JPS63108240A - Discriminating device for fault point direction - Google Patents

Discriminating device for fault point direction

Info

Publication number
JPS63108240A
JPS63108240A JP25383186A JP25383186A JPS63108240A JP S63108240 A JPS63108240 A JP S63108240A JP 25383186 A JP25383186 A JP 25383186A JP 25383186 A JP25383186 A JP 25383186A JP S63108240 A JPS63108240 A JP S63108240A
Authority
JP
Japan
Prior art keywords
sensor
output signal
water
phase difference
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25383186A
Other languages
Japanese (ja)
Inventor
Tadashi Saito
斉藤 粛
Shozo Taniguchi
谷口 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25383186A priority Critical patent/JPS63108240A/en
Publication of JPS63108240A publication Critical patent/JPS63108240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow one device to discriminate in which direction a water leak position of a city water tube made of various materials is, by providing two sensors which detect the vibration of the tube wall, varying the distance between the sensors, and discriminating the direction of the water leak position which is a signal source. CONSTITUTION:Tube wall vibrations which are caused by leak water are detected by the two sensors 1 and 2 and a signal generated by delaying the output signal of the 2nd sensor 2 fitted linearly movably to the 1st reference sensor 1 and the output signal of the 1st reference sensor 1 are inputted to a phase difference zero detecting circuit 5 which detects their position difference being zero. The 2nd sensor 2 is shifted in position matching with the propagation speed of the vibrations and the direction of the water leak position is discriminated from where the phase difference becomes zero. Consequently, the position of the movable sensor is adjusted according to the kind of the tube and the sensor is only placed on the tube wall while changed in direction, thereby easily knowing the direction of the water leak position under the ground.

Description

【発明の詳細な説明】 〔発明の目的〕 (発明の技術分野) 本発明は気体、粉体、または液体の輸送管からの漏れの
位置を検出する故障点方向判別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Technical Field of the Invention) The present invention relates to a failure point direction determining device for detecting the position of a leak from a gas, powder, or liquid transport pipe.

(従来の技術) 説明を具体化するため、以下、水道管からの地下漏水を
例にとる。漏水の検出方法には、人間の聴力に依存する
音聴法、離れた2地点からの信号の相関を計算し、信号
の位相差と伝搬速度から位置を推定する相関法、水道使
用音、都市雑音などの一過性と漏水の継続性との違いを
基本原理とする時間積分方式の漏水検出装置(特開昭6
0−209117号公報)が知られている。音聴法では
、音の強さと音色などを頼りに熟練者が地上から漏水位
置を推定するものであるが、推定位置のばらつきが大き
い。相関法は科学的方法であるが、管路中の評の伝搬速
度が管路材質によって異るために、管路材質と管路長が
正確に分っていることが条件になる。更に、管路の途中
に存在する接手部分。
(Prior Art) In order to make the explanation concrete, underground water leakage from a water pipe will be taken as an example below. Water leak detection methods include the acoustic method that relies on human hearing, the correlation method that calculates the correlation between signals from two distant points and estimates the position from the signal phase difference and propagation speed, the sound of water usage, and the urban A time-integration water leak detection device (Japanese Unexamined Patent Publication No. 6
0-209117) is known. In the acoustic method, experts estimate the location of water leaks from the ground based on the strength and tone of the sound, but the estimated locations vary widely. The correlation method is a scientific method, but since the propagation speed of feedback in a pipe varies depending on the pipe material, it is required that the pipe material and pipe length be accurately known. Furthermore, there is a joint part that exists in the middle of the pipe.

仕切弁、消火栓1分岐点などの影響による伝搬速度の変
動があるために、位置の推定誤差が±1m程度発生する
。また、時間積分方式の漏水検出装置は、周辺数10m
以内の漏水の自動検出を目的とするものであり、漏水の
位置を特定することはできないにのように、位置の誤差
が避けられないため、埋設管の堀削事に漏水が発見でき
ない場合がしばしばあるが、従来、至近距離での漏水位
置を判定する装置が無かったために、熟練した作業者が
露出した管路からの音聴を頼りに試掘を繰り返えしてい
る。また、発明者の提案による方向判別機能付きの漏水
検出装置(実開昭57−120228号公報)があるが
、これは1本来、管路材質が既知の管路の漏水を発見す
るために、固定的に設置されることを目的としており、
任意の材質の管路に適用することはできない。
Due to variations in propagation speed due to the influence of gate valves, fire hydrant branch points, etc., an error in position estimation occurs of approximately ±1 m. In addition, the time-integration type water leak detection device has a circumference of several tens of meters.
The purpose of this system is to automatically detect leaks within a certain area, and it is not possible to pinpoint the location of the leak.As the location error is unavoidable, leaks may not be discovered even when excavating buried pipes. As is often the case, conventionally there was no equipment available to determine the location of water leaks at close range, so skilled workers had to repeatedly conduct trial excavations based on the sound they heard from exposed pipes. In addition, there is a water leakage detection device with a direction determination function proposed by the inventor (Japanese Utility Model Application Publication No. 120228/1983), which was originally designed to detect water leakage in pipes of known pipe material. It is intended to be installed permanently,
It cannot be applied to pipes made of arbitrary materials.

(発明が解決しようとする問題点) 本発明はこのような問題点に鑑みてなされたもので、1
台の装置で各種材質の水道管の漏水位置がどの方向にあ
るかを判別することが可能な故障点方向判別装置を提供
する。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned problems.
To provide a failure point direction determination device capable of determining in which direction the leakage position of water pipes made of various materials is located using a single device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は管壁の振動を検出するセンサを2個設け、セン
サ間の距離を可変ならしめることによって、信号源であ
る漏水部位の方向を判別するものである。
(Means for Solving the Problems) The present invention provides two sensors for detecting the vibration of the pipe wall, and by making the distance between the sensors variable, the direction of the water leakage site, which is the signal source, is determined. be.

(作 用) 本発明は漏水によって発生する管壁振動を2個のセンサ
で検出し、基準とする第一のセンサに対して直線方向に
移動可能に取付けた第二のセンサの出力信号を遅延回路
で遅延した信号と、基準とする第一のセンサの出力信号
とを、その位置差が零であることを検出する位相差零検
出回路に入力し、振動の伝搬速度に合せて第二のセンサ
の位置を移動させて、位相差が零になることから漏水位
置の方向を判別する。
(Function) The present invention detects pipe wall vibration caused by water leakage using two sensors, and delays the output signal of the second sensor, which is attached so as to be movable in a straight line with respect to the first sensor that serves as a reference. The signal delayed by the circuit and the output signal of the first sensor used as a reference are input to a zero phase difference detection circuit that detects that the position difference is zero, and the second sensor is By moving the position of the sensor, the direction of the water leak position can be determined from the fact that the phase difference becomes zero.

(実施例) 次に本発明の実施例について説明する。第1図は故障点
方向判別装置の構成図である。1はケース3の外側に固
定的に取付けられた管壁振動検出用の第一のセンサで、
その出力信号7は位相差零検出回路5の第一の入力に加
えられる。2はケース3の外側に可動構造をもって取付
けられた管壁振動検出用の第二のセンサで1、その出力
信号2aは遅延回路4へ入力される。
(Example) Next, an example of the present invention will be described. FIG. 1 is a block diagram of a failure point direction determining device. 1 is a first sensor for detecting pipe wall vibration fixedly attached to the outside of the case 3;
The output signal 7 is applied to the first input of the zero phase difference detection circuit 5. Reference numeral 2 denotes a second sensor 1 for detecting tube wall vibration, which is mounted with a movable structure on the outside of the case 3, and its output signal 2a is input to the delay circuit 4.

可動構造は、特に図示しないが、予め定められた範囲を
直線的に平滑に移動できるものであればよい。
Although the movable structure is not particularly illustrated, it may be any structure that can linearly and smoothly move within a predetermined range.

遅延回路4の出力信号6は、位相差零検出回路5の第二
の入力に加えられる。8は位相差零検出回路5の出力信
号であり、アナログ式の計器又はデジタル式の計器にこ
の出力信号8を入力することによって視認することがで
きる。また、第1図には示していないが、センサ1及び
センサ2の出力信号レベルが低い場合は増幅回路を接続
する。
The output signal 6 of the delay circuit 4 is applied to the second input of the zero phase difference detection circuit 5. 8 is an output signal of the zero phase difference detection circuit 5, which can be visually recognized by inputting this output signal 8 into an analog meter or a digital meter. Although not shown in FIG. 1, an amplifier circuit is connected when the output signal levels of sensor 1 and sensor 2 are low.

なお、破線で示すセンサ2bはセンサ2がセンサ1に近
付く方向に移動したときの位置を示す。
Note that the sensor 2b indicated by a broken line indicates the position when the sensor 2 moves in the direction approaching the sensor 1.

第2図、第3図を用いて前記構成での作用を説明する。The operation of the above configuration will be explained using FIGS. 2 and 3.

第2図は漏水部位が、第二のセンサ2の側にある場合(
第4図の使用例で、点Aに漏水がある場合)の信号波形
を示す。波形21はセンサ2の出力信号波形、波形22
は遅延回路4の出力信号6の波形で、遅延回路によって
固定の遅延時間でだけセンサ2の出力信号が遅延されて
いる。波形23はセンサ1の出力信号7の波形で、振動
の伝搬遅れ時間1.だけセンサ2の出力信号より遅れて
検出される。tdは0式で与えられる。
Figure 2 shows a case where the water leakage site is on the side of the second sensor 2 (
In the usage example shown in FIG. 4, the signal waveform is shown when there is a water leak at point A). Waveform 21 is the output signal waveform of sensor 2, waveform 22
is the waveform of the output signal 6 of the delay circuit 4, in which the output signal of the sensor 2 is delayed by a fixed delay time by the delay circuit. The waveform 23 is the waveform of the output signal 7 of the sensor 1, and the vibration propagation delay time 1. is detected later than the output signal of sensor 2. td is given by the equation 0.

t 4 =L / v         ■ただし、L
はセンサ1とセンサ2のそれぞれの中心間の距離、■は
管壁を伝わる振動の伝搬速度で、主として管の材質によ
って定まる定数である。
t 4 = L / v ■However, L
is the distance between the centers of sensor 1 and sensor 2, and ■ is the propagation speed of vibration transmitted through the tube wall, which is a constant determined mainly by the material of the tube.

しかるに、センサ2は可動構造であるから、伝搬遅れ時
間t、と遅延時間でか等しくなるようなL′L′=vτ
         ■ の位置にセンサ2を移動させることによって、出力信号
6と出力信号7の位相が一致し、位相差零検出回路5に
よってこの状態を検出することができる。
However, since the sensor 2 is a movable structure, the propagation delay time t is equal to the delay time L'L'=vτ
By moving the sensor 2 to the position (2), the phases of the output signal 6 and the output signal 7 match, and this state can be detected by the zero phase difference detection circuit 5.

第3図は漏水部位が、第一のセンサ1の側にある場合(
第4図の使用例で、点Bに漏水がある場合)の信号波形
を示す。波形31はセンサ1の出力信号7の波形、波形
32はセンサ2の出力信号波形で、振動の伝搬遅れ時間
tdだけセンサ1の出力信号より遅れて検出される。波
形33は遅延回路4の出力信号6の波形で、遅延時間で
だけセンサ2の出力信号が遅延されている。しかるに、
τ〉0であるから、同図より明らかな如く、波形31(
出力信号7)と波形33(出力信号6)の位相が一致す
ることは有り得ないから、位相差零検出回路5から位相
一致信号が出力されることは無い。
Figure 3 shows a case where the water leakage site is on the side of the first sensor 1 (
In the usage example of FIG. 4, the signal waveform is shown when there is a water leak at point B). The waveform 31 is the waveform of the output signal 7 of the sensor 1, and the waveform 32 is the waveform of the output signal of the sensor 2, which are detected with a delay from the output signal of the sensor 1 by the vibration propagation delay time td. The waveform 33 is the waveform of the output signal 6 of the delay circuit 4, in which the output signal of the sensor 2 is delayed by the delay time. However,
Since τ>0, as is clear from the figure, the waveform 31 (
Since it is impossible for the output signal 7) and the waveform 33 (output signal 6) to match in phase, the zero phase difference detection circuit 5 will never output a phase matching signal.

以上の説明から分るように、第二のセンサ2の側に漏水
部位がある場合のみ出力信号8が得られるので、第5図
に示すように、第二のセンサ2の方向に矢印を付してお
くことによって容易に漏水部位の方向を知ることができ
る。
As can be seen from the above explanation, the output signal 8 is obtained only when there is a water leakage site on the side of the second sensor 2. Therefore, as shown in FIG. By doing so, you can easily find the direction of the water leak.

第4図は現場での実施状況を示す図で、堀り出された水
道管10の上に本装置を載せている。センサの頂部に永
久磁石を装着することによって、鋼管の場合の作業性が
向上する。第5図は下部を拡大表示したもので、予め、
伝搬速度の目盛表示をしておくことによって、管材質に
応じた目盛位置ヘセンサ2を移動させられる。特に、使
用頻度が高い鋼管、石綿管、塩ビ管などについては、相
当する位置に管種を表示することによって1作業性を向
上させられる。目盛表示は、遅延時間τを設定すれば、
管種による伝搬速度Vに相当するセンサ間の距離りを■
式から容易に得ら九る。いま、τ=0.2ミリ秒にすれ
ば、第1表の目盛りが得られる。尚、第4図に於て、4
1は塩び管、42は鋼管、43は漏水地点の方向を、又
、第5図に於て51は水道管を示す。
FIG. 4 is a diagram showing the implementation situation at the site, in which the present device is placed on top of the excavated water pipe 10. By attaching a permanent magnet to the top of the sensor, workability in the case of steel pipes is improved. Figure 5 shows an enlarged view of the lower part.
By displaying the propagation velocity on a scale, the sensor 2 can be moved to a scale position corresponding to the pipe material. In particular, for frequently used steel pipes, asbestos pipes, PVC pipes, etc., the work efficiency can be improved by displaying the pipe type in the corresponding position. The scale display can be done by setting the delay time τ.
The distance between the sensors corresponding to the propagation velocity V depending on the pipe type is ■
It is easily obtained from Eq. Now, if we set τ = 0.2 milliseconds, we can obtain the scale shown in Table 1. In addition, in Figure 4, 4
1 is a salt pipe, 42 is a steel pipe, 43 is the direction of the water leakage point, and in FIG. 5, 51 is a water pipe.

第  1  表 〔発明の効果〕 以上のように、本発明によれば管種に合せて可動センサ
の位置を調整し、方向を変えて管壁上に置くだけで、地
中の漏水部位の方向が容易に分るので、熟練者がいなく
てもむだな掘削工事が避けられる。
Table 1 [Effects of the Invention] As described above, according to the present invention, by simply adjusting the position of the movable sensor according to the type of pipe, changing the direction, and placing it on the pipe wall, the direction of the underground water leakage site can be determined. Since it is easy to understand, wasteful excavation work can be avoided even if there is no skilled person.

【図面の簡単な説明】[Brief explanation of the drawing]

″第1図は本発明一実施例を示す故障点方向判別装置の
構成図、第2図及び第3図は本発明の動作を示す各部の
波形説明図、第4図及び第5図は使用状況を示す説明図
である6 1・・・センサ1 2・・・センサ2 3・・・ケース 4・・・遅延回路 5・・・位相差零検出回路 代理人 弁理士  則 近 憲 佑 同  三俣弘文 第1図
``Figure 1 is a configuration diagram of a failure point direction determination device showing an embodiment of the present invention, Figures 2 and 3 are waveform explanatory diagrams of various parts showing the operation of the present invention, and Figures 4 and 5 are used. This is an explanatory diagram showing the situation 6 1...Sensor 1 2...Sensor 2 3...Case 4...Delay circuit 5...Zero phase difference detection circuit Representative Patent attorney Nori Chika Yudo Mitsumata Kobun Figure 1

Claims (1)

【特許請求の範囲】[Claims] 管壁の振動を検出し、電気信号に変換する第一のセンサ
と、固定されている前記第一のセンサに対して直線方向
に移動可能に取付けられた第二のセンサと、この第二の
センサの出力信号を遅延した信号とする遅延回路と前記
第一のセンサの出力信号及び前記遅延した信号の位相差
が零であることを検出する位相差零検出回路とを具備し
て故障点の方向を判別する故障点方向判別装置。
a first sensor that detects vibrations of a pipe wall and converts it into an electrical signal; a second sensor that is mounted so as to be movable in a linear direction with respect to the fixed first sensor; a delay circuit that converts the output signal of the sensor into a delayed signal; and a zero phase difference detection circuit that detects that the phase difference between the output signal of the first sensor and the delayed signal is zero; Fault point direction determination device that determines direction.
JP25383186A 1986-10-27 1986-10-27 Discriminating device for fault point direction Pending JPS63108240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25383186A JPS63108240A (en) 1986-10-27 1986-10-27 Discriminating device for fault point direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25383186A JPS63108240A (en) 1986-10-27 1986-10-27 Discriminating device for fault point direction

Publications (1)

Publication Number Publication Date
JPS63108240A true JPS63108240A (en) 1988-05-13

Family

ID=17256740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25383186A Pending JPS63108240A (en) 1986-10-27 1986-10-27 Discriminating device for fault point direction

Country Status (1)

Country Link
JP (1) JPS63108240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114990A2 (en) * 2000-01-05 2001-07-11 Palmer Environmental Limited Apparatus for determining the position of a leak signal from a pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114990A2 (en) * 2000-01-05 2001-07-11 Palmer Environmental Limited Apparatus for determining the position of a leak signal from a pipe
EP1114990A3 (en) * 2000-01-05 2003-02-05 Palmer Environmental Limited Apparatus for determining the position of a leak signal from a pipe
US6595038B2 (en) 2000-01-05 2003-07-22 Palmer Environmental Limited Apparatus for determining the position of a signal from a pipe

Similar Documents

Publication Publication Date Title
US5531099A (en) Underground conduit defect localization
US9939546B2 (en) Detection method and detection device of buried metal
CN108386728B (en) Pipeline leakage detection method and system
JP5583994B2 (en) Leak detection device and leak detection method
CN108194841B (en) One kind having source calibration formula water supply line leakage related detecting method and device
CA2978481C (en) Method and device for detecting buried metal using synchronous detection method
CN111983562A (en) Underground non-metal pipeline detection and positioning method
JP3032185B2 (en) Piping leak detection system
JP2575790B2 (en) Leakage location estimation device
JPS63108240A (en) Discriminating device for fault point direction
JP3119321B2 (en) Detection method of target points in buried pipes
JPH1114492A (en) Method for inspecting leakage of city water network
KR101564718B1 (en) System for analyzing the depth and location of underground pipe by analysis of electromagnetic response
JP3262469B2 (en) Water leak detection device
KR102535109B1 (en) Leak sensing system and method for the same
JP2005241343A (en) Apparatus for measuring fluid in pipe
JPH11316000A (en) Attaching structure for water leakage sound sensor
JPH0535344Y2 (en)
JPS5913713B2 (en) Buried nonmetallic pipe detection method
JPS58208636A (en) Detecting device for position of leakage from piping such as leakage of water
JP3295681B2 (en) Leakage position display method in piping leak position identification method
JPH06100454B2 (en) Failure point direction determination device
JPH03273127A (en) Method and sensor for searching for leakage hole of gas-filled communication cable in conduit
JPH10160615A (en) Acoustic device for specifying leakage position
JP3458460B2 (en) Flow measurement device