JPS63123946A - Space cooling operation controller of multichamber type air conditioner - Google Patents

Space cooling operation controller of multichamber type air conditioner

Info

Publication number
JPS63123946A
JPS63123946A JP61270320A JP27032086A JPS63123946A JP S63123946 A JPS63123946 A JP S63123946A JP 61270320 A JP61270320 A JP 61270320A JP 27032086 A JP27032086 A JP 27032086A JP S63123946 A JPS63123946 A JP S63123946A
Authority
JP
Japan
Prior art keywords
compressor
value
determining
evaporation temperature
indoor units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61270320A
Other languages
Japanese (ja)
Inventor
Junji Tamatoshi
玉利 純次
Akio Fukushima
章雄 福嶋
Yasuo Sato
康夫 佐藤
Tatsuhiko Sugimoto
達彦 杉本
Yasuo Nakajima
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61270320A priority Critical patent/JPS63123946A/en
Publication of JPS63123946A publication Critical patent/JPS63123946A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To operate the title controller with appropriate capacity in correspondence to the change in the number of indoor units to be operated by correcting a compressor operating frequency corresponding to the total sum of the capacity of indoor units, depending upon whether a difference between the estimated value and the target value of a saturation evaporation temperature on the low-pressure side of a coolant circuit after a constant time is within a proper and correct region or not. CONSTITUTION:At the time of starting the space cooling operation and at the time of varying the number of indoor units 21a and 21b operated, a compressor 7 is operated at a frequency corresponding to the total sum of the capacity of indoor units determined by capacity total sum determining means 25 and operational frequency determining means 26. During the operation of the compressor 7, while detecting the saturation evaporation temperature by means of detecting means 27, the saturation evaporation temperature after a fixed time is estimated by means of estimating means 28. The operational frequency of the compressor is corrected for adjustment by a value obtained by multiplying the difference between the estimated value thus obtained and the target value by a gain represented by the function of the total sum of the capacities of operating indoor units,depending upon whether the difference between the estimated value and the predetermined target value is within a proper and correct region or not. Accordingly, the operational frequency control of the compressor 7 at the time of space cooling becomes possible with a short transient time and a high reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、1台の室外機に複数台の室内機を冷媒回路
に接続可能とした多室形空気調和機の冷房運転制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling operation control device for a multi-room air conditioner in which a plurality of indoor units can be connected to a refrigerant circuit to one outdoor unit.

〔従来の技術〕[Conventional technology]

第10図は、例えば特開昭57−55342号公報に示
された従来の多室形空気調和機の制御装置を示す回路図
である。図において1は圧縮機速度制御回路、2は三相
交流電源である。上記圧縮機速度制御回路1は三相交流
を直流に変換する三相全波整流回路3と、この整流回路
3の出力側に接続された直流電圧調整回路4と、直流電
圧を任m周波数の交流に変換するパワートランジスタで
構成されたインバータ回路5とから構成され、インバー
タ回#5には圧縮機7が接続されている。
FIG. 10 is a circuit diagram showing a conventional control device for a multi-room air conditioner disclosed in, for example, Japanese Unexamined Patent Publication No. 57-55342. In the figure, 1 is a compressor speed control circuit, and 2 is a three-phase AC power supply. The compressor speed control circuit 1 includes a three-phase full-wave rectifier circuit 3 that converts three-phase alternating current into direct current, a direct current voltage adjustment circuit 4 connected to the output side of this rectifier circuit 3, and a direct current voltage regulator circuit 4 that converts a three-phase alternating current into direct current. The inverter circuit #5 is composed of an inverter circuit 5 made up of power transistors for converting into alternating current, and a compressor 7 is connected to the inverter circuit #5.

6は直流電圧調整回路4の電圧及びインバータ回路5の
周波数を制御する制御回路、8は最大値選別回路、9a
、9b、9cは複数の室内機から温度差信号E ta、
 E tb、 E teがそれぞれ印加される入力端子
、10a 、 10b 、 10cは電圧比較器、11
a。
6 is a control circuit that controls the voltage of the DC voltage adjustment circuit 4 and the frequency of the inverter circuit 5; 8 is a maximum value selection circuit; 9a
, 9b, 9c are temperature difference signals E ta from a plurality of indoor units,
Input terminals to which Etb and Ete are respectively applied; 10a, 10b, 10c are voltage comparators; 11
a.

11b、Ilcはダイオード、12は抵抗、13は電圧
Vsを出力する出力端子である。
11b and Ilc are diodes, 12 is a resistor, and 13 is an output terminal that outputs a voltage Vs.

次に、上記のように構成された空気調和機制御装置の動
作について説明する。複数の室内機からそれぞれの入力
端子9a、9b、9cに加えられる温度差(室温と設定
温度との差)信号電圧E ta。
Next, the operation of the air conditioner control device configured as described above will be explained. Temperature difference (difference between room temperature and set temperature) signal voltage E ta applied to each input terminal 9a, 9b, 9c from a plurality of indoor units.

E tb、 E teは、それぞれ電圧比較器10a、
10b。
E tb and E te are the voltage comparator 10a, respectively.
10b.

10cの十入力端子に入力される。また、この各電圧比
較器10a 、 10b 、 10cの一入力端子は出
力端子13に接続されている。従って、これら電圧比較
@5loa 、 10b 、 10cの基準電圧はすべ
て同値Vsとなり、このvSは入力E ta、 E t
b、 E tcの最大値によって決定され、この最大値
が出力電圧VSとして取出される。この出力電圧vSが
制御回路6に入力され、制御回#!6からインバータ回
路5に周波数制御信号をVsの関数として加えことによ
り、各室内機の温度差信号の同量も大きい値に対応する
周波数で圧縮機が運転される。
It is input to the ten input terminal of 10c. Further, one input terminal of each of the voltage comparators 10a, 10b, and 10c is connected to the output terminal 13. Therefore, the reference voltages of these voltage comparisons @5loa, 10b, 10c are all the same value Vs, and this vS is the input E ta, E t
b, E tc is determined by the maximum value, and this maximum value is taken as the output voltage VS. This output voltage vS is input to the control circuit 6, and the control circuit #! By applying a frequency control signal from 6 to the inverter circuit 5 as a function of Vs, the compressor is operated at a frequency corresponding to a value that is larger by the same amount of temperature difference signals of each indoor unit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の多室形空気調和機の制御装置は以上のように構成
されているので、各室内機ごとに温度差信号を処理し、
室外機のマイクロコンピュータなどと情報の授受ができ
る機能をもたせる必要があるため高価となり、また室内
機の運転台数の変化時、例えば最大温度差以下の温度差
しかない室内機が追加運転される時には圧縮機の能力は
変えられず、能力不足となる問題があった。
Conventional multi-room air conditioner control devices are configured as described above, so they process temperature difference signals for each indoor unit,
It is expensive because it needs to have a function that can exchange information with the microcomputer of the outdoor unit, and when the number of indoor units in operation changes, for example, when additional indoor units are operated whose temperature difference is less than the maximum temperature difference, compression is required. The ability of the aircraft could not be changed, and there was a problem with the lack of ability.

この発明は上記のような問題点を解消するなめになされ
たもので、比較的安価で運転台数の変化に対応して常に
適正な能力で効率のよい圧縮機運転の可能な多室形空気
調和機の冷房運転制御装置を1’4ることを目的とする
This invention was made to solve the above-mentioned problems, and is a relatively inexpensive multi-room air conditioner that can constantly operate the compressor at the appropriate capacity and efficiently in response to changes in the number of units in operation. The purpose is to improve the cooling operation control device of the machine.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる多室形空気調和機の冷房運転制御装置
は、運転中の室内機の数及び能力を判定して運転中室内
機の能力の総和を決定する手段と、この室内機能力の総
和に応じた圧縮機の運転周波数を決定する手段と、冷媒
回路の低圧側の飽和蒸発温度もしくは低圧圧力を検出す
る手段と、この検出値から定時間後の値を予測する手段
と、この予測値と予め決められている目標値の差が適正
領域にあるかどうかを判定する手段と、その判定結果に
基き上記室内機能力の総和に応じて決定された圧縮機運
転周波数を補正する手段を備えてなるものである。
The cooling operation control device for a multi-room air conditioner according to the present invention includes a means for determining the number and capacity of the indoor units in operation to determine the total capacity of the indoor units in operation, and a means for determining the total capacity of the indoor units in operation; means for determining the operating frequency of the compressor in accordance with the above, means for detecting the saturated evaporation temperature or low pressure on the low pressure side of the refrigerant circuit, means for predicting the value after a certain period of time from this detected value, and this predicted value. and means for determining whether the difference between the target value and the predetermined target value is within an appropriate range, and means for correcting the compressor operating frequency determined according to the sum of the indoor functional forces based on the determination result. That's what happens.

〔作 用〕[For production]

この発明においては、冷房運転開始時及び室内機の運転
台数の変化時に、能力総和決定手段及び運転周波数決定
手段に決定される室内機能力の総和に応じた周波数で圧
縮機を運転し、その運転中に飽和蒸発温度もしくは低圧
圧力を検出しながら、かつ定時間後の飽和蒸発温度もし
くは低圧圧力を予測して、この予測値と予め決められて
いる目標値の差が適正領域にあるかどうかによって圧縮
機運転周波数を、上記予測値と目標値の差に運転室内機
の能力総和の関数で示されるゲインを乗じた値で加減補
正することになる。従って、過度時間が短く、かつ信頼
性の高い冷房時の圧縮機の運転周波数制御が可能になる
In this invention, at the start of cooling operation and when the number of operating indoor units changes, the compressor is operated at a frequency corresponding to the total indoor functional power determined by the total capacity determining means and the operating frequency determining means, While detecting the saturated evaporation temperature or low pressure during the process, and predicting the saturated evaporation temperature or low pressure after a certain period of time, depending on whether the difference between this predicted value and a predetermined target value is within the appropriate range. The compressor operating frequency is corrected by a value obtained by multiplying the difference between the predicted value and the target value by a gain expressed as a function of the total capacity of the operating indoor units. Therefore, it is possible to control the operating frequency of the compressor during cooling with short transient time and high reliability.

〔実施例〕〔Example〕

以下、この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例を示す多室形空気調和機
の冷房運転制御装置のシステムブロック図である。同図
において、全体符号20で示す室外機は、圧縮機7と、
その吐出側に接続した四方弁14と、室外側熱交換器1
5と、圧縮機7の吸入側と四方弁14間に接続したアキ
ュームレータ16及びアキュームレータ16内に配設さ
れ上記室外側熱交換器15と直結されたアキュームレー
タ内熱交換器17と、アキュームレータ内熱交換器17
の他端に並列に接続された電子式リニア膨張弁(以下L
EVという) 18a、 18bと室外側熱交換器15
とアキュームレータ内熱交換器17との接続点と、四方
弁14とアキュームレータ16との接続点間に接続した
毛細管19とから構成されている。21a、21bは室
内機で、その室内側熱交換器22a、22bの一端は室
外機20の各LEV18a、18bに接続され、その他
端は四方弁14に接続されている。また、23は室外側
熱交換器15とアキュームレータ内熱交換器17の間か
ら毛細管19を介して西方弁14とアキュームレータ1
8の間に接続された冷媒回路から飽和蒸発温度を検出す
る温度センサーである。24は各室内機21a。
FIG. 1 is a system block diagram of a cooling operation control device for a multi-room air conditioner showing one embodiment of the present invention. In the same figure, the outdoor unit indicated by the overall reference numeral 20 includes a compressor 7,
A four-way valve 14 connected to the discharge side and an outdoor heat exchanger 1
5, an accumulator 16 connected between the suction side of the compressor 7 and the four-way valve 14, an accumulator internal heat exchanger 17 disposed within the accumulator 16 and directly connected to the outdoor heat exchanger 15, and an accumulator internal heat exchanger 17. Vessel 17
Electronic linear expansion valve (hereinafter referred to as L) connected in parallel to the other end
(referred to as EV) 18a, 18b and outdoor heat exchanger 15
and a connection point between the four-way valve 14 and the accumulator 16, and a capillary tube 19 connected between the connection point between the four-way valve 14 and the accumulator 16. 21a and 21b are indoor units, and one end of the indoor heat exchanger 22a and 22b is connected to each LEV 18a and 18b of the outdoor unit 20, and the other end is connected to the four-way valve 14. Further, 23 connects the west valve 14 and the accumulator 1 via a capillary tube 19 from between the outdoor heat exchanger 15 and the accumulator internal heat exchanger 17.
This is a temperature sensor that detects the saturated evaporation temperature from the refrigerant circuit connected between 8 and 8. 24 is each indoor unit 21a.

21bからの運転指令をもとにして運転中の室内機がど
れかを判定する運転室内機判定手段、25ば判定手段2
4の判定結果と予め設定されている各室内機の能力とに
より運転室内機の能力総和を決定する運転室内機能力総
和決定手段、2Gは決定手段25により決定された運転
室内機能力総和ΣQiの関数f(ΣQi)として圧縮機
運転周波数F」−1を決定する圧縮機運転周波数決定手
段、27は飽和蒸発温度検出温度センサー23からの信
号により飽和M発温度を検出し記憶する飽和蒸発検出手
段、28は検出手段27により飽和蒸発温度をもとにし
て最終測定から定時間後の飽和蒸発温度である予測飽和
蒸発温度(以下EToという)を決定する手段、29は
決定手段28で予測したEToと予め設定された目標蒸
発温度(以下ET+nという)との差で求められる制御
飽和蒸発温度(以下ΔETという)を決定する制御飽和
蒸発温度決定手段、30はこの決定手段29で決定した
制御飽和蒸発温度(ΔE T = E T o −E 
T rn )が予め設定されている適正領域にあるかど
うかを判定する適正制御飽和蒸発温度判定手段、31は
判定手段30による判定結果、即ちΔETが適正領域外
にある時、圧縮機運転周波数の補正値(以下ΔFという
)を、手段24,25で決定されたΣQ!の関数G(Σ
Qi)から与えられるゲインをΔETに乗じた値ΔF=
ΔETXG(ΣQl)に決定し、また適正領域にある時
は圧縮機運転周波数補正値をΔF=Oに決定する圧縮機
運転周波数補正値決定手段、32は上記ΔFを室内機運
転台数の変更時あるいは定時間毎の圧縮機運転周波数変
更時に前の圧縮機運転周波数として設定するFj−1に
加えて、新しく圧縮機運転周波数Fjを決定する圧縮機
運転様周波数決定手段であり、また、33ば運転周波数
設定手段26あるいは32で決定された圧縮機運転周波
数に圧縮機7の運転周波数を制御する圧縮機運転周波数
制御手段である。
Operating indoor unit determining means 25 determines which indoor unit is in operation based on the operating command from 21b;
2G is the total sum of functional power in the driver's room ΣQi determined by the determining means 25; A compressor operating frequency determining means determines the compressor operating frequency F''-1 as a function f(ΣQi), and 27 is a saturated evaporation detecting means for detecting and storing the saturated M temperature based on the signal from the saturated evaporating temperature detection temperature sensor 23. , 28 is means for determining a predicted saturated evaporation temperature (hereinafter referred to as ETo), which is the saturated evaporation temperature after a fixed time from the final measurement, based on the saturated evaporation temperature by the detection means 27, and 29 is the ETo predicted by the determination means 28. Control saturated evaporation temperature determining means 30 determines a controlled saturated evaporation temperature (hereinafter referred to as ΔET) obtained from the difference between the target evaporation temperature and a preset target evaporation temperature (hereinafter referred to as ET+n); Temperature (ΔE T = E T o −E
Appropriate control saturated evaporation temperature determination means 31 determines whether or not T rn ) is within a preset appropriate range; 31 indicates the determination result by the determination means 30, that is, when ΔET is outside the appropriate range, the compressor operating frequency The correction value (hereinafter referred to as ΔF) is the ΣQ! determined by means 24 and 25. function G(Σ
ΔF=value obtained by multiplying ΔET by the gain given from Qi)
Compressor operating frequency correction value determining means 32 determines the compressor operating frequency correction value to be ΔF=O when it is in the appropriate range. In addition to Fj-1, which is set as the previous compressor operating frequency when the compressor operating frequency is changed at regular intervals, it is a compressor operating frequency determining means that determines a new compressor operating frequency Fj, and 33 This is a compressor operating frequency control means that controls the operating frequency of the compressor 7 to the compressor operating frequency determined by the frequency setting means 26 or 32.

34はこれらの手段24〜33からなる圧縮機運転周波
数制御装置である。
34 is a compressor operating frequency control device consisting of these means 24-33.

第2図は第1図の圧縮機運転周波数制御装置34をマイ
クロコンピュータを利用して実現するようにした例を示
すブロックずである。同図において、39はマイクロコ
ンピュータ(以下マイコンという)であり、このマイコ
ン39は中央処理装置(以下CPUという)45と、上
記第1図の各手段24〜32の処理をCPU45で行わ
せるためのプログラム及びCPU45での演算結果、そ
の他のデータを記憶するメモリ46と、入力回路49及
び出力回$48とから構成されている。上記入力回路4
7には、室内機21n、21bからの運転信号とマイコ
ン39へ入力するためのインクーフエース40a、40
bが接続されている。さらに41a。
FIG. 2 is a block diagram showing an example in which the compressor operating frequency control device 34 of FIG. 1 is implemented using a microcomputer. In the figure, numeral 39 is a microcomputer (hereinafter referred to as microcomputer), and this microcomputer 39 has a central processing unit (hereinafter referred to as CPU) 45 and a system for causing the CPU 45 to perform the processing of each means 24 to 32 shown in FIG. It is comprised of a memory 46 for storing programs, calculation results from the CPU 45, and other data, an input circuit 49, and an output circuit 48. Above input circuit 4
7, ink faces 40a, 40 for inputting operating signals from the indoor units 21n, 21b and to the microcomputer 39;
b is connected. Further 41a.

41bは室内機21a、21bの能力を設定する室内機
能力設定回路で、それぞれは複数のスイッチ42a。
41b is an indoor functional power setting circuit for setting the capacity of the indoor units 21a and 21b, each of which has a plurality of switches 42a.

42bとプルアップ抵抗43a、43bとから構成され
ている。44は温度センサー23からの飽和蒸発温度信
号をデジタル信号に変換してマイコン39へ入力するA
−D変換器である。また、36a、36bは室内機21
a、21bの運転指令を室外機20へ伝送すると共に、
室内機側の制御を行う制御回路、37a、37b、及び
38a 、 38b (、を室内機21a、21bと室
内機20を接続する運転信号伝送線用のコネクタである
。上記出力回路49にはインバータ制御回路6が接続さ
れ、その制御指令信号は圧縮機運転制御回路1に出力さ
れるようになっている。
42b and pull-up resistors 43a and 43b. 44 is A that converts the saturated evaporation temperature signal from the temperature sensor 23 into a digital signal and inputs it to the microcomputer 39;
-D converter. In addition, 36a and 36b are the indoor units 21
While transmitting the operation commands of a and 21b to the outdoor unit 20,
The control circuits 37a, 37b, 38a, and 38b (, which control the indoor units) are connectors for operating signal transmission lines that connect the indoor units 21a, 21b and the indoor unit 20.The output circuit 49 includes an inverter. A control circuit 6 is connected, and its control command signal is output to the compressor operation control circuit 1.

上記圧縮機速度制御回路1は、三相交流電源2を直流に
変換する三相全波整流回路3と、この直流電圧を平滑化
する平滑回@35及び直流電圧をインバータ制御回路6
からの指令信号に応じて任意周波数の三相交流に変換す
るインパーク回路5とから構成され、インバータ回路5
からの出力は圧縮機7に供給されるようになっている。
The compressor speed control circuit 1 includes a three-phase full-wave rectifier circuit 3 that converts a three-phase AC power source 2 into DC, a smoothing circuit @ 35 that smoothes this DC voltage, and an inverter control circuit 6 that converts the DC voltage.
The inverter circuit 5 is composed of an impark circuit 5 that converts the AC into three-phase AC of an arbitrary frequency according to a command signal from the inverter circuit 5.
The output from the compressor 7 is supplied to the compressor 7.

第3図は、室内機能力の総和と圧縮機運転周波数との関
係を示す動作特性図である。圧縮機7は、これに供給さ
れる電源周波数、即ち運転周波数を可変すれば、圧縮機
の回転数が変化し、圧縮機の能力を自由に変化させるこ
とができる。図示のように、例えば、小さい能力Q、の
室内機21aの単独運転ときは、圧縮機運転周波数を最
も低い(Q、)にし、大きい能力Q2の室内@21bを
単独運転する時はt(Q2)にし、さらに両室内機21
a、21bを共に運転する時は、室内機能力総和はQ 
+ 十Q 2となり、運転周波数は最も高いf (Ql
 +Q2 )となる。
FIG. 3 is an operating characteristic diagram showing the relationship between the total indoor functional power and the compressor operating frequency. By varying the frequency of the power supply supplied to the compressor 7, that is, the operating frequency, the rotational speed of the compressor can be varied, and the capacity of the compressor can be freely varied. As shown in the figure, for example, when the indoor unit 21a with a small capacity Q is operated independently, the compressor operating frequency is set to the lowest (Q,), and when the indoor unit 21b with a large capacity Q2 is operated independently, t(Q2 ), and then both indoor units 21
When driving both a and 21b, the total indoor functional power is Q.
+ 1Q 2, and the operating frequency is the highest f (Ql
+Q2).

第4図は、制御飽和蒸発温度ΔETと圧縮機運転周波数
との関係を示す動作特性図で、圧縮機運転周波数が高い
ほどΔETが低いことを示している。室内外機の空気温
度、湿度できまる圧縮機7の負荷の変化をパラメータと
して考えると、ΔETが正の場合は負荷が大きく、負の
場合は負荷が小さくなり、適正領域では適正負荷と言え
る。同図において、ΔETがA点にある時は、飽和蒸発
温度が目標飽和蒸発温度より低く、空気調和機として能
力過多となっており、ΔETを適正にするために圧縮機
の運転周波数をΔFだけ下降させ、FAの周波数をA8
にする必要がある。また、ΔETが0点にある時は、飽
和蒸発温度が目標飽和蒸発温度より高く、空気調和機と
して能力不足となっており、ΔETを適正にするために
ΔFだけ圧縮機の運転周波数を上昇させ、Foの周波数
をF8にする必要がある。よってΔFはΔETの大きさ
に対して決まる値であるため、ΔFをΔETの関数とし
て示すとΔF(ΔET)=kXΔETで表わされる。k
は比例定数(以下ゲインという)である。
FIG. 4 is an operating characteristic diagram showing the relationship between the controlled saturated evaporation temperature ΔET and the compressor operating frequency, and shows that the higher the compressor operating frequency, the lower the ΔET. Considering the change in the load on the compressor 7 determined by the air temperature and humidity of the indoor and outdoor units as a parameter, when ΔET is positive, the load is large, and when ΔET is negative, the load is small, and it can be said that the load is appropriate in the appropriate range. In the figure, when ΔET is at point A, the saturated evaporation temperature is lower than the target saturated evaporation temperature, and the air conditioner has overcapacity, so the operating frequency of the compressor must be reduced by ΔF to make ΔET appropriate. lower the FA frequency to A8
It is necessary to In addition, when ΔET is at 0 point, the saturated evaporation temperature is higher than the target saturated evaporation temperature, and the air conditioner is insufficiently capable.In order to make ΔET appropriate, the operating frequency of the compressor must be increased by ΔF. , it is necessary to set the frequency of Fo to F8. Therefore, since ΔF is a value determined based on the magnitude of ΔET, when ΔF is expressed as a function of ΔET, it is expressed as ΔF(ΔET)=kXΔET. k
is a proportionality constant (hereinafter referred to as gain).

第5図は、制御飽和蒸発温度ΔETと圧縮機運転周波数
補正値ΔF(ΔET、ΣQi)との関係を示す動作特性
図で、単位制御飽和蒸発温度ΔETo。
FIG. 5 is an operating characteristic diagram showing the relationship between the controlled saturated evaporation temperature ΔET and the compressor operating frequency correction value ΔF (ΔET, ΣQi), where the unit controlled saturated evaporation temperature ΔETo.

即ち制御飽和蒸発温度が変化した時の圧縮機運転数補正
値ΔFは、運転室内機の能力総和ΣQ!の関数になるこ
とを示している。つまり、室内外機の空気条件が一定の
場合、圧縮機の負荷のパラメータは、運転室内機の能力
総和ΣQiによって決定される。運転室内機の能力総和
ΣQiが大きいほど、単位周波数を変化させた時のΔE
Tの変化は小さくなるため、制御飽和蒸発1度ΔETo
を大きく変化するためには、ΣQiが大きいほど圧縮機
運転数を大きく変化させる必要がある。それ故、上記の
圧縮機運転数補正値ΔFの式、ΔF(ΔET)−kxΔ
ETのゲインkがΣQiの関数で示され、ΔFは、K=
G (ΣQi)とすれば、ΔF(ΔET、ΣQ1)=Δ
ETXG(ΣQi)という式テ表わすことができる。ま
た、第5図において、室内機21aの単独運転の場合、
圧縮機運転周波数補正値ΔFはΔF〔ΔF T o 、
Q + )、室内機21bの単独運転の場合、ΔFはΔ
F(ΔETO−Q2)−室内機21a、21bの同時運
転の場合、ΔFはΔF(ΔF T I 、Q 、十Q 
2 )となり、ΔET0が正の場合、その大小関係は、
ΔF(ΔETo 、Ql 十Q2)〉ΔF(ΔF To
 、Q2 )>ΔF(ΔET0゜Q、)となる。一方、
ΔET0が負の場合、ΔF(ΔET0.Q+ )>ΔF
(ΔETo、Q2)〉ΔF(ΔETO、Ql +Q2 
)となる。
In other words, the compressor operation number correction value ΔF when the controlled saturated evaporation temperature changes is the total capacity of the operating indoor units ΣQ! This shows that it is a function of That is, when the air conditions of the indoor and outdoor units are constant, the parameter of the compressor load is determined by the total capacity ΣQi of the operating indoor units. The larger the total capacity ΣQi of the operating indoor unit, the greater the ΔE when changing the unit frequency.
Since the change in T becomes small, the controlled saturated evaporation 1 degree ΔETo
In order to greatly change ΣQi, it is necessary to change the compressor operation number more greatly as ΣQi becomes larger. Therefore, the formula for the compressor operating number correction value ΔF above is ΔF(ΔET)−kxΔ
The gain k of ET is expressed as a function of ΣQi, and ΔF is expressed as K=
If G (ΣQi), ΔF (ΔET, ΣQ1) = Δ
It can be expressed as ETXG(ΣQi). In addition, in FIG. 5, in the case of independent operation of the indoor unit 21a,
The compressor operating frequency correction value ΔF is ΔF [ΔF T o ,
Q + ), in the case of independent operation of the indoor unit 21b, ΔF is Δ
F(ΔETO-Q2) - In the case of simultaneous operation of indoor units 21a and 21b, ΔF is ΔF(ΔF T I , Q ,
2), and if ΔET0 is positive, the magnitude relationship is
ΔF(ΔETo, Ql +Q2)〉ΔF(ΔF To
, Q2 )>ΔF(ΔET0°Q,). on the other hand,
If ΔET0 is negative, ΔF(ΔET0.Q+)>ΔF
(ΔETo, Q2)〉ΔF(ΔETO, Ql +Q2
).

次に、上記のように構成された本実施例の冷房運転制御
装置の動作を第6図のフローチャー1・に基いて説明す
る。
Next, the operation of the cooling operation control device of this embodiment configured as described above will be explained based on flowchart 1 in FIG.

室内機21aをNal、室内機21bを魔2とする。The indoor unit 21a is set to Nal, and the indoor unit 21b is set to M2.

空気調和機の冷房運転制御に際し、そのプログラムがス
タートすると、ステップ49でNo、1が運転かどうか
を判定し、「NO」のときはステップ50で勲2が運転
かどうかを判定する。また、ステップ49でrY E 
S Jのときはステップ51に移行して勲2が運転かど
うかを判定する。&1. No、2共に運転の場合はス
テップ52で、No、1のみが運転の場合はステップ5
3で、Na2のみが運転の場合ステップ54で、予め決
められている能力総和ΣQiに対応した周波数データが
F」−1にそれぞれ代入されると同時、Mo、l、No
、2共に運転の場合、ステップ55で「3」を、Nl1
1のみ運転の場合はステップ56で「1」を、No、2
のみ運転の場合は、ステップ57で[2Jをそれぞれ旧
モード運転データとしてN j−1に代入する。この結
果、ステップ58で旧周波数データF j−1に基いて
圧縮機7が運転を開始する。一方、N11.1.&2と
も運転でない場合には、ステップ59に移り、圧縮機7
の運転停止状態が継続される。次に、ステップ58で圧
縮機7が運転を開始すると、ステップ60で周波数制御
を行うタイマーTをセットし、ステップ61で温度セン
サー23に飽和蒸発温度ETの測定を行い、ステップ6
2でこのETをマイコン39のメモリー46に記憶する
。そして、ステップ63で上記タイマーTが周波数制御
時間t、になったかを確認する。タイマーTがり、にな
ると、ステップ64に進み、先のメモリー46に記憶し
であるETデータと最新のETデータとをもとにして、
現時点(’r= t + )よりt2時間後のETを予
測し、予測飽和蒸発温度EToを求める。次に、ステッ
プ65で予めセットされている目標飽和蒸発温度ETm
を、ステップ64で求めたEToより減して、制御飽和
蒸発温度ΔETを求める。そして、ステップ66でとの
ΔETが適正領域にあるかどうかを判定し、適正領域に
ない場合は、ステップ67においてステップ65で求め
たΔETに予めセットされているゲインG(ΣQi)を
乗じて圧縮機運転周波数補正値ΔFを求める。次のステ
ップ69では、周波数データF j−1にΔFを加えた
データを新周波数データFjに代入する。一方、適正領
域にある場合は、ステップ68でΔFにrQJを代入し
てステップ69に移る。このようにして求めた新周波数
データで、ステップ70においてインバータ回路5を制
御し、圧縮機7の運転周波数を変更する。その後、ステ
ップ71で周波数制御タイマーTをセットする。そして
、次のステップ72.73.74で運転室内機を確認し
、No、 1 、 No、 2共運転の場合はステップ
75で「3」を、No、1のみ運転の場合はステップ7
6で「1」を、No、2のみ運転の場合はステップ77
でr24を新モード運転データとしてそれぞれN」に代
入する。
When the program starts to control the cooling operation of the air conditioner, it is determined in step 49 whether No. 1 is in operation, and if "NO", it is determined in step 50 whether Ion 2 is in operation. Also, in step 49, rY E
If SJ, the process moves to step 51 and it is determined whether Isao 2 is driving. &1. If No. 2 is in operation, step 52; if only No. 1 is in operation, step 5
In step 54, when only Na2 is in operation, the frequency data corresponding to the predetermined capacity sum ΣQi is assigned to F''-1, and at the same time, Mo, l, No.
, 2 are both in operation, set "3" in step 55, and set Nl1 to "3" in step 55.
If only 1 is in operation, enter "1" in step 56, No, 2.
In the case of only operation, in step 57, [2J is each substituted into Nj-1 as old mode operation data. As a result, in step 58, the compressor 7 starts operating based on the old frequency data Fj-1. On the other hand, N11.1. If both &2 are not in operation, the process moves to step 59, and the compressor 7
The operation of the system continues to be stopped. Next, when the compressor 7 starts operating in step 58, a timer T for frequency control is set in step 60, the saturated evaporation temperature ET is measured by the temperature sensor 23 in step 61, and the saturated evaporation temperature ET is measured in step 61.
2, this ET is stored in the memory 46 of the microcomputer 39. Then, in step 63, it is checked whether the timer T has reached the frequency control time t. When the timer T reaches, the process proceeds to step 64, and based on the ET data previously stored in the memory 46 and the latest ET data,
The ET after t2 hours from the current time ('r=t + ) is predicted, and the predicted saturated evaporation temperature ETo is determined. Next, in step 65, the target saturated evaporation temperature ETm is set in advance.
is subtracted from ETo obtained in step 64 to obtain the controlled saturated evaporation temperature ΔET. Then, in step 66, it is determined whether or not ΔET is within the appropriate range. If it is not within the appropriate range, in step 67, ΔET obtained in step 65 is multiplied by a preset gain G (ΣQi) to perform compression. Find the machine operating frequency correction value ΔF. In the next step 69, data obtained by adding ΔF to the frequency data Fj-1 is substituted into the new frequency data Fj. On the other hand, if it is within the appropriate range, rQJ is substituted for ΔF in step 68 and the process moves to step 69. Using the new frequency data obtained in this manner, the inverter circuit 5 is controlled in step 70 to change the operating frequency of the compressor 7. Thereafter, in step 71, a frequency control timer T is set. Then, in the next step 72, 73, and 74, check the operating indoor unit, and if No. 1, No. 2 are operating together, enter "3" in step 75; if only No. 1 is operating, enter "3" in step 7.
Step 77 if you are driving only No. 6 and No. 2.
Then, r24 is assigned to N'' as new mode operation data.

また、ステップ63でタイマーTが周波数制御時間t、
に至っていない場合は、上記ステップ72に飛び、ステ
ップ72〜ステツプ77のステップを実行する。そして
、ステップ78でNjとNj−1が等しい場合は、運転
台数が変化していないとしてステップ79に移り、ステ
ップ79で上記タイマーTがリセットされていれば、ス
テップ80で新周波数データを、旧周波数データF j
−1に代入して、ステップ60へ戻る。また、ステップ
79でタイマーTがリセットされていなければステップ
61へ戻る。さらに、ステップ78でNjとN j−1
が等しくない場合は、運転室内機の変更があったとして
、プログラムの最初のステップ49に戻る。
Further, in step 63, the timer T sets the frequency control time t,
If it has not yet reached step 72, the process jumps to step 72 and executes steps 72 to 77. If Nj and Nj-1 are equal in step 78, it is assumed that the number of operating vehicles has not changed and the process moves to step 79. If the timer T has been reset in step 79, the new frequency data is replaced with the old frequency data in step 80. Frequency data F j
-1 and return to step 60. Further, if the timer T has not been reset in step 79, the process returns to step 61. Furthermore, in step 78, Nj and N j−1
If they are not equal, it is assumed that there has been a change in the operating indoor unit, and the program returns to step 49, which is the first step in the program.

第7図は、上記制tB動作において、飽和蒸発温度のE
Tの変化と圧縮機運転周波数の変化を示すタイマムチャ
−1・である。同図において、まずA点でタイマーTが
T=t、となったとすると、時間t、(0→A)で測定
したETからA点よりt2時間経過後のA′点の予測飽
和蒸発温度EToを予測すると、EToAとなり、この
値は、適正領域より高い方向に外れているため、制御飽
和蒸発温度ΔETは、ΔETA =ETOA −ETm
 (目標飽和蒸発温度)で正となり、圧縮機運転周波数
補正値ΔFのA点での補正値ΔFAも、ΔFA=ΔET
AxG(ΣQi)の正であり、A点では、ΔFAだけ圧
縮機運転周波数を上昇させることになる。このようにす
ると、次の時間t、(A+B)でのETの変化は、時間
t、(0−+A)より大きくなるため、時間t、(0−
A)での周波数で運転するよりも早(ETmに近づく1
次に、B点においてA点と同様にEToeを求めろと、
EToeは適正領域よりも低い方向に外れ、ΔET8は
ΔET8=E T oB  E T mで負となり、Δ
F8ばΔF8−ΔET8×G(ΣQi)の負であり、Δ
F8だけ圧縮機運転周波数を下げることになる。このよ
うにすると、t、(B−hC)でのET変化は1間t。
FIG. 7 shows E of the saturated evaporation temperature in the above-mentioned control tB operation.
This is a timer chart 1 showing changes in T and changes in compressor operating frequency. In the same figure, if the timer T becomes T = t at point A, then the predicted saturated evaporation temperature ETo at point A' after t2 hours have elapsed from point A from ET measured at time t (0→A). When predicted, it becomes EToA, and since this value deviates higher than the appropriate range, the control saturated evaporation temperature ΔET is calculated as ΔETA = ETOA − ETm
(target saturated evaporation temperature), and the correction value ΔFA of the compressor operating frequency correction value ΔF at point A is also ΔFA=ΔET.
AxG (ΣQi) is positive, and at point A, the compressor operating frequency is increased by ΔFA. In this way, the change in ET at the next time t, (A+B) will be larger than the time t, (0-+A), so the change in ET at the next time t, (0-+A) will be greater than the time t, (0-+A).
A) faster than operating at frequency A) (approaching ETm1)
Next, find EToe at point B in the same way as at point A.
EToe deviates to a direction lower than the appropriate range, and ΔET8 becomes negative as ΔET8=ET oB ET m, and ΔET8 becomes negative.
F8 is the negative of ΔF8−ΔET8×G(ΣQi), and Δ
The compressor operating frequency will be lowered by F8. In this way, the ET change at t, (B-hC) is 1 time t.

(A −B )より小さくなる。(A - B) becomes smaller.

B点において、実際のETは、適正領域より高いにもか
かわらず、圧縮機の運転周波数は低くなるが、ΔFAの
絶対値はΔFoの絶対値よりも大きいため、時間t+ 
(04A )の運転周波数よりも高い位置で時間j 、
 (B−e−C)での運転がなされる。
At point B, although the actual ET is higher than the appropriate range, the operating frequency of the compressor becomes low, but since the absolute value of ΔFA is greater than the absolute value of ΔFo, the time t+
At a time j at a position higher than the operating frequency of (04A),
(B-e-C) operation is performed.

その結果、時間t+ (A=B)の運転周波数でそのま
ま運転すると、いずれは適正領域より外れてしまうが、
B点において、周波数が下げられることにより、C′点
のETocも適正領域とにり、ETはETm近傍(適正
領域)で安定する。
As a result, if you continue to operate at the operating frequency for time t+ (A=B), it will eventually deviate from the appropriate range, but
By lowering the frequency at point B, the EToc at point C' also falls into the appropriate range, and ET becomes stable near ETm (appropriate range).

第8図はこの発明における多室形空気調和機の冷房運転
制御装置の他の実施例を示す。この実施例において、上
記第1図の実施例と異なる点は低圧圧力を検出し、この
低圧圧力をもとにして、上記と同様な制御を行うように
したものである。第8図において、第1図と同一の符号
は同一または相当部分を示し、81は圧縮機低圧側の圧
力を検出する低圧圧力センサー、82は低圧圧力検出手
段、83は予測低圧圧力決定手段、84は制御低圧圧力
決定手段、85は適正制御低圧圧力判定手段である。こ
れら各手段82〜85は、そのパラメータが低圧圧力で
あるものの、その処理手順は上記飽和蒸発温度の場合と
同様であるので、その説明は省略する。
FIG. 8 shows another embodiment of the cooling operation control device for a multi-room air conditioner according to the present invention. This embodiment differs from the embodiment shown in FIG. 1 above in that low pressure is detected and the same control as above is performed based on this low pressure. In FIG. 8, the same reference numerals as in FIG. 1 indicate the same or equivalent parts, 81 is a low pressure sensor that detects the pressure on the low pressure side of the compressor, 82 is low pressure pressure detection means, 83 is predicted low pressure determination means, 84 is a control low pressure determining means, and 85 is an appropriate control low pressure determining means. Although the parameter for each of these means 82 to 85 is low pressure, the processing procedure is the same as that for the saturated evaporation temperature, so a description thereof will be omitted.

第9図はモリエル線図を示し、点線で示す一般的な冷凍
サイクルにおいて、この冷媒サイクル線上の飽和液線と
飽和蒸気綿で挟まれている領域Xでは、飽和蒸発温度と
低圧圧力Psは共に一定で、圧縮機7の運転周波数によ
って変化する。従って、ETの代りに圧力センサーから
ETに応じた低圧圧力(Ps)を検出して、予測低圧圧
力が適正領域になるように圧縮機の運転周波数を補正す
るようにしても前記の実施例と全く同様の作用効果を得
ろことができろ。
Figure 9 shows a Mollier diagram. In a general refrigeration cycle shown by the dotted line, in the region It is constant and changes depending on the operating frequency of the compressor 7. Therefore, even if the low pressure (Ps) corresponding to ET is detected from a pressure sensor instead of ET and the operating frequency of the compressor is corrected so that the predicted low pressure falls within the appropriate range, the above embodiment will not work. You can get exactly the same effect.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、冷房運転時、圧wI
機の能力飽和に応じて圧縮機の運転周波数を決定し、こ
の運転周波数を、運転時の飽和蒸発温度もしくは低圧圧
力の予測値と目標値の差が適正領域にあるかどうかに応
じて、室内機能力総和を考慮した圧縮機運転周波数の補
正値で圧縮機運転周波数を決定できるようにしたので、
比較的安価な構成で、各室内機の運転台数に応じ、かつ
冷凍サイクルが安定系に至る制御時間の短縮がはかれ、
最適な高効率運転が可能な信頼性の高い多室形空気調和
機の冷房運転制御装置が得られる。
As described above, according to the present invention, during cooling operation, the pressure wI
The operating frequency of the compressor is determined according to the capacity saturation of the compressor, and this operating frequency is adjusted indoors depending on whether the difference between the predicted value and target value of the saturated evaporation temperature or low pressure during operation is within the appropriate range. The compressor operating frequency can be determined using a correction value for the compressor operating frequency that takes into account the total functional capacity.
With a relatively inexpensive configuration, the control time for the refrigeration cycle to reach a stable system can be shortened depending on the number of operating indoor units.
A highly reliable cooling operation control device for a multi-room air conditioner capable of optimum high-efficiency operation is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の多室形空気調和機の冷房運転制御
装置の一実施例を示すシステムブロック図、第2図は第
1図のシステムをマイクロコンピュータを利用して実現
するようにした場合の例を示すブロック図、第3図、第
4図及び第5図は、それぞれ動作説明図、第6図はこの
実施例の動作を示すフローチャート、第7図はこの実施
例の制御動作を示すタイ11チヤー1・、第8図はこの
発明の他の実施例を示すシステムブロック図、第9図は
その動作説明のためのモリエル線図、第10図は従来の
多室形空気調和機の制御装置を示すブロック図である。 1−圧縮機速度制御回路、2・・・交流Ts源、6・・
・インバータ制御回路、7・・圧縮機、20・・室外機
、21a、21b  室内機、2:11−温度センサー
、24・・・運転室内機判定手段、25・・運@室内機
能力総和判定手段、26・・圧縮機運転周波数決定手段
、27・・飽和蒸発温度検出手段、28・・・予測飽和
蒸発温度決定手段、29・制御飽和蒸発温度決定手段、
30・・適正制御飽和蒸発温度決定手段、31・・・圧
縮機運転周波数補正値決定手段、32・・圧縮機運転周
波数決定手段、34・・圧縮機運転周波数制御装置、8
1 ・低圧圧力センサー、82・・・低圧圧力検出手段
、83・・予測低圧圧力決定手段、84・・制御低圧圧
力決定手段、85・・適正制御低圧圧力判定手段。 なお、図中同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(外2名) 第2図 第3図 訪1癖ΣQi−→ 第4図 制御飽和N兄温I 第 5 図 第9図
Fig. 1 is a system block diagram showing an embodiment of the cooling operation control device for a multi-room air conditioner according to the present invention, and Fig. 2 is a system block diagram showing an embodiment of the system shown in Fig. 1 using a microcomputer. FIG. 3, FIG. 4, and FIG. 5 are respectively operation explanatory diagrams, FIG. 6 is a flowchart showing the operation of this embodiment, and FIG. 7 is a control operation of this embodiment. Figure 8 is a system block diagram showing another embodiment of the present invention, Figure 9 is a Mollier diagram for explaining its operation, and Figure 10 is a conventional multi-room air conditioner. It is a block diagram showing a control device of. 1-Compressor speed control circuit, 2... AC Ts source, 6...
・Inverter control circuit, 7...Compressor, 20...Outdoor unit, 21a, 21b Indoor unit, 2:11-Temperature sensor, 24...Operation indoor unit determination means, 25...Luck@Indoor functional power total determination Means, 26... Compressor operating frequency determination means, 27... Saturated evaporation temperature detection means, 28... Predicted saturated evaporation temperature determination means, 29. Controlled saturated evaporation temperature determination means,
30... Appropriate control saturated evaporation temperature determining means, 31... Compressor operating frequency correction value determining means, 32... Compressor operating frequency determining means, 34... Compressor operating frequency control device, 8
1 - Low pressure pressure sensor, 82... Low pressure pressure detection means, 83... Predicted low pressure pressure determination means, 84... Control low pressure pressure determination means, 85... Appropriate control low pressure pressure determination means. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Fig. 2 Fig. 3 Visit 1 habit ΣQi-→ Fig. 4 Control saturation N brother temperature I Fig. 5 Fig. 9

Claims (4)

【特許請求の範囲】[Claims] (1)可変周波数装置により速度制御される圧縮機を含
む1台の室外機に複数台の室内機を接続可能にした多室
形空気調和機の冷房運転制御装置において、運転中の室
内機を判定する手段、この手段による判定結果から運転
中の室内機の能力の総和を決定する手段、この手段によ
って決定された運転室内機の能力総和に応じた圧縮機の
運転周波数を決定する手段、上記室外機冷媒回路の低圧
側の飽和蒸発温度もしくは低圧圧力を検出する手段、こ
の手段により検出された検出値を基にして定時間後の予
測値を決定する手段、この予測値と予め定められている
目標値により求められる制御値を決定する手段、この手
段により決定された制御値が適正領域にあるかどうかを
判定する手段、この手段の判定結果に応じ上記圧縮機運
転周波数決定手段によって決定された圧縮機運転周波数
を補正する補正値を決定する手段、この手段により決定
された補正値を考慮した圧縮機運転周波数を決定する手
段、この手段で決定する周波数に上記可変周波数装置に
よる圧縮機運転周波数を制御する手段を備えたことを特
徴とする多室形空気調和機の冷房運転制御装置。
(1) In a cooling operation control device for a multi-room air conditioner that allows multiple indoor units to be connected to one outdoor unit including a compressor whose speed is controlled by a variable frequency device, the operating indoor unit means for determining, means for determining the total capacity of the operating indoor units from the determination result by this means, means for determining the operating frequency of the compressor in accordance with the total capacity of the operating indoor units determined by this means; means for detecting the saturated evaporation temperature or low pressure on the low pressure side of the outdoor unit refrigerant circuit; means for determining a predicted value after a certain period of time based on the detected value detected by this means; means for determining the control value determined by the target value, means for determining whether the control value determined by this means is within an appropriate range, and means for determining the control value determined by the compressor operating frequency determination means according to the determination result of this means. means for determining a correction value for correcting the compressor operating frequency determined by this means; means for determining a compressor operating frequency in consideration of the correction value determined by this means; A cooling operation control device for a multi-room air conditioner, characterized by comprising means for controlling frequency.
(2)上記制御値決定手段は、検出手段より得られる飽
和蒸発温度を基にして得られる定時間後の予測飽和蒸発
温度と、予め定められている目標飽和蒸発温度との差で
、制御飽和蒸発温度を決定するようになっている特許請
求の範囲第1項記載の多室形空気調和機の冷房運転制御
装置。
(2) The control value determining means determines the control value based on the difference between the predicted saturated evaporation temperature after a certain period of time obtained based on the saturated evaporation temperature obtained from the detection means and a predetermined target saturated evaporation temperature. A cooling operation control device for a multi-room air conditioner according to claim 1, wherein the cooling operation control device is adapted to determine the evaporation temperature.
(3)上記制御値決定手段は、検出手段より得られる低
圧圧力を基にして得られる定時間後の予測低圧圧力と、
予め定められている目標低圧圧力との差で、制御低圧圧
力を決定するようになっている特許請求の範囲第1項記
載の多室形空気調和機の冷房運転制御装置。
(3) The control value determining means calculates a predicted low pressure after a certain period of time obtained based on the low pressure obtained from the detection means;
2. The cooling operation control device for a multi-room air conditioner according to claim 1, wherein the control low pressure is determined based on a difference from a predetermined target low pressure.
(4)上記圧縮機運転周波数の補正値は、制御値が適正
領域にある場合は0とし、適正領域以外は制御値に上記
運転中の室内機の能力総和決定手段で決定され力能力総
和の関数として与えられるゲインとの積で決められる補
正値である特許請求の範囲第1項記載の多室形空気調和
機の冷房運転制御装置。
(4) The correction value of the compressor operating frequency is set to 0 when the control value is within the appropriate range, and is set to the control value when the control value is outside the appropriate range. The cooling operation control device for a multi-room air conditioner according to claim 1, wherein the correction value is determined by multiplying the correction value by a gain given as a function.
JP61270320A 1986-11-13 1986-11-13 Space cooling operation controller of multichamber type air conditioner Pending JPS63123946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270320A JPS63123946A (en) 1986-11-13 1986-11-13 Space cooling operation controller of multichamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270320A JPS63123946A (en) 1986-11-13 1986-11-13 Space cooling operation controller of multichamber type air conditioner

Publications (1)

Publication Number Publication Date
JPS63123946A true JPS63123946A (en) 1988-05-27

Family

ID=17484624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270320A Pending JPS63123946A (en) 1986-11-13 1986-11-13 Space cooling operation controller of multichamber type air conditioner

Country Status (1)

Country Link
JP (1) JPS63123946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642581A (en) * 2016-12-26 2017-05-10 Tcl空调器(中山)有限公司 Air conditioner control method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642581A (en) * 2016-12-26 2017-05-10 Tcl空调器(中山)有限公司 Air conditioner control method and system
CN106642581B (en) * 2016-12-26 2019-07-12 Tcl空调器(中山)有限公司 Air-conditioner control method and system

Similar Documents

Publication Publication Date Title
CN111059733B (en) Compressor unit control method and device
US5157934A (en) Controller for electrically driven expansion valve of refrigerating cycle
EP1335167A4 (en) Air conditioner
CN111503842B (en) Control method, control device, control system and readable medium of multi-split air conditioner
JPS63123946A (en) Space cooling operation controller of multichamber type air conditioner
JP4921100B2 (en) Air conditioner controller
JPH05322279A (en) Control device for air conditioner
CN113790507B (en) Air conditioner and control method of self-adaptive power grid of air conditioner
CN110030666A (en) A kind of defrosting control method, device and air conditioner
US10310475B2 (en) System and method of operating a variable speed HVAC system
JPS63123945A (en) Space cooling operation controller of multichamber type air conditioner
JP7058773B2 (en) Air conditioner
JPS61231340A (en) Operation controller for air conditioner
JPH1038398A (en) Controller of electric expansion valve
JPH05272822A (en) Freezer
JPH11287494A (en) Air conditioner
JPS6249146A (en) Multiple room type air conditioner
CN220379864U (en) Variable frequency air conditioner capable of controlling indoor humidity through remote controller
KR20050034085A (en) Method for controlling cool air load calculation of air-conditioner
JP2755037B2 (en) Refrigeration equipment
JPH07286761A (en) Air conditioner
KR100512417B1 (en) Control method of driving compressor of inverter air-conditioner
JP2597011B2 (en) Air conditioner
JP2521117B2 (en) Air conditioning control device
JPS63163727A (en) Control device for air conditioner