposing a switch 5. A voltage comparator formed by connecting resistance bodies 6 and 7 in series is provided in parallel to the series circuit of the tactile sensor 1 and 2nd resistance body 2 and a comparator 8 which compares their divided voltages with each other is connected to constitute a bridge circuit. The switch 5 is driven with a signal outputted by the comparator 8. The comparator 8 operates only when a pressing force is applied to the tactile sensor 1 and the resistance 4 is connected in parallel to the tactile sensor 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感圧導電ゴムが押圧力に対し指数関数的に抵
抗が減少するような素子に並列に挿入する回路のスイッ
チを駆動する回路に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a circuit for driving a switch in a circuit in which a pressure-sensitive conductive rubber is inserted in parallel with an element whose resistance decreases exponentially with respect to a pressing force. It is related to.

〔従来技術〕[Prior art]

力が作用していないときには絶縁体として作用し、押圧
力が作用すると急激に抵抗が減少する性質を持つ感圧導
電ゴムは従来から知られており、この感圧導電ゴムを触
覚センサとして用いた各種の技術開発が進められている
。例えば、この触覚センサをロボットハンドに取付ける
ことにより前記ロボットがハンドリングする物体を持つ
際の把持力をロボット自体に認識させ、壊れ易い物品、
柔らかい物品等に対し人間が判断して持つような機能を
ロボットに持たせたり、物体の形状等を触覚によって認
識できるような機器の開発が行われている。
Pressure-sensitive conductive rubber has long been known to act as an insulator when no force is applied, and its resistance rapidly decreases when pressure is applied, and this pressure-sensitive conductive rubber has been used as a tactile sensor. Various technological developments are underway. For example, by attaching this tactile sensor to a robot hand, the robot itself can recognize the gripping force when holding an object to be handled, and
BACKGROUND OF THE INVENTION Development is underway to equip robots with functions similar to those that humans have when determining soft objects, etc., and to develop devices that can recognize the shape of objects through the sense of touch.

ところで、この感圧導電ゴムの抵抗値Rと該ゴムを押圧
する力Fとはほぼlog R+a −F−’°9の関係
にあるために力と抵抗値との関係が直線的に変化しない
という性質があり、これを図示すると第3図のようにな
る。なお、前記式中のaは定数である。
By the way, the resistance value R of this pressure-sensitive conductive rubber and the force F that presses the rubber have a relationship of approximately log R+a -F-'°9, so the relationship between force and resistance value does not change linearly. There is a characteristic, which is illustrated in Figure 3. Note that a in the above formula is a constant.

いま、第4図に示す回路によって、かかる抵抗変化する
感圧導電ゴムを使用した触覚センサの特性を説明する。
Now, with reference to the circuit shown in FIG. 4, the characteristics of a tactile sensor using pressure-sensitive conductive rubber whose resistance changes will be explained.

図の触覚センサlは、感圧導電ゴムRを一対の電極Eで
挾持した構成としているが、例えばプリント配線により
、横型の2つの電極を互いに契合するように組合せて配
置し、その上に感圧導電ゴムを乗せ、好ましくは反対の
側に導電体フィルムを配置したものなど、触覚センサ1
の電極構造は各種の態様により構成することができる。
The tactile sensor L shown in the figure has a configuration in which a pressure-sensitive conductive rubber R is sandwiched between a pair of electrodes E. For example, two horizontal electrodes are arranged so as to engage with each other using printed wiring, and a sensor is placed on top of the two horizontal electrodes. A tactile sensor 1, such as one on which a piezoconductive rubber is mounted and a conductive film is preferably arranged on the opposite side.
The electrode structure can be constructed in various ways.

さて、この触覚センサ1と直列に抵抗体2を接続し、分
圧点Aに生じる電圧を増幅器3に与えて、触覚センサ1
に加わる押圧力Fと、感圧導電ゴムRの抵抗変化と関係
は第5図のようになる。
Now, a resistor 2 is connected in series with this tactile sensor 1, and the voltage generated at the voltage dividing point A is applied to an amplifier 3.
The relationship between the pressing force F applied to the pressure-sensitive conductive rubber R and the resistance change of the pressure-sensitive conductive rubber R is shown in FIG.

即ち、力Fがゼロのときは、感圧導電ゴムRの抵抗値は
、絶縁体の抵抗値を持つので電流が流れずA点の電圧V
はゼロである。次いで力Fが大きくなると急激に抵抗が
減少するので電圧■は、電源電圧VDに向う指数関数的
曲線を画いた曲線となる。したがって、この感圧導電ゴ
ムをセンサとして力を検出したり、ロボット等を制御す
る際に力Fの値によって感度が大きく変るので安定した
制御を実施することが困難となるので、従来から感圧導
電ゴムと並列して固定抵抗を接続してより直線的に近い
電圧変化とすることが行われている。
That is, when the force F is zero, the resistance value of the pressure-sensitive conductive rubber R has the resistance value of an insulator, so no current flows and the voltage at point A is V.
is zero. Next, as the force F increases, the resistance decreases rapidly, so the voltage (2) becomes an exponential curve toward the power supply voltage VD. Therefore, when using this pressure-sensitive conductive rubber as a sensor to detect force or control a robot, etc., the sensitivity changes greatly depending on the value of force F, making it difficult to perform stable control. A fixed resistor is connected in parallel with the conductive rubber to make the voltage change more linear.

この回路を第6図によって説明する。図において、触覚
センサ1の検出電圧変化をより直線的とする第1抵抗体
4を前記触覚センサ1と並列に接続し、この並列回路と
直列に前記分圧用の第2抵抗体2′を接続し分圧点Aに
生ずる電圧を増幅器3に与えるように構成されている。
This circuit will be explained with reference to FIG. In the figure, a first resistor 4 that makes the detected voltage change of the tactile sensor 1 more linear is connected in parallel with the tactile sensor 1, and a second resistor 2' for voltage division is connected in series with this parallel circuit. The voltage generated at the voltage dividing point A is applied to the amplifier 3.

この場合の電圧変化は、第7図に示すように、触覚セン
サ1に押圧力Fが作用していないときにも第2抵抗体4
を通じて電流が流れるので、分圧点Aには最初から電圧
■1が生じており、力Fが十分大きくなると感圧導電ゴ
ムRの抵抗値はゼロに近付き第1抵抗体4を短絡した状
態とななり分圧電圧は第5図と同様に電源電圧■。
In this case, as shown in FIG.
Since a current flows through the voltage divider point A, a voltage 1 is generated from the beginning at the voltage dividing point A, and when the force F becomes sufficiently large, the resistance value of the pressure-sensitive conductive rubber R approaches zero, and the first resistor 4 is short-circuited. The diagonal divided voltage is the power supply voltage ■ as in Figure 5.

に接近する曲線となるので、電圧曲線は前記第5図より
なだらかな曲線となる。
Since the voltage curve approaches , the voltage curve becomes a gentler curve than that shown in FIG.

しかしながら、かかる回路を電池駆動のロボットに搭載
したような場合には、力が前記触覚センサに作用してい
ないときにも回路に電流が流れるので、電池のように供
給電力に限りがある場合には問題が住じる。したがって
、力Fが作用していないときに触覚センサの電源を切る
と、今度は、力Fが作用したときにそれを検知できない
という問題が生じ好ましくない。
However, if such a circuit is installed in a battery-powered robot, current will flow through the circuit even when no force is acting on the tactile sensor, so if the power supply is limited, such as with a battery, is where the problem lies. Therefore, if the power of the tactile sensor is turned off when the force F is not acting on the tactile sensor, the problem arises that it cannot be detected when the force F is acting on the tactile sensor, which is not preferable.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のような問題を解決するために成された
ものであり、感圧導電ゴムやサーミスタのように、累数
的に抵抗が減少する素子の抵抗変化を直線化するための
並列抵抗を使用する回路において、該素子を使用し、且
つ該素子の抵抗が変化する要因が作用したことを検知し
て前記並列抵抗に電流を流すスイッチ駆動回路を提供す
ることを目的としている。
The present invention has been made to solve the above problems, and is a method for linearizing resistance changes of elements such as pressure-sensitive conductive rubber and thermistors whose resistance decreases cumulatively. It is an object of the present invention to provide a switch drive circuit that uses a resistor in a circuit that uses the resistor, detects the effect of a factor that changes the resistance of the resistor, and causes current to flow through the parallel resistor.

〔発明の構成〕[Structure of the invention]

以上の目的を達成するための本発明の可変抵抗スイッチ
駆動回路は、抵抗変動要因に対し累数的に抵抗が減少す
る素子と第1抵抗体とを並列に接続した回路に第2抵抗
体を直列に接続し、該第2抵抗体に掛る電圧を検知して
前記素子の抵抗変化を検出する回路において、前記並列
接続の抵抗体回路にスイッチを介装し、前記第2抵抗に
掛る電圧が所定の値に達すると前記スイッチを開成する
スイッチング回路を設けたことを特徴とするものである
In order to achieve the above object, the variable resistance switch drive circuit of the present invention includes a second resistor in a circuit in which a first resistor and an element whose resistance decreases cumulatively in response to resistance fluctuation factors are connected in parallel. In a circuit that is connected in series and detects a voltage applied to the second resistor to detect a change in resistance of the element, a switch is interposed in the parallel connected resistor circuit, and the voltage applied to the second resistor is The present invention is characterized in that a switching circuit is provided that opens the switch when a predetermined value is reached.

本発明を通用する対象となる素子としては、例えば、感
圧導電ゴム、サーミスタなどであり、その抵抗変動要因
は、それぞれ前者が感圧導電ゴムを押圧する力、後者が
温度である。
Examples of elements to which the present invention applies include pressure-sensitive conductive rubber, thermistors, etc., and the resistance fluctuation factors are the force of pressing the pressure-sensitive conductive rubber for the former, and the temperature for the latter.

本発明の前記第1抵抗体回路に介装する前記スイッチは
、継電器のような有接点スイッチの外、トランジスタ、
サイリスク、パワートランジスタ等のスイッチング素子
等であるが、本発明は、これに限定されない。
The switch interposed in the first resistor circuit of the present invention may include a contact switch such as a relay, a transistor,
The present invention is not limited thereto, although the present invention is not limited thereto.

本発明の前記スイッチング回路は、本発明に係わる前記
素子及び前記第2抵抗体を辺とするブリッジ回路を設け
、第2抵抗体に掛る電圧変化を該ブリッジ回路で検出し
、これにより前記スイッチを駆動するスイッチング回路
などによって実現することができる。
The switching circuit of the present invention includes a bridge circuit whose sides include the element according to the present invention and the second resistor, and the bridge circuit detects a voltage change applied to the second resistor, thereby switching the switch. This can be realized by a driving switching circuit or the like.

〔実施例〕〔Example〕

以下、添付の図面を対照して感圧導電ゴムを用いた一実
施例により本発明を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to an embodiment using pressure-sensitive conductive rubber with reference to the accompanying drawings.

第1図−aは、本実施例のスイッチ回路を示すものであ
り、触覚センサ1と第2抵抗体2′とを前記と同様に直
列に接続し、触覚センサ1と並列に接続する第1抵抗体
4にはスイッチ5を介装して第3図と同様な検出回路を
構成している。そして、このスイッチ5を駆動するスイ
ッチング回路は、抵抗体6及び7を直列に接続した電圧
比較回路を前記触覚センサ1と第2抵抗体2とによる前
記直列回路に並列して設け、それぞれの分圧電圧を比較
するコンパレータ8を接続してブリフジ回路を構成し、
このコンパレーク8から出力する信号によって前記スイ
ッチ5を駆動するようにしたものである。
FIG. 1-a shows the switch circuit of this embodiment, in which the tactile sensor 1 and the second resistor 2' are connected in series as described above, and the first resistor 2' is connected in parallel with the tactile sensor 1. A switch 5 is interposed in the resistor 4 to constitute a detection circuit similar to that shown in FIG. The switching circuit for driving this switch 5 includes a voltage comparison circuit in which resistors 6 and 7 are connected in series in parallel to the series circuit made up of the tactile sensor 1 and the second resistor 2. A comparator 8 for comparing piezoelectric voltages is connected to form a Brifuji circuit,
The switch 5 is driven by the signal output from the comparator 8.

そして、前記抵抗体6及び7の抵抗値を所定の値とする
ことにより、押圧力Fが一定の値となり、B点に所定の
電圧(A点に生じる電圧と同じ値)が発生するまでコン
パレータ8を作動させないにようにすることができる。
By setting the resistance values of the resistors 6 and 7 to a predetermined value, the pressing force F becomes a constant value, and the comparator continues until a predetermined voltage (the same value as the voltage generated at point A) is generated at point B. 8 can be disabled.

したがって、B点(同時にA点)の電圧■が所定の電圧
■3に達すると、0点に発生している電圧より高くなり
コンパレータ8からハイ信号がスイッチ5に与えられて
第1抵抗体4の回路が閉成されて、前記第6図と同様の
回路が構成される。したがって、A点に生じる電圧は第
2図−aのような曲線が得られる。この曲線と第7図の
曲線とは、スイッチ5が閉成されるまでを除き同様の曲
線(回路定数が同じとして)となり、ロボット等を動作
させる際の触覚センサとして好ましい押圧力検出特性を
与えることができる。
Therefore, when the voltage ■ at point B (and at the same time point A) reaches the predetermined voltage ■3, it becomes higher than the voltage generated at point 0, and a high signal is given from the comparator 8 to the switch 5, and the first resistor 4 The circuit shown in FIG. 6 is closed to form a circuit similar to that shown in FIG. Therefore, the voltage generated at point A has a curve as shown in FIG. 2-a. This curve and the curve in FIG. 7 are similar curves (assuming the circuit constants are the same) except until the switch 5 is closed, and provide desirable pressing force detection characteristics as a tactile sensor when operating a robot, etc. be able to.

前記比較回路の分圧点Cに生じる電圧は、単にB点の電
圧と比較するだけであるので、前記抵抗体6,7の抵抗
値は高い値とすることができる。したがって、触覚セン
サ1に掛る力Fが小さい間は該検出回路に流れる電流は
極めて微弱となるので、押圧力Fがゼロないし極く小さ
い間は電源を消耗させることがない。したがって電池で
駆動するロボット、可搬タイプの触覚センサ等に有利に
通用することができる。
Since the voltage generated at voltage dividing point C of the comparison circuit is simply compared with the voltage at point B, the resistance values of the resistors 6 and 7 can be set to high values. Therefore, while the force F applied to the tactile sensor 1 is small, the current flowing through the detection circuit is extremely weak, so the power source is not consumed while the pressing force F is zero or very small. Therefore, it can be advantageously used in battery-powered robots, portable tactile sensors, and the like.

次に、第1図−aの回路図の変形実施例を第1図−すに
示す。即ち、第1図−bは第1図−aと電圧を印加する
極性を逆にしたものである。
Next, a modified embodiment of the circuit diagram of FIG. 1-a is shown in FIG. 1-S. That is, in FIG. 1-b, the polarity of voltage application is reversed from that in FIG. 1-a.

このように回路を構成すると、触覚センサ1に押圧力が
作用しないときにA点に生じる電圧は、感圧導電ゴムR
の抵抗が高いために電源電圧■。
When the circuit is configured in this way, the voltage generated at point A when no pressing force is applied to the tactile sensor 1 is the pressure-sensitive conductive rubber R.
■Power supply voltage due to high resistance.

と等しい電圧となる。The voltage is equal to

次いで押圧力Fが加わると、それに応じて感圧導電ゴム
Rの抵抗が低下するのでA点、耶ちB点に生じる分圧値
V3が低下する。したがって、第1図−aの回路と同様
に所定の電圧まで低下すると、コンパレータ8が作動し
て抵抗4が触覚センサ1に並列に接続されるので、分圧
値が急激に低下し第2図−bの電圧■2の曲線を画いて
変化するものである。
Next, when a pressing force F is applied, the resistance of the pressure-sensitive conductive rubber R decreases accordingly, so that the partial pressure value V3 generated at point A and point B decreases. Therefore, when the voltage drops to a predetermined level, similar to the circuit shown in FIG. -b voltage changes in a curve of 2.

このように、本発明の可変抵抗スイッチ駆動回路は、押
圧力に対して、漸増させることも、7fi減させること
も可能である。
In this manner, the variable resistance switch drive circuit of the present invention is capable of gradually increasing the pressing force or decreasing it by 7fi.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の可変抵抗スイッチ駆動回路
は、抵抗変動要因に対し累数的に抵抗が減少する素子と
第1抵抗体とを並列に接続した回路に第2抵抗体を直列
に接続し、該第2抵抗体に掛る電圧を検知して前記素子
の抵抗変化を検出する回路において、前記並列接続の抵
抗体回路にスイッチを介装し、前記第2抵抗に掛る電圧
が所定の値に達すると前記スイッチを開成するスイッチ
ング回路を設けたことによって、前記抵抗変動要因が作
用しないときに該スイッチ回路に実質的電流が流れず、
しかも前記素子は常に作動状態に保つことができるとい
う効果を奏することができる。
As explained above, in the variable resistance switch drive circuit of the present invention, a second resistor is connected in series to a circuit in which an element whose resistance decreases cumulatively in response to resistance fluctuation factors and a first resistor are connected in parallel. In the circuit for detecting a change in resistance of the element by detecting the voltage applied to the second resistor, a switch is interposed in the parallel-connected resistor circuit, and the voltage applied to the second resistor is set to a predetermined value. By providing a switching circuit that opens the switch when the resistance change factor reaches , no substantial current flows through the switch circuit when the resistance variation factor does not act.
Furthermore, the element can be kept in an operating state at all times.

したがって、電源の電力供給能力に限度がある回路に前
記の抵抗変動要因に対し累数的に抵抗が減少する感圧導
電ゴム、サーミスタ等の素子を使用する場合に有利に適
用することができる。
Therefore, it can be advantageously applied to a circuit where the power supply capacity of a power source is limited, using elements such as pressure-sensitive conductive rubber and thermistors whose resistance decreases cumulatively in response to the above-mentioned resistance fluctuation factors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図−aは一実施例の回路図、第1図−すは別の実施
例による回路図、第2図−aは第1図−aの触覚センサ
に作用する押圧力とヰ★出電圧との関係を示すグラフ図
、第2図−bは第1図−すの触覚センサに作用する押圧
力と検出電圧との関係を示すグラフ図、第3図は感圧導
電ゴムの抵抗と押圧力との関係を示すグラフ図、第4図
は感圧導電ゴムを用いた触覚センサに掛る力を電圧とし
て検出するための原理を示す回路図、第5図は第4図の
触覚センサに作用する押圧力と検出電圧との関係を示す
グラフ図、第6図は第5図に示す電圧−押圧力の関係を
より直線にするだめの従来手段による回路図、第7図は
第6図の触覚センサに作用する押圧力と検出電圧との関
係を示すグラフ図である。 1・・・触覚センサ、2・・・第2抵抗体、4・・・第
1抵抗体、5・・・スイッチ、6.7・・・抵抗体、8
・・・コンパレータ、R・・・感圧導電ゴム、E・・・
電極。
FIG. 1-a is a circuit diagram of one embodiment, FIG. 1-a is a circuit diagram of another embodiment, and FIG. Fig. 2-b is a graph showing the relationship between the pressure force acting on the tactile sensor of Fig. 1 and the detected voltage, and Fig. 3 is a graph showing the relationship between the pressure sensitive conductive rubber and the resistance. A graph showing the relationship with the pressing force, Figure 4 is a circuit diagram showing the principle for detecting the force applied to the tactile sensor using pressure-sensitive conductive rubber as a voltage, and Figure 5 shows the relationship between the tactile sensor shown in Figure 4. A graph showing the relationship between the applied pressing force and the detected voltage, FIG. 6 is a circuit diagram using conventional means to make the voltage-pressing force relationship shown in FIG. 5 more linear, and FIG. 7 is a circuit diagram shown in FIG. FIG. 3 is a graph diagram showing the relationship between the pressing force acting on the tactile sensor and the detected voltage. DESCRIPTION OF SYMBOLS 1... Tactile sensor, 2... Second resistor, 4... First resistor, 5... Switch, 6.7... Resistor, 8
...Comparator, R...Pressure-sensitive conductive rubber, E...
electrode.

Claims (1)

【特許請求の範囲】[Claims]  抵抗変動要因に対し累数的に抵抗が減少する素子と第
1抵抗体とを並列に接続した回路に第2抵抗体を直列に
接続し、該第2抵抗体に掛る電圧を検知して前記素子の
抵抗変化を検出する回路において、前記並列接続の抵抗
体回路にスイッチを介装し、前記第2抵抗に掛る電圧が
所定の値に達すると前記スイッチを開成するスイッチン
グ回路を設けたことを特徴とする可変抵抗スイッチ駆動
回路。
A second resistor is connected in series to a circuit in which a first resistor and an element whose resistance decreases cumulatively in response to a resistance variation factor are connected in parallel, and the voltage applied to the second resistor is detected. In the circuit for detecting a change in resistance of an element, a switch is interposed in the parallel-connected resistor circuit, and a switching circuit is provided that opens the switch when the voltage applied to the second resistor reaches a predetermined value. Features a variable resistance switch drive circuit.
JP28656986A 1986-12-03 1986-12-03 Variable resistance switch drive circuit Expired - Lifetime JPH0718765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28656986A JPH0718765B2 (en) 1986-12-03 1986-12-03 Variable resistance switch drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28656986A JPH0718765B2 (en) 1986-12-03 1986-12-03 Variable resistance switch drive circuit

Publications (2)

Publication Number Publication Date
JPS63140931A true JPS63140931A (en) 1988-06-13
JPH0718765B2 JPH0718765B2 (en) 1995-03-06

Family

ID=17706106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28656986A Expired - Lifetime JPH0718765B2 (en) 1986-12-03 1986-12-03 Variable resistance switch drive circuit

Country Status (1)

Country Link
JP (1) JPH0718765B2 (en)

Also Published As

Publication number Publication date
JPH0718765B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JP3694709B2 (en) AC excitation / resistance pressure sensor
US7816838B2 (en) Piezoelectric force sensing
KR19990023245A (en) Charge and discharge control circuit and rechargeable power supply with charge and discharge current detection
US6664761B2 (en) Battery voltage detection device
US9638761B2 (en) Magnetic sensor circuit with power supply fluctuation detection
US6954043B2 (en) Power window driving apparatus
JPS63140931A (en) Variable resistance switch driving circuit
JP4233711B2 (en) Sensor threshold circuit
US6433524B1 (en) Resistive bridge interface circuit
US9124199B2 (en) Auto calibration driver IC and its application motor driver system
JPS6147501A (en) Load position detection sensor
JPH0656947B2 (en) Control circuit
CN113395049A (en) Charge amplifier, force sensor, and robot
JPH086269Y2 (en) Flow sensor drive circuit
JPH0530114Y2 (en)
JPH089618Y2 (en) Thermistor temperature conversion circuit
JPS633222Y2 (en)
KR100189846B1 (en) A driving apparatus for heater
JPH01222673A (en) Controlling method for inverse piezoelectric effect type ceramic actuator
JPH069594Y2 (en) Temperature protection circuit in motor drive
JPH09214310A (en) Voltage detection circuit
SU1418785A1 (en) Two-threshold alarm device
JPH05264372A (en) Pressure detection circuit
JPH07198507A (en) Pressure detection circuit
Garofalo et al. Mixed signal temperature control circuit for on-chip CMOS gas sensor