JPS63130235A - Bending method - Google Patents

Bending method

Info

Publication number
JPS63130235A
JPS63130235A JP27659386A JP27659386A JPS63130235A JP S63130235 A JPS63130235 A JP S63130235A JP 27659386 A JP27659386 A JP 27659386A JP 27659386 A JP27659386 A JP 27659386A JP S63130235 A JPS63130235 A JP S63130235A
Authority
JP
Japan
Prior art keywords
bending
clevis
rolling
moment
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27659386A
Other languages
Japanese (ja)
Inventor
Takeo Kurokawa
黒川 武雄
Takamitsu Nakasaki
中崎 隆光
Masakazu Midorikawa
正和 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27659386A priority Critical patent/JPS63130235A/en
Publication of JPS63130235A publication Critical patent/JPS63130235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce bending force, and also, to improve a yield by providing a clevis corresponding to the bending inside diameter and the plate width, on the side face which becomes the inside diameter side of bending of a band plate which is rolled and comes out, thereafter, executing the bending. CONSTITUTION:A stock 1 rolled by the upper and the lower rolling rollers 2, 4 is fed out forward. Immediately after this rolling, bending moment is added by a bending control means 3 which can move to the right and left from the side direction. By providing a clevis part 5 for reducing a deformed volume quantity N, the bending moment quantity can be reduced. According to this method, the yield of a product can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、帯板を素材として1例えば、溶接構造物の部
品として使用する大型の円形状、又は、フランジ等の製
作に係り、特に、セグメント切断後、溶接結合していた
フランジを帯板より曲げ加工し、特に、材料歩留り率を
向上させる曲げ加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of large circular shapes or flanges, etc., which are used as parts of welded structures, for example, using strips as raw materials, and in particular: The present invention relates to a bending method for bending a welded flange from a strip plate after cutting the segments, and particularly for improving the material yield rate.

〔従来の技術〕[Conventional technology]

従来、曲げ加工を行う場合は、第3図に示すように、前
もって素材1にはクレビス(切欠)は設けていない、こ
のため、第1図に示すように、大断面形状の横曲げを行
う場合1曲げ内径側に発生する圧縮力Eに対抗して、圧
延により材料を連続的に送り出すため、上・下圧延ロー
ルの圧延トルクによる材料送り出し力Fは過大となる。
Conventionally, when bending is performed, as shown in Fig. 3, a clevis (notch) is not provided in the material 1 in advance.Therefore, as shown in Fig. 1, horizontal bending of a large cross-sectional shape is performed. In case 1, the material is continuously fed out by rolling against the compressive force E generated on the inner diameter side of the bend, so the material feeding force F due to the rolling torque of the upper and lower rolling rolls becomes excessive.

これに伴って、曲げ規制手段3の与える曲げモーメント
Mも過大となるという問題があるため、曲は半径/板幅
=1以下の曲げは不可能となり、この形状品はセグメン
ト切断後、IR接結合して製作するため、材料歩留り率
が悪かった。更に、具体的な装置化においても、過大な
圧延トルクをもつ圧延機、及び、更に前述のトルクに耐
えられる剛性の大きな曲げ規制手段3が必要となる問題
点があった。
Along with this, there is a problem that the bending moment M given by the bending regulating means 3 also becomes excessive, making it impossible to bend the radius/plate width = 1 or less. Since it was manufactured by bonding, the material yield rate was poor. Furthermore, in the implementation of a specific device, there is a problem in that a rolling mill with an excessively high rolling torque and a bending regulating means 3 having a large rigidity capable of withstanding the above-mentioned torque are required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、大断面の帯板を曲げ半径が板幅より小
さくなるまで曲げ加工することは考慮されていない、従
って、大断面の帯板を曲げる場合、過大な曲げモーメン
トが必要となり、また1曲げ半径が板幅より小さくなる
までの曲げを行う場合、縁波、あるいは割れ等の欠陥が
発生する可能性が存在するという問題があった。
The above conventional technology does not consider bending a strip with a large cross section until the bending radius becomes smaller than the strip width. Therefore, when bending a strip with a large cross section, an excessive bending moment is required. When bending is performed until one bending radius becomes smaller than the sheet width, there is a problem in that defects such as edge waves or cracks may occur.

本発明の目的は、大断面の帯板をより小さな曲げモーメ
ントで加工する曲げ加工方法、及び曲げ半径/板幅=1
以下の帯板の曲げを縁波、あるいは割れ等の欠陥なく行
う曲げ加工方法を提供することにある。
The object of the present invention is to provide a bending method for processing a large cross-section strip plate with a smaller bending moment, and a bending radius/plate width=1
It is an object of the present invention to provide a bending method that performs the following bending of a strip plate without defects such as edge waves or cracks.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、素材1で曲げ後、曲げ内径側となる側面に
、曲げ半径及び板幅に応じたクレビス(切欠)5を曲げ
半径に応じたピッチPで設けておくことで達成される。
The above object is achieved by providing clevises (notches) 5 in accordance with the bending radius and the plate width at a pitch P in accordance with the bending radius on the side surface which becomes the bending inner diameter side after bending the material 1.

以下、クレビス5の形状及びピッチPの寸法決定につい
て述べる(第1図参照)、但し、用いる記号は下記によ
る。
Hereinafter, the shape of the clevis 5 and the dimension determination of the pitch P will be described (see FIG. 1), however, the symbols used are as follows.

L:素材長さく腫)   W:素材板幅(W)R:曲げ
内半径(mm)   w:製品板幅(m )P:クレビ
スピッチ(a)  T:素材板厚(m )A:クレビス
幅(m)   Δh:圧下量(m)B:クレビス高さく
、、) +2=曲げ後の中立軸周長(、n)・・・180°半リ
ング曲げ時 Q′:曲げ後の内径側端周長(in)・・・180゜半
リング曲げ時 更に、加工しようとする帯板のR,W、Tは製品仕様に
決定される。クレビス5の寸法は以下の通りである。以
下は、180°半リング曲げの場合である。まず。
L: material length) W: material plate width (W) R: bending inner radius (mm) w: product plate width (m) P: clevis pitch (a) T: material plate thickness (m) A: clevis width (m) Δh: Reduction amount (m) B: Clevis height, ) +2 = Neutral shaft circumference after bending (, n)...When bending 180° half ring Q': Inner diameter side end circumference after bending Length (in): 180° When bending a half ring, the R, W, and T of the strip to be processed are determined by the product specifications. The dimensions of the clevis 5 are as follows. The following is the case of 180° half-ring bending. first.

Δh=o、IXT ・・・■ B=W/10・・・■L
=(W/2+R)π+2W     ・・・■クレビス
5は30°の角度おきに設定のため、R=(R+w/2
)π        ・・・■。
Δh=o, IXT...■ B=W/10...■L
=(W/2+R)π+2W ・・・■ Clevis 5 is set at every 30° angle, so R=(R+w/2
)π...■.

Ω’=(R−Bπ) ・・・■W = w + B ・
・・■曲げ後の中立軸と内径側端の周長差Cは、本発明
の基本的な要件は、Cを30’おきに設定されたクレビ
ス5の全幅長でカバーL、Cによる圧縮力発生を低減す
ることから、180’曲げでは、クレビス5は全部で七
個所であるからA=C/7             
・・・■となる。
Ω'=(R-Bπ)...■W=w+B・
... ■ The circumferential length difference C between the neutral axis and the inner diameter end after bending is the basic requirement of the present invention that C is the entire width of the clevis 5 set every 30' and the compressive force due to the covers L and C. In order to reduce the occurrence of clevises 5 in 180' bending, there are seven clevises in total, so A=C/7.
... becomes ■.

クレビス5による曲げモーメントMの低減について、第
1図を用いて述べると、一般に横曲げ加工中はCが生じ
るため、圧縮力Eが圧延による材料送り出し力Fと相反
する方向に作用することになる。更に、加工中は材料送
り出し力Fに対して、圧延ロール2・4軸線と曲げ規制
手段3のなす角度α0方向から曲げに必要な曲げモーメ
ントMが付加されねばならない、従って、圧縮力Eが太
きくなると、連続的に材料を送り出すため、Fも大きく
なり、更に1曲げモーメントMも大きくなる。
The reduction of the bending moment M by the clevis 5 will be described using Fig. 1. Since C generally occurs during horizontal bending, the compressive force E acts in the opposite direction to the material feeding force F due to rolling. . Furthermore, during processing, a bending moment M necessary for bending must be added to the material feeding force F from the direction of the angle α0 formed by the rolling rolls 2 and 4 axes and the bending regulating means 3. Therefore, the compressive force E must be When the bending force increases, F also increases because the material is fed out continuously, and the 1 bending moment M also increases.

そこで、圧縮力Eによる全変形量分の量分の−のておく
と、即ち、変形量をN−G/N=−迄、低減することに
よる発生圧縮力の低減のみならず、更に、クレビスの三
角形形状の変形に対応する応力集中効果が相乗し、より
小さな曲げモーメントMの付加で曲げ加工が可能となる
。また、断続的(3o°おき)なりレビスの存在でも、
圧延曲げでは圧延ロールの直下の材料塑性状態部で行わ
れているので、曲げ半径はスムースな形状とすることが
出来る。
Therefore, by setting - for the total amount of deformation due to compressive force E, that is, by reducing the amount of deformation to N-G/N = -, not only the generated compressive force is reduced, but also the clevis The stress concentration effect corresponding to the deformation of the triangular shape is combined, and bending can be performed with the addition of a smaller bending moment M. In addition, even in the presence of intermittent (every 3°) revis,
Since roll bending is performed in the plastic state of the material directly under the rolls, the bending radius can be made into a smooth shape.

ここで、曲げ内径側は圧縮力が作用しているので、クレ
ビスの先端の応力集中効果があっても、クレビス先端か
ら割れ等が発生することはない。
Here, since a compressive force is applied to the inner diameter side of the bend, even if there is a stress concentration effect at the tip of the clevis, cracks or the like will not occur from the tip of the clevis.

こうして、より小さな曲げモーメントMの付加で曲げ加
工が可能となる。
In this way, bending can be performed by applying a smaller bending moment M.

この算出式によるクレビス5を設定した素材1を各軸線
を平行とした普通の上・下圧延ロール2゜4により、圧
延されて出てくる素材1に対して同圧延向後に、側方向
から曲げモーメントMを加えることで、より小さな曲げ
モーメントで大断面であって、かつ、曲げ半径/板幅=
1以下の帯板形状品も曲げ加工が可能となる。
The material 1 with the clevis 5 set according to this calculation formula is rolled by ordinary upper and lower rolling rolls 2°4 with their respective axes parallel to each other, and after the same rolling direction, the material 1 is bent from the side. By adding moment M, it is possible to achieve a large cross section with a smaller bending moment, and bending radius/plate width =
It is also possible to bend products in the form of strips of 1 or less.

〔作用〕[Effect]

上・下圧延ロール2,4は平行、即ち各軸線のなす角度
を0として設定され、上側圧延ロール2は一定の圧下刃
Pのもとに回転し、素材1は板厚の10%程度圧延され
、前方へ送り出される。この圧延直後に側方向から左右
へ移動可能な曲げ規制手段3により、曲げモーメントM
が付加される。
The upper and lower rolling rolls 2 and 4 are set parallel, that is, the angle formed by each axis is 0, the upper rolling roll 2 rotates under a constant rolling blade P, and the material 1 is rolled by about 10% of the plate thickness. and sent forward. Immediately after this rolling, the bending moment M is
is added.

この際、曲げ内径側に発生する圧縮力Eによる、変形体
積量Nを低減させるクレビス部5に達すると、変形量が
ホさい分だけ圧縮力Eは低減され、これに伴い、曲げモ
ーメントMも低減される。そして、このクレビス部5を
素材1で30°おき全周に設けることで、曲げモーメン
トMは全体として低減され、同−曲げ形状では、より小
さい曲げモーメントで曲げ加工であり1本クレビスを設
けることで、大断面で曲げ半径/板幅=1以下の曲げも
実現出来る。
At this time, when the clevis part 5 is reached, which reduces the deformed volume N due to the compressive force E generated on the inner diameter side of the bend, the compressive force E is reduced by the amount of deformation, and accordingly, the bending moment M is also reduced. Reduced. By providing the clevis portions 5 at 30° intervals around the entire circumference of the material 1, the bending moment M is reduced as a whole, and in the same bending shape, the bending process is performed with a smaller bending moment, and one clevis is provided. Therefore, bending with a bending radius/plate width of 1 or less can be achieved with a large cross section.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

曲げ内半径R=590nm、ill!品板幅W=600
閣、素材板厚T=150rrnの仕様の大断面180゜
半リング曲げ品の加工にあたって前述した計算によって
、圧下量Δh=15mm、クレビス高さB=60mm、
素材板幅W=660.素材長さL =4209m、クレ
ビスピッチP=278m、クレビス幅A=1611mを
算出した。クレビスを素材にガス切断で設定し、次に上
、下ロール2・4間ギャップを135rmに設定した。
Bending inner radius R=590nm, ill! Product plate width W = 600
According to the calculations described above, when processing a large cross-section 180° half-ring bent product with a specification of material plate thickness T = 150 rrn, the reduction amount Δh = 15 mm, the clevis height B = 60 mm,
Material board width W=660. Material length L = 4209 m, clevis pitch P = 278 m, and clevis width A = 1611 m were calculated. A clevis was set on the material by gas cutting, and then the gap between the upper and lower rolls 2 and 4 was set to 135 rm.

その後1本素材を加熱炉で加熱し、上・下圧延ロール2
・4に通し、幾何学的に決定される位置に前もって設定
して置いた曲げ規制手段3により、曲げモーメントが付
加され、曲げ加工が行われた。
After that, one material is heated in a heating furnace, and the upper and lower rolling rolls 2
4, a bending moment was applied by the bending regulating means 3, which had been set in advance at a geometrically determined position, and the bending process was performed.

得られた180°半リング曲げ品の寸法を実測した結果
、曲げ後板厚=135m(外径端)。
As a result of actually measuring the dimensions of the obtained 180° half-ring bent product, the plate thickness after bending was 135 m (outer diameter end).

137m(内径端)9曲げ後板@(板厚中央部)=60
5mm・・・クレビス部は曲げ後、ターンテーブル乗せ
、ガス切断除去したため1曲げ後板幅、曲げ内半径は、
この後、測定したもの。曲げ内半径=59511mlが
得られた。
137m (inner diameter end) 9 plates after bending @ (plate thickness center) = 60
5mm... After bending, the clevis part was placed on a turntable and removed by gas cutting, so the plate width and inner radius of bending after one bend are as follows:
Measured after this. A bending inner radius of 59,511 ml was obtained.

更に、第3図に示すように、同一形状の曲げ、即ち、素
材板厚T =150 m 、板幅W = ’;l Q 
Q m 。
Furthermore, as shown in Fig. 3, the same shape is bent, that is, the material plate thickness T = 150 m, the plate width W = '; l Q
Qm.

圧下量Δh=6mmの圧延曲げ加工に対して、曲げ半径
R= 1000mmから2000nmの曲げに対して要
する曲げモーメントは、はぼ、415程度まで低減出来
た。例えば、曲げ半径R=1500mの比較では。
For rolling bending with a reduction amount Δh=6 mm, the bending moment required for bending with a bending radius R=1000 mm to 2000 nm was able to be reduced to about 415. For example, in the comparison of bending radius R=1500m.

クレビス無の場合、所要曲げモーメントMは9ton−
m 、一方、クレビスを設けた場合、6.5ton”m
であり、はぼ415程度の曲げモーメントで加工可能な
ことが明らかとなった。
Without clevis, the required bending moment M is 9 tons-
m, on the other hand, if a clevis is provided, 6.5 ton" m
It became clear that the material could be processed with a bending moment of about 415.

従来、ガス切断等によりセグメントに切断後、溶接等に
より接合して製作していた。曲げ半径/板幅=1以下の
曲げ形状品を帯板ストレート材からの曲げ加工化が可能
となり、曲げ半径/板幅=1以下形状のセグメント品の
材料歩留り率が向上される。また、本実施例では40%
材料歩留り率を向上させた。曲げ規制手段より加える曲
げモーメントも数分の−で加工可能となったため、具体
的に行う装置における曲げ規制手段も、剛性の小さい簡
便な構造となり、それに伴い、圧延を行う圧延機等も、
より簡便な構造とすることが出来る。
Conventionally, it has been manufactured by cutting into segments by gas cutting or the like and then joining them by welding or the like. It becomes possible to bend products with bending radius/plate width = 1 or less from a straight strip material, and the material yield rate of segment products with bending radius/plate width = 1 or less is improved. In addition, in this example, 40%
Improved material yield rate. Since the bending moment applied by the bending regulating means can be processed in just a few minutes, the bending regulating means in the specific equipment used has a simple structure with low rigidity.
A simpler structure can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、素材時点で曲げ後内径側となる側面に
、クレビス(切欠)を設けた材料に対する普通の圧延と
その直後に、側方向から曲げ規制手段により、曲げモー
メントを加えることにより、大断面の帯板を圧延部分か
ら、より小さい曲げモーメントで曲げ加工することが出
来る。
According to the present invention, by applying a bending moment from the side direction by a bending regulating means immediately after normal rolling of a material in which a clevis (notch) is provided on the side surface that becomes the inner diameter side after bending, A strip plate with a large cross section can be bent from the rolled portion with a smaller bending moment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の素材平面図(a)および曲
げ加工中の平面図(b)と横断側面図(C)、第2図は
本発明による曲げ加工中の平面拡大図、第3図は本発明
の一実施例で曲げ半径と曲げモーメントの関係を示す図
、第4図は従来技術の横断面図(a)及び平面図(b)
、(c)である。 1・・・素材、2・・・上圧延ロール、3・・・曲げ規
制手段、壺2区 $j 霞
FIG. 1 is a plan view (a) of a material according to an embodiment of the present invention, a plan view (b) during bending, and a cross-sectional side view (C), and FIG. 2 is an enlarged plan view during bending according to the present invention. Fig. 3 is a diagram showing the relationship between bending radius and bending moment in one embodiment of the present invention, and Fig. 4 is a cross-sectional view (a) and a plan view (b) of the prior art.
, (c). 1...Material, 2...Top rolling roll, 3...Bending regulation means, pot 2 section $j Kasumi

Claims (1)

【特許請求の範囲】 1、上・下圧延ロールにより、圧延されて出てくる帯板
に対し、圧延の直後に前記帯板の曲げ外径側面方向より
、曲げ規制手段で曲げモーメントを与える圧延曲げ方法
において、 前記帯板の曲げ内径側となる側面に、曲げ内径及び板幅
に応じたクレビスを設けたことを特徴とする曲げ加工方
法。
[Scope of Claims] 1. Rolling in which a bending moment is applied to the strip rolled by upper and lower rolling rolls from the side direction of the bending outer diameter of the strip immediately after rolling, using a bending regulating means. A bending method, characterized in that a clevis is provided on the side surface of the strip plate on the inner diameter side of the bending plate, in accordance with the inner diameter of the strip and the width of the plate.
JP27659386A 1986-11-21 1986-11-21 Bending method Pending JPS63130235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27659386A JPS63130235A (en) 1986-11-21 1986-11-21 Bending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27659386A JPS63130235A (en) 1986-11-21 1986-11-21 Bending method

Publications (1)

Publication Number Publication Date
JPS63130235A true JPS63130235A (en) 1988-06-02

Family

ID=17571608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27659386A Pending JPS63130235A (en) 1986-11-21 1986-11-21 Bending method

Country Status (1)

Country Link
JP (1) JPS63130235A (en)

Similar Documents

Publication Publication Date Title
EP3205415B1 (en) Method for producing metal plate with protruding ridge
US4218906A (en) Material tensioning method and apparatus
JPS63130235A (en) Bending method
JPH0399725A (en) Roll forming method for large sized square steel pipe
US4771931A (en) Continuous production of seam-welded metal tubing
JP2002282945A (en) Roller leveler for h-shaped steel
JP2010023115A (en) Method for straightening t-shaped steel and straightening facility
JPS61115685A (en) Manufacture of seam welded steel tube
JPH0753282B2 (en) Channel steel manufacturing method
JPH0426921B2 (en)
JP2004202514A (en) Rolling device and rolling method for angle steel
JP7343779B2 (en) Manufacturing method of asymmetric H-beam steel with different left and right flange thickness
JPH01181912A (en) Rolling equipment for hard-to-work foil band
JPS62259608A (en) Method for controlling flatness at sheet end in cold rolling of thin sheet
JP2640125B2 (en) Manufacturing method of channel steel
JP2520183B2 (en) Winding method for cold rolled coil
JPH0634004Y2 (en) Web guide for H-section steel
JPH05245525A (en) Device for correcting meandering
JPS5973125A (en) Rolling and bending method of shape material
JP3570336B2 (en) How to change the crossing angle between runs
JPS6163316A (en) Straightening roller of u-shaped steel sheet pile
JPH0687005A (en) Cold rolling method
JPH0910850A (en) Steel tube forming with using spring back quantity
JP2755133B2 (en) Stainless steel cold rolled strip width direction warping method
JPH0618643B2 (en) Edge rolling equipment for H-shaped and similar shapes