JPS631054Y2 - - Google Patents

Info

Publication number
JPS631054Y2
JPS631054Y2 JP8475382U JP8475382U JPS631054Y2 JP S631054 Y2 JPS631054 Y2 JP S631054Y2 JP 8475382 U JP8475382 U JP 8475382U JP 8475382 U JP8475382 U JP 8475382U JP S631054 Y2 JPS631054 Y2 JP S631054Y2
Authority
JP
Japan
Prior art keywords
bearing
thrust
bearing member
groove
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8475382U
Other languages
Japanese (ja)
Other versions
JPS58187613U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8475382U priority Critical patent/JPS58187613U/en
Publication of JPS58187613U publication Critical patent/JPS58187613U/en
Application granted granted Critical
Publication of JPS631054Y2 publication Critical patent/JPS631054Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 この考案は回転時における軸体のハウジングに
対する軸方向変位量が小さい動圧形流体軸受に関
する。
[Detailed Description of the Invention] This invention relates to a hydrodynamic bearing in which the amount of axial displacement of the shaft relative to the housing during rotation is small.

従来の動圧形流体軸受装置は第1図に示すよう
に、ハウジング1に設けた円筒状孔2は円筒状の
ラジアル内面3と平面状のスラスト底面4とを有
し、前記円筒状孔2に配設した軸体5はスパイラ
ルのみぞ6を有する円筒状のラジアル外面7と凸
形円すい状のスラスト端面8とを有し、またハウ
ジング1には軸体5の浮上時にスラスト底面4と
スラスト端面8との間の圧力室11からハウジン
グ1の上面に通ずる循環穴12が設けられてい
る。
In a conventional hydrodynamic bearing device, as shown in FIG. 1, a cylindrical hole 2 provided in a housing 1 has a cylindrical radial inner surface 3 and a planar thrust bottom surface 4. The shaft body 5 disposed in the housing 1 has a cylindrical radial outer surface 7 having a spiral groove 6 and a convex conical thrust end surface 8, and the housing 1 has a thrust bottom surface 4 and a thrust end surface 8 when the shaft body 5 floats. A circulation hole 12 communicating with the upper surface of the housing 1 from the pressure chamber 11 between the end face 8 and the housing 1 is provided.

従つて軸体5が回転して浮上すると、圧力室1
1内の潤滑剤が循環穴12を通つて軸体5の外周
面に流出し、軸体5の浮上量はほぼ一定に保たれ
る。
Therefore, when the shaft body 5 rotates and floats, the pressure chamber 1
The lubricant in the shaft body 1 flows out to the outer peripheral surface of the shaft body 5 through the circulation hole 12, and the flying height of the shaft body 5 is kept almost constant.

このような軸受をフラツト・モータ等に使用す
る場合は軸体5に固定したロータとハウジング1
に固定したステータとが軸方向の微小すきまを介
して平面で対向しているのでロータとステータと
の相対変位を小さくすることが望まれる。しかし
スラスト底面4とスラスト端面8とが接している
状態の時に循環穴12をラジアル外面とスラスト
端面との境界部13の近傍に精度良く設けること
は加工上むずかしいので軸体5の浮上量即ちロー
タとステータとの相対変位を小さくおさえること
は困難である。また循環穴12をラジアル外面と
スラスト端面との境界部13の近傍に精度良く設
けることはできないので大量生産した場合は多く
の動圧形流体軸受を一定の浮上量にそろえること
ができない。さらにラジアル内面3とラジアル外
面7との間に微少量のすきまがあるので軸体5の
回転時に軸体5が浮上しなくても圧力室11内の
潤滑剤が循環穴12を通つて軸体5の外周面に僅
少量流出し、圧力室11内の潤滑剤の圧力の上昇
が妨げられてスラスト負荷能力が低い。また循環
穴12は小径で長さが長いので動圧形流体軸受の
コストが高い。さらにロータとステータとの間に
働く吸引力はスラスト荷重として働くのでスラス
ト荷重はかなり厳しく、軸体5の停止時にスラス
ト端面8とスラスト底面4とが点接触するので最
大接触面圧が大きく、スラスト底面4に圧こんが
生ずるおそれがある。
When using such a bearing in a flat motor etc., the rotor fixed to the shaft body 5 and the housing 1
Since the stator fixed to the rotor and the stator face each other in a plane with a small gap in the axial direction, it is desirable to reduce the relative displacement between the rotor and the stator. However, when the thrust bottom surface 4 and the thrust end surface 8 are in contact with each other, it is difficult to provide the circulation hole 12 with high accuracy near the boundary 13 between the radial outer surface and the thrust end surface. It is difficult to keep the relative displacement between the stator and the stator small. Further, since the circulation hole 12 cannot be precisely provided near the boundary 13 between the radial outer surface and the thrust end surface, many hydrodynamic fluid bearings cannot be made to have a constant flying height when mass-produced. Furthermore, since there is a small amount of clearance between the radial inner surface 3 and the radial outer surface 7, the lubricant in the pressure chamber 11 can pass through the circulation hole 12 to the shaft even if the shaft 5 does not float when the shaft 5 rotates. A small amount of the lubricant flows out onto the outer circumferential surface of the lubricant 5, preventing the pressure of the lubricant in the pressure chamber 11 from increasing, resulting in a low thrust load capacity. Further, since the circulation hole 12 has a small diameter and a long length, the cost of the hydrodynamic bearing is high. Furthermore, the suction force acting between the rotor and stator acts as a thrust load, so the thrust load is quite severe.When the shaft body 5 is stopped, the thrust end face 8 and the thrust bottom face 4 make point contact, so the maximum contact surface pressure is large, and the thrust There is a risk that dents may be formed on the bottom surface 4.

この考案は前述の各欠点を除去することを目的
とする。
This invention aims to eliminate each of the aforementioned drawbacks.

次にこの考案の実施例を図面に基いて説明す
る。第2図において、ハウジング21の内周面に
合成樹脂製の軸受部材22を嵌合して配設し、こ
の軸受部材の底面23に当接して配設した平板状
の支持部材24をハウジング21に固定してい
る。前記軸受部材22に設けた円筒状孔27は平
面状のスラスト受面28と円筒状のラジアル内面
29とを有し、このラジアル内面29にはスパイ
ラル状の動圧発生用みぞ31が設けられている。
前記スラスト受面28は中央部に設けた凸状部3
2と第3図に示すように凸状部32の周囲に設け
たスパイラル状の動圧発生作用のみぞ33とを有
し、また凸状部32には軸方向に循環穴34が設
けられている。該循環穴34は軸受部材の底面2
3に設けた流通みぞ36に通じ、また軸受部材の
底面23は軸受部材22の上端面より大径になつ
ている。前記流通みぞ36は軸受部材の底面23
に軸と平行に設けた連通穴38に通じ、この連通
穴38は軸受部材22の外周面に軸と平行に設け
たみぞ状の連通路39に通じている。前記連通路
39は軸受部材22の上端面に開口しており、循
環穴34は流通みぞ36、連通穴38、連通路3
9、およびハウジング21の内周面と軸受部材2
2の上端面とに囲まれた大径孔40を介して円筒
状孔の開口部41と連通している。前記円筒状孔
27に配設した軸体51はスラスト受面28に対
向する平面状のスラスト端面52とラジアル内面
29に対向する円筒状のラジアル外面53とを有
し、また凸状部32は軸受の静止時にスラスト端
面52と接する環状の接触面42を循環穴34の
周囲に有している。そして大径孔40、ラジアル
内面29とラジアル外面53との間のラジアル軸
受すきま62、スラスト受面28とスラスト端面
52との間のスラスト軸受すきま63、循環穴3
4、流通みぞ36、連通穴38、および連通路3
9には空気、油、およびグリース等の潤滑剤が存
在している。
Next, an embodiment of this invention will be described based on the drawings. In FIG. 2, a bearing member 22 made of synthetic resin is fitted and disposed on the inner peripheral surface of the housing 21, and a flat support member 24 disposed in contact with the bottom surface 23 of the bearing member is attached to the housing 21. It is fixed at The cylindrical hole 27 provided in the bearing member 22 has a planar thrust receiving surface 28 and a cylindrical radial inner surface 29, and the radial inner surface 29 is provided with a spiral groove 31 for generating dynamic pressure. There is.
The thrust receiving surface 28 has a convex portion 3 provided in the center.
2 and a spiral groove 33 for generating dynamic pressure provided around the convex portion 32 as shown in FIG. 3, and a circulation hole 34 is provided in the convex portion 32 in the axial direction. There is. The circulation hole 34 is located at the bottom surface 2 of the bearing member.
The bottom surface 23 of the bearing member has a larger diameter than the upper end surface of the bearing member 22. The flow groove 36 is formed on the bottom surface 23 of the bearing member.
This communicates with a communication hole 38 provided parallel to the shaft, and this communication hole 38 communicates with a groove-shaped communication path 39 provided parallel to the shaft on the outer peripheral surface of the bearing member 22. The communication passage 39 is open at the upper end surface of the bearing member 22, and the circulation hole 34 is connected to the communication groove 36, the communication hole 38, and the communication passage 3.
9, and the inner peripheral surface of the housing 21 and the bearing member 2
It communicates with an opening 41 of the cylindrical hole through a large diameter hole 40 surrounded by the upper end surface of the cylindrical hole. The shaft body 51 disposed in the cylindrical hole 27 has a planar thrust end face 52 facing the thrust receiving surface 28 and a cylindrical radial outer face 53 facing the radial inner face 29 . An annular contact surface 42 that contacts the thrust end surface 52 when the bearing is at rest is provided around the circulation hole 34. The large diameter hole 40, the radial bearing clearance 62 between the radial inner surface 29 and the radial outer surface 53, the thrust bearing clearance 63 between the thrust bearing surface 28 and the thrust end surface 52, and the circulation hole 3.
4. Communication groove 36, communication hole 38, and communication path 3
9, air, oil, and a lubricant such as grease are present.

以上のような構成の動圧形流体軸受は軸体51
の静止時に環状の接触面42とスラスト端面52
とが接触しているが、軸体51が回転すると動圧
発生用みぞ31のポンピング作用および動圧発生
作用のみぞ33のポンピング作用によつて大径孔
40内の潤滑剤がラジアル軸受すきま62を通つ
てスラスト軸受すきま63に流入し、軸体51が
浮上する。前記軸体51が浮上すると、循環穴3
4がスラスト軸受すきま63に開口し、スラスト
軸受すきま63内の潤滑剤は循環穴34、流通み
ぞ36、連通穴38、および連通路39を通つて
大径孔40に流出する。この場合スラスト軸受す
きま63内の潤滑剤の圧力は軸体51の浮上量の
変化によつて調整されてほぼ一定であり、一定の
スラスト負荷能力が得られると共に軸体51の浮
上量は小さい。
The hydrodynamic bearing having the above configuration has a shaft body 51.
When at rest, the annular contact surface 42 and the thrust end surface 52
However, when the shaft body 51 rotates, the lubricant in the large diameter hole 40 is pumped into the radial bearing clearance 62 by the pumping action of the dynamic pressure generating groove 31 and the pumping action of the dynamic pressure generating groove 33. It flows into the thrust bearing clearance 63 through the shaft body 51, and the shaft body 51 floats up. When the shaft body 51 floats, the circulation hole 3
4 opens into the thrust bearing clearance 63, and the lubricant in the thrust bearing clearance 63 flows out into the large diameter hole 40 through the circulation hole 34, the circulation groove 36, the communication hole 38, and the communication passage 39. In this case, the pressure of the lubricant in the thrust bearing clearance 63 is adjusted by changes in the flying height of the shaft body 51 and is approximately constant, so that a constant thrust load capacity is obtained and the flying height of the shaft body 51 is small.

第4図はこの考案の他の実施例であるが、軸受
部材22がスリーブ122とスリーブ122の一
方の端部に当接する平板状のスラスト荷重受け部
材222とから構成されている。前記スリーブ1
22とスラスト荷重受け部材222とはいずれも
合成樹脂製なのでスリーブ122とスラスト荷重
受け部材222との接触部は密封されている。
FIG. 4 shows another embodiment of this invention, in which a bearing member 22 is composed of a sleeve 122 and a flat plate-shaped thrust load receiving member 222 that abuts one end of the sleeve 122. Said sleeve 1
22 and the thrust load receiving member 222 are both made of synthetic resin, so the contact portion between the sleeve 122 and the thrust load receiving member 222 is sealed.

第5図はこの考案の他の実施例であるが、合成
樹脂製のスリーブ122の一方の端部に設けたリ
ツプ322が合成樹脂製のスラスト荷重受け部材
222と接触している。
FIG. 5 shows another embodiment of this invention, in which a lip 322 provided at one end of a sleeve 122 made of synthetic resin is in contact with a thrust load receiving member 222 made of synthetic resin.

このようにすると、スリーブ122とスラスト
荷重受け部材222との接触部の密封性能が向上
する。なおスラスト荷重受け部材222に設けた
リツプがスリーブ122の一方の端部に接触する
ようにしても良い。
In this way, the sealing performance of the contact portion between the sleeve 122 and the thrust load receiving member 222 is improved. Note that the lip provided on the thrust load receiving member 222 may be in contact with one end of the sleeve 122.

なお図示の実施例ではみぞ状の連通路39を設
けたが、軸受部材22の外周面を小径とした連通
路でも良い。
In the illustrated embodiment, the groove-shaped communicating passage 39 is provided, but a communicating passage having a small diameter on the outer circumferential surface of the bearing member 22 may also be used.

また軸体51の回転ではなくハウジング21回
転としても良く、あるいは相対回転としても良
い。
Further, instead of the rotation of the shaft body 51, the housing 21 may be rotated, or it may be a relative rotation.

さらに動圧形流体軸受を縦形ではなく横形で使
用しても良く、あるいは倒置して使用しても良
い。
Furthermore, the hydrodynamic bearing may be used horizontally instead of vertically, or may be used upside down.

この考案の動圧形流体軸受によると、凸状部3
2に設けた循環穴34が軸受部材の底面23に設
けた流通みぞ36および軸受部材22の外周面に
設けた連通路39を介して円筒状孔の開口部41
と連通しているので軸体51がハウジング21に
対して軸方向に変位するとスラスト軸受すきま6
3内の潤滑剤が循環穴34、連通みぞ36、およ
び連通路39を介して円筒状孔の開口部41へ流
入し、スラスト軸受すきま63内の潤滑剤の圧力
は軸体51のハウジング21に対する軸方向変位
によつて調整されてほぼ一定であり、一定のスラ
スト負荷能力が得られると共に軸体51のハウジ
ング21に対する軸方向変位を小さくおさえるこ
とができる。また凸状部32は軸受の静止時にス
ラスト端面52と接する環状の接触面42を循環
穴34の周囲に有するので軸体51が回転しても
軸体51がハウジング21に対して軸方向に変位
しなければスラスト軸受すきま63内のの潤滑剤
が循環穴34へ流出しないのでスラスト負荷能力
が高い。さらに環状の接触面42を合成樹脂製の
軸受部材22に設けたので環状の接触面42は弾
性を有し、環状の接触面42とスラスト端面52
との接触部のシール性が良い。またラジアル内面
29は動圧発生用みぞ31を有し、スラスト受面
28は動圧発生作用のみぞ33を有するので動圧
発生用みぞ31のポンピング作用と動圧発生作用
のみぞ33のポンピング作用とが共働し、スラス
ト負荷能力が高いのでラジアル内面29とラジア
ル外面53との軸方向長さを短かくでき、コンパ
クトな動圧形流体軸受にすることができる。さら
に合成樹脂製の軸受部材22に設けた円筒状孔2
7は平面状のスラスト受面28と動圧発生用みぞ
31を有する円筒状のラジアル内面29とを有
し、前記スラスト受面28は中央部に設けた凸状
部32と凸状部32の周囲に設けた動圧発生作用
のみぞ33とを有し、前記凸状部32に設けた循
環穴34が軸受部材の底面23に設けた流通みぞ
36および軸受部材22の外周面に設けた連通路
39を介して円筒状孔の開口部41と連通するの
で軸受部材22を合成樹脂の射出成形によつて製
造でき、精度が良いと共に量産可能でコストが安
い。また凸状部32は軸受の静止時にスラスト端
面52と接する環状の接触面42を循環穴34の
周囲に有するので軸受の静止時における環状の接
触面42とスラスト端面52との接触面圧を小さ
くでき、環状の接触面42とスラスト端面52と
の損傷を防止できる。さらに環状の接触面42は
合成樹脂製なので耐摩耗性が良く、寿命が長いと
いう効果を有する。
According to the hydrodynamic bearing of this invention, the convex portion 3
The circulation hole 34 provided in 2 is connected to the opening 41 of the cylindrical hole through a communication groove 36 provided in the bottom surface 23 of the bearing member and a communication passage 39 provided in the outer peripheral surface of the bearing member 22.
When the shaft body 51 is displaced in the axial direction with respect to the housing 21, the thrust bearing clearance 6
3 flows into the opening 41 of the cylindrical hole through the circulation hole 34, the communication groove 36, and the communication path 39, and the pressure of the lubricant in the thrust bearing clearance 63 increases against the housing 21 of the shaft body 51. It is adjusted by the axial displacement and is substantially constant, so that a constant thrust load capacity can be obtained and the axial displacement of the shaft body 51 with respect to the housing 21 can be kept small. Further, since the convex portion 32 has an annular contact surface 42 around the circulation hole 34 that contacts the thrust end surface 52 when the bearing is stationary, even if the shaft body 51 rotates, the shaft body 51 is displaced in the axial direction with respect to the housing 21. Otherwise, the lubricant in the thrust bearing clearance 63 will not flow into the circulation hole 34, resulting in a high thrust load capacity. Furthermore, since the annular contact surface 42 is provided on the synthetic resin bearing member 22, the annular contact surface 42 has elasticity, and the annular contact surface 42 and the thrust end surface 52
Good sealing properties at the contact area. Further, the radial inner surface 29 has a groove 31 for generating dynamic pressure, and the thrust receiving surface 28 has a groove 33 for generating dynamic pressure, so that the pumping effect of the groove 31 for generating dynamic pressure and the pumping effect of the groove 33 for generating dynamic pressure Since the thrust load capacity is high, the axial length of the radial inner surface 29 and the radial outer surface 53 can be shortened, and a compact hydrodynamic bearing can be obtained. Further, a cylindrical hole 2 provided in a bearing member 22 made of synthetic resin
7 has a planar thrust receiving surface 28 and a cylindrical radial inner surface 29 having a groove 31 for generating dynamic pressure. The circulation hole 34 provided in the convex portion 32 connects to the communication groove 36 provided in the bottom surface 23 of the bearing member and the communication groove 36 provided in the outer peripheral surface of the bearing member 22. Since it communicates with the opening 41 of the cylindrical hole through the passage 39, the bearing member 22 can be manufactured by injection molding of synthetic resin, which has good precision, can be mass-produced, and is inexpensive. Furthermore, since the convex portion 32 has an annular contact surface 42 around the circulation hole 34 that contacts the thrust end surface 52 when the bearing is at rest, the contact surface pressure between the annular contact surface 42 and the thrust end surface 52 when the bearing is at rest is reduced. Therefore, damage to the annular contact surface 42 and the thrust end surface 52 can be prevented. Furthermore, since the annular contact surface 42 is made of synthetic resin, it has good wear resistance and has a long service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の動圧形流体軸受の断面図、第2
図はこの考案の一実施例を示す動圧形流体軸受の
断面図、第3図は第2図に示すスラスト受面の平
面図、第4図および第5図はこの考案の他の実施
例を示す動圧形流体軸受の断面図である。 図中、21はハウジング、22は軸受部材、2
3は軸受部材の底面、24は支持部材、27は円
筒状孔、28はスラスト受面、29はラジアル内
面、31は動圧発生用みぞ、32は凸状部、33
は動圧発生作用のみぞ、34は循環穴、36は連
通みぞ、39は連通路、41は円筒状孔の開口
部、42は環状の接触面、51は軸体、52はス
ラスト端面、53はラジアル外面である。
Figure 1 is a cross-sectional view of a conventional hydrodynamic bearing;
The figure is a sectional view of a hydrodynamic bearing showing one embodiment of this invention, Figure 3 is a plan view of the thrust bearing surface shown in Figure 2, and Figures 4 and 5 are other embodiments of this invention. FIG. 2 is a cross-sectional view of a hydrodynamic bearing. In the figure, 21 is a housing, 22 is a bearing member, 2
3 is a bottom surface of the bearing member, 24 is a support member, 27 is a cylindrical hole, 28 is a thrust bearing surface, 29 is a radial inner surface, 31 is a groove for generating dynamic pressure, 32 is a convex portion, 33
34 is a groove for dynamic pressure generation, 34 is a circulation hole, 36 is a communication groove, 39 is a communication path, 41 is an opening of a cylindrical hole, 42 is an annular contact surface, 51 is a shaft body, 52 is a thrust end surface, 53 is the radial outer surface.

Claims (1)

【実用新案登録請求の範囲】 1 ハウジング21の内周面に合成樹脂製の軸受
部材22を嵌合して配設し、該軸受部材の底面
23に当接して配設した支持部材24をハウジ
ング21に固定し、前記軸受部材22に設けた
円筒状孔27は平面状のスラスト受面28と動
圧発生用みぞ31を有する円筒状のラジアル内
面29とを有し、前記スラスト受面28は中央
部に設けた凸状部32と凸状部32の周囲に設
けた動圧発生作用のみぞ33とを有し、前記凸
状部32に設けた循環穴34が軸受部材の底面
23に設けた流通みぞ36および軸受部材22
の外周面に設けた連通路39を介して円筒状孔
の開口部41と連通し、前記円筒状孔27に配
設した軸体51はスラスト受面28に対向する
平面状のスラスト端面52とラジアル内面29
に対向する円筒状のラジアル外面53とを有
し、前記凸状部32は軸受の静止時にスラスト
端面52と接する環状の接触面42を循環穴3
4の周囲に有する動圧形流体軸受。 2 軸受部材22がスリーブ122とスリーブ1
22の一方の端部に当接するスラスト荷重受け
部材222とから構成される実用新案登録請求
の範囲第1項記載の動圧形流体軸受。 3 スリーブ22の一方の端部に設けたリツプ3
22がスラスト荷重受け部材222と接触する
実用新案登録請求の範囲第2項記載の動圧形流
体軸受。 4 スラスト荷重受け部材222に設けたリツプ
がスリーブ122の一方の端部に接触する実用
新案登録請求の範囲第2項記載の動圧形流体軸
受。
[Claims for Utility Model Registration] 1. A bearing member 22 made of synthetic resin is fitted and disposed on the inner peripheral surface of the housing 21, and a support member 24 disposed in contact with the bottom surface 23 of the bearing member is attached to the housing. 21, and the cylindrical hole 27 provided in the bearing member 22 has a planar thrust receiving surface 28 and a cylindrical radial inner surface 29 having a groove 31 for generating dynamic pressure. It has a convex portion 32 provided in the center and a groove 33 for generating dynamic pressure provided around the convex portion 32, and a circulation hole 34 provided in the convex portion 32 is provided in the bottom surface 23 of the bearing member. flow groove 36 and bearing member 22
The shaft body 51 arranged in the cylindrical hole 27 communicates with the opening 41 of the cylindrical hole through a communication path 39 provided on the outer peripheral surface of the cylindrical hole 27 . Radial inner surface 29
The convex portion 32 has an annular contact surface 42 in contact with the thrust end surface 52 when the bearing is at rest.
A dynamic pressure type fluid bearing having around 4. 2 Bearing member 22 is connected to sleeve 122 and sleeve 1
and a thrust load receiving member 222 that abuts one end of the hydrodynamic bearing according to claim 1, which is a registered utility model. 3 Lip 3 provided at one end of sleeve 22
22 is in contact with the thrust load receiving member 222. The hydrodynamic bearing according to claim 2, wherein the bearing member 22 contacts the thrust load receiving member 222. 4. The hydrodynamic bearing according to claim 2, in which a lip provided on the thrust load receiving member 222 contacts one end of the sleeve 122.
JP8475382U 1982-06-09 1982-06-09 Dynamic pressure type fluid bearing Granted JPS58187613U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8475382U JPS58187613U (en) 1982-06-09 1982-06-09 Dynamic pressure type fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8475382U JPS58187613U (en) 1982-06-09 1982-06-09 Dynamic pressure type fluid bearing

Publications (2)

Publication Number Publication Date
JPS58187613U JPS58187613U (en) 1983-12-13
JPS631054Y2 true JPS631054Y2 (en) 1988-01-12

Family

ID=30093679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8475382U Granted JPS58187613U (en) 1982-06-09 1982-06-09 Dynamic pressure type fluid bearing

Country Status (1)

Country Link
JP (1) JPS58187613U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188942B2 (en) * 2008-11-27 2013-04-24 Ntn株式会社 Fluid dynamic bearing device

Also Published As

Publication number Publication date
JPS58187613U (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US4547081A (en) Dynamic pressure type fluid bearing
US3503658A (en) Hydrodynamic sliding bearing for radial and axial loads
JPS631054Y2 (en)
JPS6133287Y2 (en)
JPS6364647B2 (en)
JPH033805B2 (en)
JPH0143847B2 (en)
JPS6133286Y2 (en)
JPS6216767Y2 (en)
JP3601081B2 (en) Spindle motor
US6848829B2 (en) Hydrodynamic bearing arrangement for a spindle motor
US3520579A (en) High-load thrust bearing of small diameter
KR100243704B1 (en) A dynamic pressure bearing for spindle motor
JPH0240882B2 (en) HAIBURITSUDOKEIJIKUKESOCHI
JPS634822Y2 (en)
JPS6152414A (en) Dynamic-pressure type fluid bearing unit
CN208885514U (en) A kind of rotor pump gland
JPS631053Y2 (en)
JPS5824615A (en) Dynamic pressure fluid bearing device
JPS634820Y2 (en)
JPS6319621Y2 (en)
JPS5846254Y2 (en) Hydrodynamic spherical bearing
JPS6131591Y2 (en)
JPH0140377Y2 (en)
JPS6220713Y2 (en)