JPS63112441A - Transfarent heat reflecting plate - Google Patents

Transfarent heat reflecting plate

Info

Publication number
JPS63112441A
JPS63112441A JP25629186A JP25629186A JPS63112441A JP S63112441 A JPS63112441 A JP S63112441A JP 25629186 A JP25629186 A JP 25629186A JP 25629186 A JP25629186 A JP 25629186A JP S63112441 A JPS63112441 A JP S63112441A
Authority
JP
Japan
Prior art keywords
transparent
layer
cathode
metal layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25629186A
Other languages
Japanese (ja)
Inventor
Eiji Kusano
英二 草野
Katsuhisa Enjoji
勝久 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25629186A priority Critical patent/JPS63112441A/en
Publication of JPS63112441A publication Critical patent/JPS63112441A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled reflecting plate having a desired reflection color and useful as a window glass for vehicle, etc., by successively applying, as necessary transparent high-refractive inner layer, a transparent metal layer and a transparent high-refractive outer layer to a transparent substrate. CONSTITUTION:A pair of magnetron cathodes 5, 6 are placed on the bottom of a vacuum tank 1 evacuated through an exhaustion port 3 and are insulated from the bottom with an insulator 4. A Ti target 13 and a Sn target 14 are individually attached to the upper face of each cathode. A transparent substrate 16 such as glass plate is held with a holder 15 placed on a reciprocative transfer belt 12 placed above the cathodes 5, 6. Ar/O2 is introduced into the tank 1 through a gas inlet 11, negative potential is imposed to the cathode 6 to start sputtering and the substrate 16 is passed above the cathode 6 by moving the belt 12 to form a transparent, highly refractive inner layer (SnO2 layer) 17 having a prescribed thickness. Ar gas is introduced through a gas inlet 10, a negative potential is imposed to the cathode 5 and a transparent metal layer 18 composed mainly of Ti and having a prescribed thickness is applied to the layer 17. Finally, a transparent, highly refractive outer layer 19 is formed on the transparent metal layer 18 by the operation similar to the first step.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明熱線反射板、特に建築用の窓ガラスや自動
車等の車輌用の窓ガラスに用いることにより、太陽輻射
熱の室内への浸入を防ぐ透明熱線反射ガラスに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention prevents solar radiant heat from penetrating indoors by using it for transparent heat ray reflecting plates, especially window glasses for buildings and window glasses for vehicles such as automobiles. Regarding transparent heat-reflecting glass that prevents heat rays.

〔従来の技術〕[Conventional technology]

従来より、ガラス板にTiNの透明薄膜を付着した反射
色がゴールド調の熱線反射ガラスが用いられていた。
Conventionally, heat-reflecting glass with a gold-like reflective color has been used, which is made by adhering a transparent thin film of TiN to a glass plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらTiNの透明薄膜を有する熱線反射ガラス
はTiNの成膜条件により反射色が変化するたメ、例え
ばスパッタリング法により、大面積のガラス板上に同じ
反射光をもつTiN薄膜を連続的に形成することが困難
であった。
However, since the reflected color of heat-reflecting glass with a transparent thin film of TiN changes depending on the conditions for forming the TiN film, it is necessary to continuously form a thin TiN film with the same reflected light on a large glass plate by sputtering, for example. It was difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記困難を克服するためになされたものであっ
て、本発明は透明基板と該透明基板上に形成されたTi
を主成分とした6明金属層と、該透明金属層上に形成さ
れた金属酸化物、あるいは金属硫化物からなる外面透明
高屈折率層とからなる透明熱線反射板である。
The present invention has been made to overcome the above-mentioned difficulties, and the present invention provides a transparent substrate and a Ti film formed on the transparent substrate.
This is a transparent heat ray reflecting plate consisting of a transparent metal layer mainly composed of a transparent metal layer and an outer transparent high refractive index layer made of a metal oxide or metal sulfide formed on the transparent metal layer.

本発明においては、透明基板と透明金属層との間に金属
酸化物、あるいは金属硫化物からなる内面透明高屈折率
層を介在させることができる。
In the present invention, an inner transparent high refractive index layer made of metal oxide or metal sulfide can be interposed between the transparent substrate and the transparent metal layer.

本発明において、外面透明高屈折率層と、内面透明高屈
折率層とには通常TiO2r Ta205 + ZrO
2rS nO21Z nO+あるいはB120等の金属
酸化物、またはZnSの如き金属硫化物を用いることが
できるが、耐候性と耐薬品性の面からTiO2+Ta2
05あるいは5n02等が好ましく、その膜厚は通常r
onm  乃至1100nにされる。そして、これらの
透明高屈折率層は真空蒸着法、スパッタリング法、ある
いはディッピング法等により形成できる。
In the present invention, the outer transparent high refractive index layer and the inner transparent high refractive index layer usually include TiO2r Ta205 + ZrO.
Metal oxides such as 2rS nO21Z nO+ or B120, or metal sulfides such as ZnS can be used, but from the viewpoint of weather resistance and chemical resistance, TiO2+Ta2
05 or 5n02, etc., and the film thickness is usually r
onm to 1100n. These transparent high refractive index layers can be formed by vacuum evaporation, sputtering, dipping, or the like.

また、本発明において、Tlを主成分とした金属層は膜
厚をjnm乃至50nmにすることが好ましく、真空蒸
着法、スパッタリング法、ディッピング法、及びメッキ
法等により形成できる。
Further, in the present invention, the metal layer containing Tl as a main component preferably has a film thickness of 1 nm to 50 nm, and can be formed by a vacuum evaporation method, a sputtering method, a dipping method, a plating method, or the like.

〔作 用〕[For production]

本発明はTiを主成分とした透明金属上に金属酸化物、
あるいは金属硫化物からなる内面透明高屈折率層を形成
したものであるから、高屈折率の層の膜厚を変えること
により、透明金属層の反射光の青色成分の抑制を制御で
き、金色からブロンズ色の反射色を安定して得ることが
できる。
In the present invention, a metal oxide is deposited on a transparent metal mainly composed of Ti.
Alternatively, since a transparent high refractive index layer is formed on the inner surface made of metal sulfide, by changing the thickness of the high refractive index layer, it is possible to control the suppression of the blue component of the reflected light from the transparent metal layer. A bronze reflective color can be stably obtained.

〔実 施 例〕〔Example〕

以下、本発明を図面を引用して詳述する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法を実施するスパッタリング装置の概
略図であり、スパッタリング装置はアースされた真空#
fl)の一部にバリアプルバルブ(2) ヲ設けた排気
口(3)を形成し、この排気口(3)を介して図示しな
い真空ポンプと接続し、真空槽(1)内を減圧するよう
にしている。また真空槽(1)の底部には電気絶縁体(
41、(41を介してマグネトロンカソードf5) l
 (6)を離間して一対設け、これらマグネトロンカソ
ード(5) l (61と直流電源(7) 、 (7)
之をスイッチ(8)。
FIG. 1 is a schematic diagram of a sputtering apparatus for carrying out the method of the present invention.
An exhaust port (3) with a barrier pull valve (2) is formed in a part of the fl, and is connected to a vacuum pump (not shown) through this exhaust port (3) to reduce the pressure inside the vacuum chamber (1). That's what I do. In addition, there is an electrical insulator (
41, (magnetron cathode f5 through 41) l
A pair of magnetron cathodes (5) (61 and DC power supplies (7), (7) are provided at a distance from each other).
Switch this (8).

(8)を介して接続している。また各マグネトロンカソ
ード(5) 、 (6)の近傍には真空槽(1)の底部
を貫通してバ/にブ(’1 r (9)を備えたガス供
給管(10) 、 (11)を臨ませ、真空槽(1)内
にガスを供給するようにしている。
(8). In addition, near each magnetron cathode (5), (6), there are gas supply pipes (10), (11) that penetrate the bottom of the vacuum chamber (1) and are equipped with a bar (9). is placed in front of the vacuum chamber (1), and gas is supplied into the vacuum chamber (1).

更に真空槽(1)内の各カソード(5) 、 (6)上
方には往復動可能な搬送ベルト(12)を配置している
Furthermore, a reciprocating conveyor belt (12) is arranged above each cathode (5), (6) in the vacuum chamber (1).

以上の如き構成のスパッタリング装置を用いて熱線反射
膜を形成する方法を以下に述べる。
A method of forming a heat ray reflective film using the sputtering apparatus configured as above will be described below.

実施例1 先ず、カソード(5)の上面にTiをターゲラ) (1
3)として取付け、カソード(6)の上面にSnをター
ゲラh (14)として取付け、またホルダー(15)
にガラス板(16)を保持し、このホルダー(15)を
搬送ベルト(12)上に載置する。
Example 1 First, Ti was applied to the upper surface of the cathode (5) (1
3), attach Sn to the top surface of the cathode (6) as a target layer (14), and attach it as a holder (15).
The glass plate (16) is held on the holder (15), and this holder (15) is placed on the conveyor belt (12).

面ル後、バリアプルバルブ(2)を開とし真空槽α)内
を1O−3Paまで減圧し、ガス供給管(11)よりア
ルゴンガスと酸素ガスの混合ガスを供給する。
After cleaning, the barrier pull valve (2) is opened to reduce the pressure in the vacuum tank α to 10-3 Pa, and a mixed gas of argon gas and oxygen gas is supplied from the gas supply pipe (11).

尚、混合比はアルゴンガスを20体積%、酸素ガスをl
rO体積体積口て、且つガス導入後の真空槽(1)が0
.≠paとなるようにする。そして、スイッチ(8)を
オンとしカソード(6)にti50vの負電圧を印加し
、70分間スパッタリングを行った後、搬送ベルト(1
2)を走行させることで、ホルダー(15)に保持した
ガラス板(16)をlIQ Qmm1分の速度でカソー
ド(6)上を移動させることで、第2図に示すように、
ガラス板(16)の表面に所定厚み(Jjnm)の内面
高屈折率層(17) 、具体的には5n02からなる第
1暦を形成する。
The mixing ratio is 20% by volume of argon gas and 1 vol. of oxygen gas.
rO volume volume port and vacuum chamber (1) after gas introduction is 0
.. Make sure that ≠pa. Then, the switch (8) is turned on, a negative voltage of ti50V is applied to the cathode (6), sputtering is performed for 70 minutes, and then the conveyor belt (1
2), the glass plate (16) held in the holder (15) is moved over the cathode (6) at a speed of lIQ Qmm 1 minute, as shown in Fig. 2.
An inner high refractive index layer (17) having a predetermined thickness (Jjnm) is formed on the surface of the glass plate (16), specifically, a first layer made of 5n02.

そして、スイッチ(8)をオフとし、バルブ(9)を閉
じた後、バリアプルバルブ(2)を再び開とし、真空槽
(1)内を1O−3Pa、まで減圧する。
Then, after turning off the switch (8) and closing the valve (9), the barrier pull valve (2) is opened again to reduce the pressure in the vacuum chamber (1) to 10-3 Pa.

この後、ガス供給管(10)のパルプ(9)を開き、ア
ルゴンガスを11008CCで真空槽(1)内に導入し
、バリアプルバルブ(2)を調整して真空m (1)を
o 、p paに保ち、カソード(5)のスイッチ(8
)をオンとしカソード(5)にtIrovの負電圧を印
加し、約10分間直流スパッタリングを行う。この後搬
送ベル) (12)を走行させることで、ホルダ(15
)に保持したガラス板(16)を≠QQmm7分の速度
でカソード(5)上を移動させることで、第2図に示す
ように、高屈折率層(17)の表面に所定厚み(2(l
lnm)の金属層(18)、具体的にはTiからなる第
2層を形成する。
After this, the pulp (9) of the gas supply pipe (10) is opened, argon gas is introduced into the vacuum chamber (1) at 11008 CC, and the barrier pull valve (2) is adjusted to bring the vacuum m (1) to o, p Pa and switch (8) on cathode (5).
) is turned on, a negative voltage of tIrov is applied to the cathode (5), and DC sputtering is performed for about 10 minutes. After this, by running the conveyor bell (12), the holder (15)
) by moving the glass plate (16) held on the cathode (5) at a speed of ≠QQmm7 minutes, the surface of the high refractive index layer (17) is coated with a predetermined thickness (2 l
1 nm), specifically a second layer made of Ti.

この後、前記高屈折率層(17)を形成したのと同じ条
件、即ち、Snをターゲットとし、酸素とアルゴンの混
合ガス雰囲気において直流スパッタリングを行うことで
、第2図に示すように金属層(ユ8)の表面に厚さJj
nm程度の5n02からなる外面高屈折率層(19)を
第3層として形成する。
Thereafter, by performing DC sputtering under the same conditions as for forming the high refractive index layer (17), that is, using Sn as a target and in a mixed gas atmosphere of oxygen and argon, a metal layer is formed as shown in FIG. Thickness Jj on the surface of (Y8)
An outer high refractive index layer (19) made of 5n02 of about nm is formed as a third layer.

実施例λ 実施例/において、外面高屈折率層(19)の成膜時の
基板移動速度を200朋/分に変えることにより、膜厚
な70nmとした外は実施例1と同様の方法により透明
熱線反射ガラスを作成する。
Example λ In Example 1, a film was made in the same manner as in Example 1, except that the substrate movement speed during film formation of the outer high refractive index layer (19) was changed to 200 h/min, so that the film thickness was 70 nm. Create transparent heat-reflecting glass.

実施例3 実施例1と同様に第1図に示したスパッタリング装置を
用い、カソード(5)の上面にTiをターゲット(13
)として取付け、またホルダー(15)にガラス板(1
6)を保持し、このホルダー(15)を搬送ベル) (
12)上に載置する。
Example 3 As in Example 1, using the sputtering apparatus shown in FIG. 1, a Ti target (13
), and also attach the glass plate (15) to the holder (15).
6) and this holder (15) with the conveyor bell) (
12) Place it on top.

面ル後、バリアプルバルブ(2)を門とし真空槽α)内
を70−3Paまで減圧し、ガス供給管(10)よりア
ルゴンガスと酸素ガスの混合ガスを供給する。
After cleaning, the pressure inside the vacuum tank α) is reduced to 70-3 Pa using the barrier pull valve (2) as a gate, and a mixed gas of argon gas and oxygen gas is supplied from the gas supply pipe (10).

尚、混合比はアルゴンガスをIO体積%、酬素ガスを9
0体積%として、且つガス導入後の真空槽(1)がo 
、 <t paとなるようにする。そして、スイッチ(
8)をオンとしカソード(5)によ!0■の負電圧な印
加し、70分間スパッタリングを行った後、搬送ベル)
 (12)を走行させることで、ホルダー(15)に保
持したガラス板(16)を/ 20Tnln1分の速度
でカソード(5)上を移動させることで、第2図に示す
ように、ガラス板(16)の表面に所定厚み(JOnm
)の内面高屈折率層(17) 、具体的にはTlO2か
らなる第1層を形成する。
The mixing ratio is IO volume % for argon gas and 9% for free element gas.
0% by volume, and the vacuum chamber (1) after gas introduction is o.
, <t pa. And the switch (
8) and turn on the cathode (5)! After applying a negative voltage of 0■ and performing sputtering for 70 minutes, the transfer bell)
By running the glass plate (12), the glass plate (16) held in the holder (15) is moved over the cathode (5) at a speed of /20Tnln1 minute, as shown in Figure 2. 16) with a predetermined thickness (JOnm) on the surface.
), specifically, a first layer made of TlO2 is formed.

そして、スイッチ(8)をオフとし、バルブ(9)を閉
じた後、      ゛ 2、バリア プルバルブ(2)を再び開とし、真空槽(1)内を/ 
0−3Paまで減圧する。
Then, after turning off the switch (8) and closing the valve (9), ゛ 2. Open the barrier pull valve (2) again and open the inside of the vacuum chamber (1).
Reduce the pressure to 0-3 Pa.

この後、ガス供給管(10)のバルブ(9)を開き、ア
ルゴンガスな11005CCで真空槽(1)内に導入し
、バリアプルバルブ(2)を調整して真空槽(11をO
0≠Paに保ち、カソード(5)のスイッチ(8)をオ
ンとしカソード(5)にll5ovの負電圧を印加し、
約70分間直流スハッタリングを行う。この後搬送ベル
) (12)を走行させることで、ホルダ(15)に保
持したガラス板(16)をl100mtn/分の速度で
カソード(5)上を移動させることで、第2図に示すよ
うに、高屈折率層(17)の表面に所定厚み(20nm
)の金属層(18)、具体的にはTiからなる第2層を
形成する。
After that, open the valve (9) of the gas supply pipe (10), introduce 11005 CC of argon gas into the vacuum chamber (1), adjust the barrier pull valve (2), and turn the vacuum chamber (11) into the vacuum chamber (1).
Maintaining 0≠Pa, turn on the switch (8) of the cathode (5) and apply a negative voltage of 115 ov to the cathode (5).
DC shuttering is performed for about 70 minutes. After that, by running the conveyor bell (12), the glass plate (16) held in the holder (15) is moved over the cathode (5) at a speed of 1100 mtn/min, as shown in Fig. 2. A predetermined thickness (20 nm) is applied to the surface of the high refractive index layer (17).
), specifically a second layer made of Ti.

この後、前記高屈折率者(ニア)を形成したのと同じ条
件、すなわち、Tiをターゲットとし、酸素とアルゴン
混合ガス雰囲気において直流スパッタリングを行うこと
で、第2図に示すように貴金属層(18)の表面に厚さ
3onm程度のTiO2からなる外面高屈折率層(19
)を第3層として形成する。
Thereafter, by performing DC sputtering under the same conditions as those used to form the high refractive index layer (Near), using Ti as a target and in an oxygen and argon mixed gas atmosphere, the noble metal layer (Near) was formed as shown in FIG. 18) is coated with an outer high refractive index layer (19) made of TiO2 with a thickness of approximately 3 onm.
) is formed as the third layer.

実施例を 実施例3において、外面高屈折率#(19)の成膜時の
基板移動速度を60馴/分に変えることにより、その膜
厚を乙Onmとした外は実施例3と同様の方法により透
明熱線反射ガラスを作成する。
The example was the same as in Example 3, except that the substrate movement speed during film formation of the outer surface high refractive index #(19) was changed to 60 mm/min, and the film thickness was set to Onm. A transparent heat-reflecting glass is created by the method.

実施例よ 実施例3において、第1層の内面高屈折率層(17)を
省いた以外は実施例3と全く同様の方法により透明熱線
反射ガラスを作成する。
EXAMPLE In Example 3, a transparent heat-reflecting glass was prepared in exactly the same manner as in Example 3, except that the first inner high refractive index layer (17) was omitted.

各実施例で得た透明熱線反射ガラスについてガラス板面
側と膜面側からみた反射色を観察した結果と波長s50
nmの光の透過率を測定した結果を第1表に示した。
The results of observing the reflected color of the transparent heat-reflecting glass obtained in each example from the glass plate side and the film side, and the wavelength s50
Table 1 shows the results of measuring the transmittance of nm light.

第   l   表 また、実施例1で得られた透明熱線反射ガラス(実線)
の分光反射率を窒化チタニウム膜を用いた熱線反射ガラ
ス(破線)と比較して第3図に示した。
Table l also shows the transparent heat-reflecting glass obtained in Example 1 (solid line)
Figure 3 shows a comparison of the spectral reflectance of the glass with a heat-reflecting glass using a titanium nitride film (dashed line).

以上の実施例においては、スパッタリング法により、ガ
ラス板に被膜を付着させたが、本発明における被膜の付
着はスパッタリング法に限定されることなく、真空蒸尤
法、あるいは熱分解により金属酸化物になりうる金属化
合物の溶液にディッピングしてコーティングした後、熱
分解して被膜を形成するディッピング法により成し遂げ
ることもできる。
In the above examples, the coating was applied to the glass plate by sputtering, but the coating in the present invention is not limited to sputtering, and can be applied to metal oxides by vacuum evaporation or thermal decomposition. It can also be achieved by a dipping method in which the coating is coated by dipping into a solution of a metal compound that can be used as a metal compound, and then thermally decomposed to form a film.

〔発明の効果〕〔Effect of the invention〕

本発明は第1表及び第3図から明らかなように、Ti膜
の外面層の5n02膜の膜厚を変えることにより、膜面
からみた夏射光が金色からブロンズ色糸の反射色をもつ
熱線反射ガラスを得ることができ、外面層の5n02膜
の膜厚を選ぶことにより、所望反射色を安定して得るこ
とができる。
As is clear from Table 1 and FIG. 3, the present invention changes the thickness of the 5N02 film as the outer layer of the Ti film, so that the summer radiation seen from the film surface changes from gold to a heat ray with a bronze-colored reflection color. Reflective glass can be obtained, and by selecting the thickness of the 5n02 film of the outer surface layer, a desired reflective color can be stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図はス
パッタリング装置の概略図、第2図は本発明に係る熱線
反射ガラスの拡大断面図、第3図は透明熱線反射ガラス
の分光反射率を示す図である。 尚、図面中(1)は真空槽、(5t 、 (6)はマグ
早トロンカソード、(10)l (11)はガス供給管
、(12)は搬送(18)は金属層である。 第1図 第2図
The drawings show embodiments of the present invention, and FIG. 1 is a schematic diagram of a sputtering apparatus, FIG. 2 is an enlarged sectional view of a heat-ray reflective glass according to the present invention, and FIG. 3 is a spectral diagram of a transparent heat-ray reflective glass. It is a figure showing reflectance. In the drawings, (1) is a vacuum chamber, (5t), (6) is a magtron cathode, (10), (11) is a gas supply pipe, and (12) is a conveyor (18) is a metal layer. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板と、該透明基板上に形成されたTiを主
成分とした透明金属層と、該透明金属層上に形成された
金属酸化物、あるいは金属硫化物からなる外面透明高屈
折率層とからなる透明熱線反射板。
(1) A transparent substrate, a transparent metal layer mainly composed of Ti formed on the transparent substrate, and a transparent outer surface with a high refractive index consisting of a metal oxide or metal sulfide formed on the transparent metal layer. A transparent heat ray reflecting plate consisting of layers.
(2)前記透明基板と前記透明金属層との間に金属酸化
物、あるいは金属硫化物からなる内面透明高屈折率層を
介在させた特許請求の範囲第1項に記載の透明熱線反射
板。
(2) The transparent heat ray reflecting plate according to claim 1, wherein an inner transparent high refractive index layer made of metal oxide or metal sulfide is interposed between the transparent substrate and the transparent metal layer.
(3)前記透明金属層が5nm乃至50nmである特許
請求の範囲第1項又は第2項に記載の透明熱線反射板。
(3) The transparent heat ray reflecting plate according to claim 1 or 2, wherein the transparent metal layer has a thickness of 5 nm to 50 nm.
JP25629186A 1986-10-28 1986-10-28 Transfarent heat reflecting plate Pending JPS63112441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25629186A JPS63112441A (en) 1986-10-28 1986-10-28 Transfarent heat reflecting plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25629186A JPS63112441A (en) 1986-10-28 1986-10-28 Transfarent heat reflecting plate

Publications (1)

Publication Number Publication Date
JPS63112441A true JPS63112441A (en) 1988-05-17

Family

ID=17290616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25629186A Pending JPS63112441A (en) 1986-10-28 1986-10-28 Transfarent heat reflecting plate

Country Status (1)

Country Link
JP (1) JPS63112441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032175A1 (en) * 2002-10-03 2004-04-15 Tetra Laval Holdings & Finance S.A. Device for the treatment of a web-type material in a plasma-assisted process
JP2006083404A (en) * 2004-09-14 2006-03-30 Showa Shinku:Kk Sputtering apparatus for depositing multi-layered film, and method of controlling the film thickness
CN102791644A (en) * 2010-03-10 2012-11-21 旭硝子欧洲玻璃公司 High reflection glass panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931147A (en) * 1982-08-17 1984-02-20 株式会社豊田中央研究所 Visible-ray transmitting heat wave shielding membrane and its manufacture
JPS6081049A (en) * 1983-10-06 1985-05-09 Toshiba Corp Manufacture of heat-ray reflecting film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931147A (en) * 1982-08-17 1984-02-20 株式会社豊田中央研究所 Visible-ray transmitting heat wave shielding membrane and its manufacture
JPS6081049A (en) * 1983-10-06 1985-05-09 Toshiba Corp Manufacture of heat-ray reflecting film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032175A1 (en) * 2002-10-03 2004-04-15 Tetra Laval Holdings & Finance S.A. Device for the treatment of a web-type material in a plasma-assisted process
CH696013A5 (en) * 2002-10-03 2006-11-15 Tetra Laval Holdings & Finance An apparatus for treating a strip-like material in a plasma-assisted process.
KR100977892B1 (en) 2002-10-03 2010-08-24 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 Device for the treatment of a web-type material in a plasma-assisted process
JP2006083404A (en) * 2004-09-14 2006-03-30 Showa Shinku:Kk Sputtering apparatus for depositing multi-layered film, and method of controlling the film thickness
JP4530776B2 (en) * 2004-09-14 2010-08-25 株式会社昭和真空 Multilayer film forming sputtering apparatus and film thickness control method thereof
CN102791644A (en) * 2010-03-10 2012-11-21 旭硝子欧洲玻璃公司 High reflection glass panel
CN102791644B (en) * 2010-03-10 2016-03-30 旭硝子欧洲玻璃公司 The sheet glass of high-reflectivity

Similar Documents

Publication Publication Date Title
KR920005471B1 (en) Low emissivity film for high temperature processing
DE3687336T2 (en) TRANSPARENT OBJECT WITH A HIGH VISIBLE TRANSPARENCY.
CN104090312B (en) Infrared metallic reflective coating of a kind of high adhesion force and preparation method thereof
US5772862A (en) Film comprising silicon dioxide as the main component and method for its productiion
KR920005650B1 (en) Low reflectance highly saturated colored coating for monolothic glazing
KR950702179A (en) Glazing with functional conductive and / or low emissive layer
KR930009764A (en) Products comprising glass substrates provided with low emissivity films
CZ299337B6 (en) Process for producing glass pane coating by magnetron sputtering process, glass pane with transparent thin-layer system and double-glazing pane incorporating the coated glass pane
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPS62148344A (en) Composite organic mineral compound accumulated on glass substrate coated with optional more than one thin film metallayer
CN85109342A (en) Sputtered film of metal alloy oxide
JPH0684256B2 (en) Veneer heat ray reflective glass
US4900630A (en) Glass plate with reflective multilayer coatings to give golden appearance
RU2351555C2 (en) Glass with coating
JPS63112441A (en) Transfarent heat reflecting plate
JP2722509B2 (en) Transparent plate exhibiting blue to green reflection color and method of manufacturing the same
JPS5918134A (en) Manufacture of heat reflecting laminate having oxide film
US4116658A (en) Method of coating substrate for liquid crystal display device
JPH0460061B2 (en)
JPH0339021B2 (en)
JPH09189801A (en) Optical parts with heat resistant antireflection film
JPH0152470B2 (en)
JP2697000B2 (en) Article coated with optical film
EP0646659B1 (en) Production of carriers for surface plasmon resonance
DE4126811A1 (en) Optical coatings for transparent conductive metal oxide films used in mfr. of solar cells, LCD etc. - comprises doped indium- and/or tin-oxide(s) deposited on metal oxide layer by sputtering in a water vapour atmos.