JPS63118128A - Driving method for active matrix type liquid crystal display device - Google Patents

Driving method for active matrix type liquid crystal display device

Info

Publication number
JPS63118128A
JPS63118128A JP26359486A JP26359486A JPS63118128A JP S63118128 A JPS63118128 A JP S63118128A JP 26359486 A JP26359486 A JP 26359486A JP 26359486 A JP26359486 A JP 26359486A JP S63118128 A JPS63118128 A JP S63118128A
Authority
JP
Japan
Prior art keywords
scanning
voltage
signal
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26359486A
Other languages
Japanese (ja)
Other versions
JPH077159B2 (en
Inventor
Shigeki Ogura
小椋 茂樹
Kan Watanabe
渡辺 宦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61263594A priority Critical patent/JPH077159B2/en
Publication of JPS63118128A publication Critical patent/JPS63118128A/en
Publication of JPH077159B2 publication Critical patent/JPH077159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain a uniform image over the entire surface of the display part of a liquid crystal display device by making the application time of a scanning voltage applied to scanning electrodes shorter than the application time of a signal voltage applied to picture elements belonging to the scanning electrodes through the signal electrodes. CONSTITUTION:A pulse outputted from a controller 43 for liquid crystal driving, i.e. a start pulse S1 for the signal voltage and scanning voltage is inputted to a scanning electrode driver 45 and a signal electrode driver 47. At this time, the signal voltage and scanning voltage are applied to the signal electrodes and scanning electrodes respectively. The start pulse S1 is further inputted to a timer 61 as well, which outputs a signal S2 for turning off the scanning voltage to a scanning electrode driver 45 a time period equal to the scanning voltage application time tau after it is started with the start pulse S1. The time period wherein the scanning voltage is applied is controllable with the signal S2. This scanning is carried out for all the scanning electrodes (b1-bn) in order and a line sequential scan is made on condition that the scanning voltage application time is shorter than the signal voltage application time.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はアクティブマトリクス型液晶表示装置の駆動
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for driving an active matrix liquid crystal display device.

(従来の技術) 走査電極と信号電極とを共に多数有し、これら両電極の
交差領域に多数のスイッチング素子を有する第一基板と
、対向電極を有する第二基板との間に液晶を有したアク
ティブマトリクス型液晶表示装置(以下、表示装置と略
称することもある。)は、高鯖細な画像を表示出来る装
置の一つとして知られている。
(Prior art) A liquid crystal is provided between a first substrate having a large number of scanning electrodes and a large number of signal electrodes, and a large number of switching elements in the intersection area of these two electrodes, and a second substrate having a counter electrode. An active matrix liquid crystal display device (hereinafter sometimes abbreviated as a display device) is known as one of the devices that can display highly detailed images.

このような表示装置の駆動方法として好適なものに線順
次走査がある。これは、スイッチング素子としての例え
ば薄膜トランジスタ(TPT)の、例えばゲート電極が
多数接続されている多数の走査電極を一行づつ選択して
通電状態にすると共に、例えばTPTのドレイン電極が
多数接続されている信号電極を介して、導通状、態の走
査電極に所属する各画素にこれら画素に応じた信号を書
き込むというものである。
A suitable method for driving such a display device is line sequential scanning. This is done by selecting one line at a time a large number of scan electrodes to which many gate electrodes of a thin film transistor (TPT), for example, are connected, as a switching element, and making them conductive. A signal corresponding to each pixel belonging to the scanning electrode in a conductive state is written through the signal electrode.

第5図(A)〜(D)は、横1随に時間を縦軸に電圧を
それぞわとって、線順次走査による従来の駆動方法で用
いる駆動信号の波形を示した図である。
FIGS. 5A to 5D are diagrams showing the waveforms of drive signals used in the conventional drive method using line sequential scanning, with voltage plotted horizontally and with time on the vertical axis, respectively.

第5図(A)において、IIで示す一点鎖線は第二基板
の対向電極の電圧であり、13で示す曲線は信号電極に
印加される信号波形である。第5図(B)〜(D)は第
一行目、m二行目、第n行目の走査電極に印加される走
査電圧の波形をそれぞれ示す図である。
In FIG. 5(A), the dashed line indicated by II is the voltage of the counter electrode of the second substrate, and the curve indicated by 13 is the signal waveform applied to the signal electrode. FIGS. 5(B) to 5(D) are diagrams showing the waveforms of the scanning voltages applied to the scanning electrodes in the first row, m-th row, and n-th row, respectively.

又、第5図(A)中のでは、ある信号電極の一画素に対
する信号電圧の印加時間を示す。尚、線順次走査による
従来の駆動方法においては、走査電極への走査電圧印加
時間と、この走査電極に所属する画素に対して信号電極
を介して印加する信号電圧の印加時間でとは等しかった
。このτは、走査電極の本数をnとし、フレーム周波数
をfとした場合、τ= 1 / f −nで与えられる
Moreover, in FIG. 5(A), the application time of a signal voltage to one pixel of a certain signal electrode is shown. In the conventional driving method using line sequential scanning, the time for applying a scanning voltage to a scanning electrode is equal to the time for applying a signal voltage to a pixel belonging to this scanning electrode via a signal electrode. . This τ is given by τ=1/f−n, where n is the number of scanning electrodes and f is the frame frequency.

又、第5図(A)において、τを付して示した波形に続
く波形は、走査電極が順次に走査される毎に、その走査
電極に所属する画素でかつ上述のある信号電極に所属す
る画素に「0」か「1」かのいずれかの信号が順次に与
えられていくことを示している。又、線順次走査におい
ては、一般に、1フレーム走査(第一行目の走査電極か
ら第n行目の走査′電極までの全ての走査電極を順次に
オンすること)が終了すると(第5図(A)中t、で示
す時)、次の時間からは、信号電圧の極性を反転させて
いる。
In addition, in FIG. 5(A), the waveforms following the waveforms marked with τ are pixels that belong to the scan electrode and belong to the above-mentioned signal electrode each time the scan electrode is sequentially scanned. This indicates that a signal of either "0" or "1" is sequentially applied to the pixels. In line sequential scanning, generally, when one frame scanning (sequentially turning on all scan electrodes from the first row scan electrode to the nth row scan' electrode) is completed (see FIG. (A) At the time indicated by t), the polarity of the signal voltage is reversed from the next time onwards.

ここで、走査電極について説明する。走査電極は、一般
に、非常に薄い金属薄膜を細長い帯状物に加工したもの
で構成されている。そして、この電極の一端を駆動手段
例えばドライバ用ICに接続しである。
Here, the scanning electrodes will be explained. Scanning electrodes are generally made of a very thin metal film processed into an elongated strip. Then, one end of this electrode is connected to a driving means, for example, a driver IC.

ところで、このような走査電極にドライバ側から走査電
圧を印加した場合、この走査電極の、駆動手段の近傍の
部分における走査電圧波形と、駆動手段から離れた末端
部分における走査電圧波形とは異なったものになる。
By the way, when a scanning voltage is applied to such a scanning electrode from the driver side, the scanning voltage waveform at the part near the driving means of this scanning electrode is different from the scanning voltage waveform at the end part away from the driving means. Become something.

第6図は、横軸に時間を縦軸に電圧をそれぞれとって、
ある走査電極の各部における走査電圧の波形を示した図
である。第6図において、破線で示した波形21は駆動
手段の近傍における走査電圧波形であり、実線で示した
波形23は駆動手段から離れた末端部分における走査電
圧波形である。この波形23の時定数は、走査電極の材
料の比抵抗、厚み、幅及び駆動手段からの距離によって
決定される走査電極の負荷抵抗と、駆動手段からの間に
ある負荷容量との積で表わすことが出来る。従って、走
査電圧波形は、駆動手段からの距tIi(走査電極の入
力端からの距離)が大きくなればなるほど大きく変形す
る。
In Figure 6, time is plotted on the horizontal axis and voltage is plotted on the vertical axis.
FIG. 3 is a diagram showing the waveform of a scanning voltage at each part of a certain scanning electrode. In FIG. 6, a waveform 21 indicated by a broken line is a scanning voltage waveform in the vicinity of the driving means, and a waveform 23 indicated by a solid line is a scanning voltage waveform at an end portion away from the driving means. The time constant of this waveform 23 is expressed as the product of the load resistance of the scan electrode, which is determined by the specific resistance of the material of the scan electrode, its thickness, width, and distance from the drive means, and the load capacitance between it and the drive means. I can do it. Therefore, the scanning voltage waveform deforms more as the distance tIi from the driving means (distance from the input end of the scanning electrode) increases.

(発明が解決しようとする問題点) しかしながら、このように走査電圧波形が変形した状態
で、信号電圧印加時間と、走査電圧印加時間とを等しく
して液晶表示装置を駆動する従来の方法では、ある走査
電極への電圧印加が停止されて次の走査電極に電圧が印
加された時に、このある走査電極はオフ状態になりきら
ず、この走査電極に波形変形に起因する時間期間中、あ
る電圧が印加されてしまう現象が生ずるという問題点が
あった。
(Problems to be Solved by the Invention) However, in the conventional method of driving a liquid crystal display device by making the signal voltage application time equal to the scanning voltage application time in a state where the scanning voltage waveform is deformed in this way, When the voltage application to one scan electrode is stopped and the voltage is applied to the next scan electrode, this certain scan electrode is not completely turned off, and a certain voltage is applied to this scan electrode for a period of time due to waveform deformation. There was a problem in that a phenomenon in which the voltage was applied was caused to occur.

以下、この現象につき具体的に説明する。This phenomenon will be specifically explained below.

走査電極の末端部分に近い部分の画素に情報を書き込む
場合を考える。末端部分の画素を、例えば、第1行目の
走査電極及び′fIJj列目の信号電極に関連する画素
(第一画素)と、第(i+1)行目の走査電極及び第j
列目の信号電極に関連する画素(第二画素)とする。そ
して、第一画素に「0」の情報を、第二画素に「1」の
情報を書き込むものとする。
Consider the case where information is written to a pixel near the end of a scanning electrode. For example, the pixels in the end part are the pixels (first pixels) related to the scanning electrode in the first row and the signal electrode in the column 'fIJj, and the scanning electrode in the (i+1)th row and the signal electrode in the jth column.
The pixel (second pixel) is associated with the signal electrode in the column. Then, it is assumed that information of "0" is written to the first pixel and information of "1" is written to the second pixel.

このような条件の下で、第(i+1)行目の走査電極に
走査電圧を印加した時、第1行目の走査電極には第6図
に示す波形23の立ち下り部分25に当る電圧が未だ印
加されている。この立ち下り部分の電圧25は、液晶を
駆動するに充分な電圧値を含んでいるため、第1行目の
走査電極はいわばr半オン」状態になる。従って、第(
i+1)行目の走査電極がオン状態であって、第j列目
の信号電極を介して第二画素に情報「1」を書き込むた
めこの第二画素に電圧を印加すると(第7図(A)参照
)、第一画素には半オン状態の電圧が印加されてしまう
(第7図(B)参照)。従って、この第一画素に「0」
を書き込むことが出来なくなる。このような場合、例え
ば画像のコントラスト比は著しく低下し、これかため、
走査電極の末端部分になればなる程、画像ににじみが生
ずる。
Under these conditions, when a scanning voltage is applied to the (i+1)th row scanning electrode, the voltage corresponding to the falling portion 25 of the waveform 23 shown in FIG. 6 is applied to the first scanning electrode. It is still applied. Since the voltage 25 at this falling portion includes a voltage value sufficient to drive the liquid crystal, the scanning electrodes in the first row are in a so-called "r half-on" state. Therefore, the first (
When the scanning electrode in the i+1)th row is on and a voltage is applied to the second pixel to write information "1" to the second pixel via the signal electrode in the jth column (see FIG. ), a half-on voltage is applied to the first pixel (see FIG. 7(B)). Therefore, this first pixel is "0"
It becomes impossible to write. In such a case, for example, the contrast ratio of the image will be significantly reduced and this will cause
The closer to the end of the scanning electrode, the more blurring occurs in the image.

この発明の目的は、上述した問題点を解決し、液晶表示
装置の表示部全面で均一な画像を得ることが出来るよう
なアクティブマトリクス型液晶表示装置の駆動方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for driving an active matrix liquid crystal display device that solves the above-mentioned problems and allows a uniform image to be obtained over the entire display area of the liquid crystal display device.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、走査電
極に走査電圧を印加し、信号電極に信号電圧を印加して
、アクティブマトリクス型液晶表示装置を線順次走査し
て駆動するに当り、走査電極に印加する走査電圧の印加
時間を、この走査電極に所属する画素に対し信号電極を
介して印加させる信号電圧の印加時間よりも、短くした
ことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, a scanning voltage is applied to the scanning electrodes, a signal voltage is applied to the signal electrodes, and an active matrix type liquid crystal display device is manufactured. In line sequential scanning and driving, the application time of the scanning voltage applied to the scanning electrode is made shorter than the application time of the signal voltage applied to the pixels belonging to this scanning electrode via the signal electrode. Features.

(作用) このような構成によれば、ある走査電極に印加されてい
る走査電圧が実質的に立ち下がった後、次の走査電極に
走査電圧が印加される。従って、ある走査電極の末端部
分で走査電圧の波形が変形していて、かつ、ある時定数
に応じた時間この電圧の立ち下りが遅れた場合であって
も、次の行の走査電極に所属する画素に情報を書き込む
処理の際、上述のある走査電極に所属する画素は何等の
影習も受けずに済む。
(Function) According to such a configuration, after the scan voltage applied to a certain scan electrode substantially falls, the scan voltage is applied to the next scan electrode. Therefore, even if the waveform of the scan voltage is deformed at the end of a scan electrode and the fall of this voltage is delayed by a certain time constant, it will not be applied to the scan electrode in the next row. During the process of writing information to the pixels, the pixels belonging to the above-mentioned certain scan electrodes do not suffer any effects.

(実施例) 以下、図面を参照して、この発明のアクティブマトリク
ス型液晶表示装置(以下、表示装置と略称することもあ
る。)の駆動方法の一実施例につき説明する。尚、これ
ら図はこの発明が理解できる程度に概略的に示しである
(Example) Hereinafter, an example of a method for driving an active matrix liquid crystal display device (hereinafter sometimes abbreviated as a display device) of the present invention will be described with reference to the drawings. Incidentally, these figures are shown schematically to the extent that the present invention can be understood.

尚、この発明の駆動方法の実施例に用いた表示装置は、
すでに説明したような従来公知のアクティブマトリクス
液晶表示装置であり、スイッチング素子(例えばTPT
)をマトリクス状に有する第一基板を具えるものである
。しかしながら、この発明の駆動方法を液晶を用いた以
外の他の表示装置に応用することが出来る。
Note that the display device used in the embodiment of the driving method of this invention is as follows:
This is a conventionally known active matrix liquid crystal display device as described above, and includes switching elements (for example, TPT).
) in a matrix form. However, the driving method of the present invention can be applied to display devices other than those using liquid crystal.

第1図(A)〜(D)は、横軸に時間を縦軸に電圧をそ
れぞれとって、この発明の駆動方法に用いて好適な駆動
信号の波形を示した図である。
FIGS. 1A to 1D are diagrams showing waveforms of drive signals suitable for use in the drive method of the present invention, with time on the horizontal axis and voltage on the vertical axis, respectively.

第1図(A)は、第5図(A)を用いて既に説明した駆
動信号と同様なものである。この図において、11で示
す一点鎖線は第二基板の対向電極の信号電圧であり、1
3で示す曲線は信号電極に印加される信号波形である。
FIG. 1(A) is similar to the drive signal already explained using FIG. 5(A). In this figure, the dashed-dot line indicated by 11 is the signal voltage of the counter electrode of the second substrate, and 1
The curve indicated by 3 is the signal waveform applied to the signal electrode.

そして、信号電極の一画素に対する信号電圧の印加時間
なτとしである。
Then, let τ be the application time of the signal voltage to one pixel of the signal electrode.

第1図(B)〜(D)は第一行目、第二行目、第n行目
の走査電極に印加される走査電圧の波形をそれぞれ示す
図である。この発明の駆動方法においては、走査電圧の
印加時間をτgとした時、τgくτ ・・・・・・(1
) になるようにτgを設定する。
FIGS. 1(B) to (D) are diagrams showing the waveforms of the scanning voltages applied to the scanning electrodes in the first row, second row, and nth row, respectively. In the driving method of the present invention, when the application time of the scanning voltage is τg, τg×τ ......(1
) Set τg so that

従って、走査電極の電圧状態は、この走査電極に走査電
圧が印加された時からτgの時間期間が経過するまでは
オン状態を示し、その後、τgからでの間の時間期間中
はオフ状態になる。そして、τの時間が経過すると、次
の走査電極に走査電圧が印加される。このように、従来
の駆動方法と比較すると、走査電圧の印加時間が短くな
っている。
Therefore, the voltage state of the scan electrode exhibits an on state until a time period τg has elapsed from the time the scan voltage is applied to this scan electrode, and then an off state for a time period between τg and τg. Become. Then, when the time τ has elapsed, a scan voltage is applied to the next scan electrode. As described above, the scanning voltage application time is shorter than the conventional driving method.

第2図は、従来と同じ信号電圧印加時間τに対し、上述
の(1)式を満足するようにτgを設定した結果得られ
た、走査電圧の波形を示す図である。尚、横軸は時間を
縦軸は電圧値をそれぞれ示す。
FIG. 2 is a diagram showing the waveform of the scanning voltage obtained as a result of setting τg so as to satisfy the above-mentioned equation (1) for the same signal voltage application time τ as in the prior art. Note that the horizontal axis represents time and the vertical axis represents voltage value.

第2図において、破線で示した波形31は走査電極の駆
動手段の近傍における走査電圧波形であり、実線で示し
た波形33は同じ走査電極の末端部分における走査電圧
波形である。このような場合は、第2図の波形33の、
時間τを経過した後に未だある値の電圧を示している部
分35が、次の走査電極に走査電圧が印加される際この
走査電極に所属しない画素を半オン状態にしてしまう電
圧になる。しかしながら、第2図と上述の第6図とを比
較することによって明らかなように、この発明の駆動方
法によれば、所望としない画素を半オン状態にしてしま
うような電圧は従来より非常に小さくなることが分かる
In FIG. 2, a waveform 31 shown by a broken line is a scanning voltage waveform in the vicinity of the driving means of the scanning electrode, and a waveform 33 shown by a solid line is a scanning voltage waveform at the end portion of the same scanning electrode. In such a case, the waveform 33 in FIG.
The portion 35 that still shows a certain voltage after the time τ has passed becomes a voltage that turns pixels not belonging to this scan electrode into a half-on state when the scan voltage is applied to the next scan electrode. However, as is clear from a comparison between FIG. 2 and the above-mentioned FIG. You can see that it becomes smaller.

第3図は、この発明の駆動方法によって走査電極の末端
部分に近い部分の、例えば、第i行第j列の画素(第一
画素)にrQJの情報を、第(i+1)行第j列の画素
(第二画素)に「1」の情報を与えた時の、第一画素に
書き込まれる画素電圧を示す波形図である。
FIG. 3 shows that rQJ information is transmitted to the pixel (first pixel) in the i-th row and j-th column in a portion near the end of the scanning electrode by the driving method of the present invention. FIG. 4 is a waveform diagram showing a pixel voltage written to the first pixel when information "1" is given to the pixel (second pixel).

この発明によりば、(i+2)行目の走査電極に走査電
圧が印加されている時、第1行目の走査電極の走査電圧
は第2図に示した波形33の立ち下り部分の一部分35
に対応する電圧でしかない。
According to this invention, when the scanning voltage is applied to the scanning electrode of the (i+2)th row, the scanning voltage of the scanning electrode of the first row is applied to the falling portion 35 of the waveform 33 shown in FIG.
It is only the voltage corresponding to

従って、第3列目の信号電極に「1」か与えられ、これ
によって第i行第j列目の画素に「1」が与えられても
、この画素は半オン状態にはならず、この画素における
画素電圧は、第3図に示すように実質的にオフの状態の
非常に小さな値になる。
Therefore, even if "1" is applied to the signal electrode in the third column, and thereby "1" is applied to the pixel in the i-th row and j-th column, this pixel will not be in a half-on state; The pixel voltage at the pixel becomes a very small value, which is essentially an off state, as shown in FIG.

第4図は、この発明の駆動方法の実施に用いて好適な表
示装置の一例を示すブロック図である。
FIG. 4 is a block diagram showing an example of a display device suitable for use in implementing the driving method of the present invention.

第4図において、41は表示装置に備わる従来公知の駆
動部を示す。51は表示装置に備わる従来公知の表示部
を示す。又、61はこの発明の駆動方法を実施するため
新たに設けた付加回路示す。この実施例の表示装置では
、この付加回路61をタイマを以って構成しである(詳
細は後述する)。
In FIG. 4, reference numeral 41 indicates a conventionally known driving section provided in the display device. Reference numeral 51 indicates a conventionally known display section provided in the display device. Further, 61 indicates a newly provided additional circuit for carrying out the driving method of the present invention. In the display device of this embodiment, this additional circuit 61 is configured with a timer (details will be described later).

駆動部41は、液晶駆動用コントローラ43と、走査電
極ドライバ45と、信号電極ドライバ47とを具える。
The drive section 41 includes a liquid crystal drive controller 43, a scanning electrode driver 45, and a signal electrode driver 47.

表示部51は、多数の走査電極(b+〜bo)及び多数
の信号電極(at〜am)と、これら両電極の各交点領
域に形成されたTPTとを具えるトランジスタマトリク
スアレイを以って構成しである。
The display section 51 is configured with a transistor matrix array including a large number of scanning electrodes (b+ to bo), a large number of signal electrodes (at to am), and a TPT formed at each intersection area of these two electrodes. It is.

このような駆動装置において、液晶駆動用コントローラ
43から出力されるパルス、すなわち信号電圧及び走査
電圧のスタートパルスSlを、走査電極ドライバ45及
び信号電極ドライバ47に入力する。この際、信号電極
及び走査電極に信号電圧及び走査電圧がそれぞれ印加さ
れる。一方、スタートパルスS1はタイマ61にも人力
される。このタイマ61は、スタートパルスS、によっ
て起動された後、第1図を用いて既に説明した走査電圧
印加時間τgに等しい時間期間が経過すると、走査電圧
をオフさせる信号S2を走査電極ドライバ45に出力す
る。この信号S2によって走査電圧を印加する時間期間
を制御することが出来る。
In such a drive device, a pulse output from the liquid crystal drive controller 43, that is, a start pulse Sl of the signal voltage and scanning voltage, is input to the scanning electrode driver 45 and the signal electrode driver 47. At this time, a signal voltage and a scanning voltage are applied to the signal electrode and the scanning electrode, respectively. On the other hand, the start pulse S1 is also manually input to the timer 61. This timer 61 sends a signal S2 for turning off the scanning voltage to the scanning electrode driver 45 when a time period equal to the scanning voltage application time τg already explained using FIG. 1 has elapsed after being activated by the start pulse S. Output. The time period during which the scanning voltage is applied can be controlled by this signal S2.

上述の走査が、全走査電極(b+〜b、)に対し順次に
行なわれ、走査電圧印加時間を信号電圧印加時間より短
くした条件で線順次走査を行なうことが出来る。
The above scanning is performed sequentially on all the scanning electrodes (b+ to b,), and line sequential scanning can be performed under the condition that the scanning voltage application time is shorter than the signal voltage application time.

尚、上述の表示装置の場合、タイマ61の時間設定を変
えることによって、走査電圧波形の変形の程度に応じた
任意好適な走査電圧印加時間を設定することが出来る。
In the case of the above-mentioned display device, by changing the time setting of the timer 61, it is possible to set an arbitrary suitable scanning voltage application time depending on the degree of deformation of the scanning voltage waveform.

火荻藍盟 次に、この発明の駆動方法を用いた実験例につき説明す
る。尚、この実験結果は単なる一例であり、以下に示す
数値は液晶材料、表示装置の規模等によって変るもので
ある。従って、この発明が以下の数値例に限定されるも
のでないことは理解されたい。
Next, an experimental example using the driving method of the present invention will be explained. Note that this experimental result is just an example, and the numerical values shown below vary depending on the liquid crystal material, the scale of the display device, etc. Therefore, it should be understood that the present invention is not limited to the numerical examples below.

表示装置は、走査電極の数が200本、フレーム周波数
が60Hzのものを用いた。従って、信号電極に所属す
る200画素の一画素当りの信号電圧印加時間では約8
3μsecになる。
The display device used had 200 scanning electrodes and a frame frequency of 60 Hz. Therefore, the signal voltage application time per pixel of 200 pixels belonging to the signal electrode is approximately 8
It becomes 3 μsec.

このような信号電圧印加時間τに対し、走査電圧印加時
間τgを、τよりも短い時間に設定し表示品質を確認し
た。
With respect to the signal voltage application time τ, the scanning voltage application time τg was set to be shorter than τ, and the display quality was confirmed.

その結果、τgを約77μsecより短い値にしたとこ
ろ、画像のにじみは全く生じなくなった。
As a result, when τg was set to a value shorter than about 77 μsec, no image blurring occurred at all.

又、このτg値の設定を1画像のにじみを防止出来、か
つ、τgを短くしすぎることによって表示品質が損なわ
れることがないような適正な値にする。
Further, the τg value is set to an appropriate value that can prevent blurring of one image and prevent the display quality from being impaired by making τg too short.

尚、上述の実施例では、この発明のアクティブマトリク
ス型液晶表示装置の駆動方法をTPTを具えた表示装置
に応用した例で説明したが、他のスイッチング素子を具
えたアクティブマトリクス型表示装置にこの発明を用い
ても、同様な効果を期待することが出来る。
In the above embodiment, the method for driving an active matrix liquid crystal display device of the present invention was explained as an example in which it was applied to a display device equipped with a TPT. Even if the invention is used, similar effects can be expected.

(発明の効果) 上述した説明からも明らかなように、この発明のアクテ
ィブマトリクス型液晶表示装置の駆動方法によれば、あ
る走査電極に印加されている走査電圧が実質的に立ち下
がった後、次の走査電極に走査電圧を印加することが出
来る。従って、走査電極の末端部分における走査電圧波
形の変形と、次の行の走査電極に所属する画素への書き
込み情報(信号電圧)とによって生じていた画像のにじ
みを著しく低減することが出来る。
(Effects of the Invention) As is clear from the above description, according to the method for driving an active matrix liquid crystal display device of the present invention, after the scanning voltage applied to a certain scanning electrode substantially falls, A scan voltage can be applied to the next scan electrode. Therefore, it is possible to significantly reduce the blurring of the image caused by the deformation of the scanning voltage waveform at the end portion of the scanning electrode and the information (signal voltage) written to the pixels belonging to the scanning electrode of the next row.

これがため、液晶表示装置の表示部全面で均一な画像を
得ることが出来る。
Therefore, a uniform image can be obtained over the entire display section of the liquid crystal display device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(D)はこの発明のアクティブマトリク
ス型液晶表示装置の駆動方法に用いる駆動信号の一例を
示す波形図、 第2図は、この発明の説明に供する、走査電極上の各部
の走査電圧の波形を示す図、 第3図は、この発明の説明に供する、画素電圧の波形を
示す図、 第4図はこの発明の駆動方法の実施に好適な表示装置を
示すブロック図、 第5図(A)〜(D)は従来の駆動方法の説明に供する
駆動信号の波形を示す図、 第6図は、従来の駆動方法の説明に供する、走査電極上
の各部の走査電圧の波形を示す図、第7図(A)及び(
B)は、従来技術の説明に供する、画素電圧の波形を示
す図である。 11−・・対向電極の電圧、 13・・・信号電極の信
号電圧31−・・走査電極ドライバ近傍の走査電圧波形
33−・・走査電極末端部分の走査電圧波形35−・・
立ち下り部分、  41・−駆動部43−・・液晶駆動
用コントローラ 45−・・走査電極ドライバ、47・・・信号電極ドラ
イバ51−・・表示部、     61−・・付加回路
(タイマ)で・・・信号電圧印加時間 τg・・・走査電圧印加時間。 特許出願人   沖電気工業株式会社 7 4葛号イ賓万j押カロg今胡 71  L/に電圧1−7を口B奇聞 ff   テ1百喧不セオ電凪 13  ル号9棒の信号流) この発明の、p、a重力方泳1:用・・る、駆動1号を
斤・む皮形凹第1図 Jf  上4ヒ喫東七ドラうハ゛L4身の克な償1庄シ
皮形33  虎1ン雷権宋4苓フ介の走2針を丘浪形j
J、丘、ら下カゞり令?ろト この発明1”/I、’)、る虚Av敞極−の洛4汗の先
な電圧の5皮刑国第2図 この発8月の説El@ l:4方ξろ画索嶺フミの5戊
升多目第3図 fl 4イ゛ 、ち色令カ4シP        5f・ シ
芝牙・去?二の苓6朗の、(重力方シ太の夾カヒ(:窄
罎譲〔シ表斤・傷d12オ・47゛口・り困第4図
1(A) to (D) are waveform diagrams showing an example of a drive signal used in the driving method of an active matrix liquid crystal display device of the present invention. FIG. FIG. 3 is a diagram showing the waveform of the scanning voltage of each part. FIG. 3 is a diagram showing the waveform of the pixel voltage, which is used to explain the present invention. FIG. 4 is a block diagram showing a display device suitable for implementing the driving method of the present invention. , Figures 5(A) to (D) are diagrams showing the waveforms of drive signals to explain the conventional driving method, and Figure 6 shows the scanning voltages at various parts on the scanning electrode to explain the conventional driving method. Figures 7 (A) and (
B) is a diagram showing a waveform of a pixel voltage, which is used to explain the prior art. 11--Voltage of the counter electrode, 13--Signal voltage of the signal electrode 31--Scanning voltage waveform near the scanning electrode driver 33--Scanning voltage waveform of the end portion of the scanning electrode 35-...
Falling portion, 41--Drive unit 43--Liquid crystal drive controller 45--Scanning electrode driver, 47--Signal electrode driver 51--Display section, 61--Additional circuit (timer)... ...Signal voltage application time τg...Scanning voltage application time. Patent Applicant Oki Electric Industry Co., Ltd. 7 4 Kuzu No. I Binmanj Oshi Karo G Imhu 71 L/ Voltage 1-7 Mouth B Qiun ff Te 1 Hyakubuseo Electric Nagi 13 Ru No. 9 Bar Signal Flow ) This invention's p, a gravity movement 1: use, driving No. 1, the skin-shaped concave Fig. 1 Jf, upper 4, seven drags, high L4, the ultimate compensation of the body. Hikata 33 Tiger 1 n Raigon Song 4 Rei Fusuke's running 2 stitches Oka Nami Kata j
J, Oka, down the hill? Roto this invention 1"/I, '), Ruu Av 敞 聞 の Raku 4 sweat's first voltage 5 Skin Penalty Figure 2 This release August theory El @ l: 4 directions ξ Lo image search Fumi Mine's 5 squares multi-view 3rd figure fl 4 I゛ , Chiiro Reika 4 Shi P 5 f. Transferred (front surface, scratches d12, 47゛ mouth, damaged Figure 4)

Claims (1)

【特許請求の範囲】 走査電極に走査電圧を印加し、信号電極に信号電圧を印
加して、アクティブマトリクス型液晶表示装置を線順次
走査して駆動するに当り、 走査電極に印加する走査電圧の印加時間を、該走査電極
に所属する画素に対し信号電極を介して印加させる信号
電圧の印加時間よりも、短くしたことを特徴とするアク
ティブマトリクス型液晶表示装置の駆動方法。
[Claims] When driving an active matrix liquid crystal display device by line-sequential scanning by applying a scanning voltage to the scanning electrode and applying a signal voltage to the signal electrode, the scanning voltage applied to the scanning electrode is A method for driving an active matrix liquid crystal display device, characterized in that the application time is shorter than the application time of a signal voltage applied to pixels belonging to the scanning electrode via a signal electrode.
JP61263594A 1986-11-05 1986-11-05 Driving method of active matrix type liquid crystal display device Expired - Lifetime JPH077159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263594A JPH077159B2 (en) 1986-11-05 1986-11-05 Driving method of active matrix type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263594A JPH077159B2 (en) 1986-11-05 1986-11-05 Driving method of active matrix type liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS63118128A true JPS63118128A (en) 1988-05-23
JPH077159B2 JPH077159B2 (en) 1995-01-30

Family

ID=17391713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263594A Expired - Lifetime JPH077159B2 (en) 1986-11-05 1986-11-05 Driving method of active matrix type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH077159B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236010A (en) * 1987-03-25 1988-09-30 Hitachi Ltd Liquid crystal display circuit
JPS6472122A (en) * 1987-09-11 1989-03-17 Seiko Instr & Electronics Electrooptic device using tft array
JPH04225318A (en) * 1990-12-27 1992-08-14 Casio Comput Co Ltd Driving method for active matrix liquid crystal display element
JPH0713528A (en) * 1992-11-04 1995-01-17 Yuen Foong Yu Hk Co Ltd Lcd display and method for reduction of its data driving line
US5583531A (en) * 1991-05-21 1996-12-10 Sharp Kabushiki Kaisha Method of driving a display apparatus
JP2009077328A (en) * 2007-09-25 2009-04-09 Sanyo Electric Co Ltd Telephone set
JP2010039465A (en) * 2008-07-31 2010-02-18 Integrated Solutions Technology Inc Driving method and device for generating activating signal that serve to activate scan line of display panel, and method for adjusting pulse durations of activating signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123884A (en) * 1982-12-29 1984-07-17 シャープ株式会社 Driving of liquid crystal display
JPS6384384A (en) * 1986-09-29 1988-04-14 Matsushita Electric Ind Co Ltd Driving method for display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123884A (en) * 1982-12-29 1984-07-17 シャープ株式会社 Driving of liquid crystal display
JPS6384384A (en) * 1986-09-29 1988-04-14 Matsushita Electric Ind Co Ltd Driving method for display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236010A (en) * 1987-03-25 1988-09-30 Hitachi Ltd Liquid crystal display circuit
JPS6472122A (en) * 1987-09-11 1989-03-17 Seiko Instr & Electronics Electrooptic device using tft array
JPH04225318A (en) * 1990-12-27 1992-08-14 Casio Comput Co Ltd Driving method for active matrix liquid crystal display element
US5583531A (en) * 1991-05-21 1996-12-10 Sharp Kabushiki Kaisha Method of driving a display apparatus
JPH0713528A (en) * 1992-11-04 1995-01-17 Yuen Foong Yu Hk Co Ltd Lcd display and method for reduction of its data driving line
JP2009077328A (en) * 2007-09-25 2009-04-09 Sanyo Electric Co Ltd Telephone set
JP2010039465A (en) * 2008-07-31 2010-02-18 Integrated Solutions Technology Inc Driving method and device for generating activating signal that serve to activate scan line of display panel, and method for adjusting pulse durations of activating signals

Also Published As

Publication number Publication date
JPH077159B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
EP0678849B1 (en) Active matrix display device with precharging circuit and its driving method
JP3476241B2 (en) Display method of active matrix type display device
KR100289977B1 (en) Active Matrix Liquid Crystal Display
KR100895303B1 (en) Liquid crystal display and driving method thereof
US6549187B1 (en) Liquid crystal display
JPH02161493A (en) Ferroelectric liquid crystal and driving method thereof
US6738036B2 (en) Decoder based row addressing circuitry with pre-writes
JPH1062811A (en) Liquid crystal display element and large-sized liquid crystal display element as well as method for driving liquid crystal display element
JP3520131B2 (en) Liquid crystal display
JP2000267066A (en) Liquid crystal device
JPS63118128A (en) Driving method for active matrix type liquid crystal display device
JPH06265939A (en) Liquid crystal display device
JPH09189897A (en) Active matrix type liquid crystal display device and driving method therefor
JPH0950263A (en) Active matrix display device and driving method therefor
JP3666161B2 (en) Active matrix display device
JPH0430683A (en) Liquid crystal display device
JPS63261326A (en) Circuit for driving electrooptic device
JPH06148676A (en) Active matrix substrate
JPH0876722A (en) Plotting method for display and plotting controller
JPH09211423A (en) Driving method of active matrix liquid crystal display
JP2770981B2 (en) Driving method of matrix type ferroelectric liquid crystal panel
JP2003295835A (en) Liquid crystal display device
JP3366354B2 (en) TFT active matrix liquid crystal display device and driving method thereof
JPH04110891A (en) Active matrix type liquid crystal display device
JPH0749480A (en) Method for driving matrix of flat type display device