JPS631003A - Magnetic powder - Google Patents

Magnetic powder

Info

Publication number
JPS631003A
JPS631003A JP61144107A JP14410786A JPS631003A JP S631003 A JPS631003 A JP S631003A JP 61144107 A JP61144107 A JP 61144107A JP 14410786 A JP14410786 A JP 14410786A JP S631003 A JPS631003 A JP S631003A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
powder
concentration
bet method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144107A
Other languages
Japanese (ja)
Inventor
Toshinobu Sueyoshi
俊信 末吉
Seiichi Asada
朝田 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61144107A priority Critical patent/JPS631003A/en
Publication of JPS631003A publication Critical patent/JPS631003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve properties of dispersion, packing and orientation, by setting the specific surface of magnetic powder by a BET method to be a specified value or above, and by setting the concentration on the surface of a particle of the powder to be within specified limits. CONSTITUTION:It is preferable that the specific surface of magnetic powder by a BET method is 60 m<2>/g or above and that the Concentration of hydroxyl on the surface of a particle thereof is within the limits of 2-10 pieces/nm<2>. As to the magnetic powder whose specific surface by the BET method is smaller than 60 m<2>/g, it is impossible to diminish sufficiently the noise of a magnetic recording medium obtained by using this powder and also to make the surface smoothness of a magnetic layer excellent sufficiently. Moreover, if hydroxyl on the surface of a particle has too lower concentration than two pieces/nm<2>, it can not be combined firmly enough with the functional group of resin of a binder. If the concentration is too higher than 10 pieces/nm<2> to the contrary, the hydroxyl has an undesirable effect on the properties of dispersion, packing and orientation of the magnetic powder. By setting the specific surface by the BET method and the concentration on the surface of a particle to be the aforesaid values; accordingly, excellent properties of dispersion, packing, etc. can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気記録媒体用として好適な磁性粉末に関
し、さらに詳しくは、分散性、充填性および配向性に優
れた前記の磁性粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic powder suitable for use in magnetic recording media, and more particularly to the aforementioned magnetic powder that has excellent dispersibility, filling properties, and orientation.

〔従来の技術〕[Conventional technology]

一般に、磁性粉末を、結合剤成分、有機溶剤およびその
他の必要成分とともに混合分散して磁性塗料を開裂し、
これをポリエステルフィルムなどの基体上に塗布、乾燥
してつくられる磁気記録媒体にあっては、磁性粉末が磁
性層中に良好に分散され、充填され、さらに配向されて
いることが好ましく、磁性粉末の分散性、充填性および
配向性が良好なほど電磁気的特性が向上され、また耐久
性も向上される。
Generally, magnetic powder is mixed and dispersed with a binder component, an organic solvent, and other necessary components to cleave the magnetic paint.
For magnetic recording media made by coating and drying this on a substrate such as a polyester film, it is preferable that the magnetic powder is well dispersed, filled, and further oriented in the magnetic layer. The better the dispersibility, filling properties and orientation of the material, the better the electromagnetic properties and the durability.

このため、磁気記録媒体に使用される磁性粉末の分散性
、充填性・および配向性を改善する試みが種々なされて
おり、たとえば、磁性粉末の粉末粒子表面に親水性化合
物を被着するなどして比較的多量の水酸基を存在させ、
結合剤樹脂の官能基との間で強固な結合を起こさせて、
磁性粉末の分散性、充填性および配向性を高めることが
行われている。
For this reason, various attempts have been made to improve the dispersibility, filling properties, and orientation of magnetic powder used in magnetic recording media. to have a relatively large amount of hydroxyl groups,
By creating a strong bond with the functional group of the binder resin,
Efforts have been made to improve the dispersibility, filling properties, and orientation of magnetic powders.

(発明が解決しようとする問題点〕 ところが、l3ET法による比表面積が50m/g以下
の従来−般に使用される磁性粉末を用いる場合は、粉末
粒子表面の水酸基濃度を高くするほど、分散性、充填性
および配向性が向上され、水酸基b1度が高すぎて、か
えって磁性粉末の分1汝性、充填性および配向性に支障
をきたすということもないが、電磁気的特性をより良好
にするため、微illな磁性粉末を使用し、この?Ii
粉末粒子表面の水酸基濃度を、従来−般に使用されるB
ET法による比表面積が50m/g以下の磁性粉末と同
等にすると、微粉末粒子表面に存在する水酸基の単位体
積あたりの濃度が高(なりすぎて、かえって磁性粉末の
分散性、充填性および配向性が低下する。そしてこの傾
向は磁性粉末を微粒子化するほど顕著で、BET法によ
る比表面積が60m2/g以上の微粒子になると、磁性
粉末の分散性、充填性および配向性に支障が生じ、これ
を使用して得られる磁気記録媒体は、電磁気的特性がむ
しろ低下し、耐久性も低下するという難点がある。
(Problems to be Solved by the Invention) However, when using a conventionally commonly used magnetic powder with a specific surface area of 50 m/g or less by the 13ET method, the higher the hydroxyl group concentration on the powder particle surface, the more the dispersibility becomes , the filling properties and orientation are improved, and the hydroxyl group b1 degree is too high, which does not adversely affect the properties, filling properties and orientation of the magnetic powder, but it improves the electromagnetic properties. Therefore, using a fine amount of magnetic powder, this ?Ii
The concentration of hydroxyl groups on the surface of powder particles was determined by
If the specific surface area measured by the ET method is equal to that of a magnetic powder of 50 m/g or less, the concentration per unit volume of hydroxyl groups present on the surface of the fine powder particles will be too high (too high, and the dispersibility, filling properties, and orientation of the magnetic powder will be reduced). This tendency becomes more pronounced as the magnetic powder is made into finer particles, and when the particles have a specific surface area of 60 m2/g or more by the BET method, the dispersibility, filling property, and orientation of the magnetic powder are impaired. The magnetic recording medium obtained using this method has disadvantages in that the electromagnetic properties are rather deteriorated and the durability is also deteriorated.

〔問題点を解決するための手段〕[Means for solving problems]

この発明はかかる問題点を解消するため種々検討を行っ
た結果なされたもので、BET法による比表面積が60
m/g以上の磁性粉末の粒子表面の水酸基濃度を2〜1
0(固/ n mの範囲内にすることによって、微細な
磁性粉末の分散性、充填性および配向性を充分に向上さ
せ、これを使用して得られる磁気記録媒体の電磁気的特
性および耐久性が充分に向上されるようにしたものであ
る。
This invention was made as a result of various studies to solve these problems, and the specific surface area according to the BET method was 60.
The hydroxyl group concentration on the particle surface of magnetic powder of m/g or more is 2 to 1.
0 (solid/nm), the dispersibility, filling properties, and orientation of the fine magnetic powder can be sufficiently improved, and the electromagnetic properties and durability of the magnetic recording medium obtained using the fine magnetic powder can be sufficiently improved. This is to ensure that the performance is sufficiently improved.

この発明における磁性粉末は、BET法による比表面積
が60nr/g以上で、かつ粒子表面の水酸基の濃度が
2〜10個/ n mの範囲内にあるものであることが
好ましく、BIET法による比表面積が60m/gより
小さいものでは、これを使用して得られる磁気記録媒体
のノイズを充分に小さくしたり、また磁性層の表面平滑
性を充分に平滑にすることができず、電磁気的特性を充
分に向上することができない。また、粒子表面の水酸基
の濃度は、2個/ nlより低すぎると、結合剤ト4脂
の官能基と充分に強固に結合させることができず、反対
に10個/ n gより高すぎると、多すぎる水酸基が
磁性粉末の分散性、充填性および配向性に好ましくない
作用を及ぼし、いずれの場合も磁性粉末の分散性、充填
性および配向性を充分に向上することができない。従っ
て、BET法による比表面積が60m/g以上で、粒子
表面の水酸基の濃度が2〜10個/ n lの範囲内に
あるものであることが好ましく、粒子表面の水酸基の濃
度はさらに3〜91固/ nlの範囲内とし、3〜71
固/nr+?の範囲内にするのがより好ましい。
The magnetic powder in the present invention preferably has a specific surface area of 60 nr/g or more by the BET method, and a concentration of hydroxyl groups on the particle surface in the range of 2 to 10 pieces/nm. If the surface area is smaller than 60 m/g, it will not be possible to sufficiently reduce the noise of the magnetic recording medium obtained by using it, or the surface smoothness of the magnetic layer will be sufficiently smooth, resulting in poor electromagnetic properties. cannot be improved sufficiently. In addition, if the concentration of hydroxyl groups on the particle surface is lower than 2 hydroxyl groups/nl, it will not be possible to form a sufficiently strong bond with the functional groups of the binder fat, and on the other hand, if it is higher than 10 hydroxyl groups/nl, However, too many hydroxyl groups have an unfavorable effect on the dispersibility, filling properties, and orientation of the magnetic powder, and in either case, the dispersibility, filling properties, and orientation of the magnetic powder cannot be sufficiently improved. Therefore, it is preferable that the specific surface area measured by the BET method is 60 m/g or more, and the concentration of hydroxyl groups on the particle surface is within the range of 2 to 10 pieces/nl, and the concentration of hydroxyl groups on the particle surface is further within the range of 3 to 10 pieces/nl. Within the range of 91 hard/nl, 3 to 71
Solid/nr+? It is more preferable to keep it within the range of .

このようなりET法による比表面積が60イ/g以上の
磁性粉末の粒子表面の水酸基の濃度は、この種の微細な
磁性粉末の粒子表面に親水性化合物および疎水性化合物
などを被着することによって調整され、これら親水性化
合物および疎水性化合物の被着量を調整するなどして、
粒子表面の水酸基の濃度が2〜10(固/ n mの範
囲内に調整される。
As described above, the concentration of hydroxyl groups on the particle surface of magnetic powder having a specific surface area of 60 i/g or more by the ET method is determined by the fact that hydrophilic compounds and hydrophobic compounds are deposited on the particle surface of this type of fine magnetic powder. By adjusting the amount of these hydrophilic compounds and hydrophobic compounds,
The concentration of hydroxyl groups on the particle surface is adjusted within the range of 2 to 10 (solid/nm).

このように磁性粉末の粒子表面の水酸基の濃度をシエM
整するため、磁性粉末の粒子表面に被着する親水性化合
物としては、たとえば、酸化コバルト、酸化ニッケル、
酸化カルシウム、酸化アルミニウム、酸化クロム、酸化
亜鉛、酸化チタン、その他の無機酸化物などが挙げられ
る。これらの親水性化合物の粒子表面への被着は、硫酸
コバルト、硝酸ニッケル、塩化カルシウム、硫酸アルミ
ニウム、塩化クロム、塩化亜鉛、塩化チタンなどの水可
溶性化合物等を水に溶解し、この溶液中に磁性粉末を分
肢させた後、アルカリを添加したり、酸を添加するなど
の方法でこれらの親水性化合物を磁性粉末の粒子表面に
被着し、次いで、これを100〜1000℃の温度で加
熱するなどして行われ、酸化コバルト、酸化ニッケル、
酸化カルシウム、酸化アルミニウム、酸化クロム、酸化
亜鉛、酸化チタンなどの親水性化合物が磁性粉末の粒子
表面に被着される。この際、磁性粉末がオキシ水酸化鉄
あるいは酸化鉄を加熱還元、または還元後酸化して得ら
れる酸化鉄磁性粉末あるいは金属磁性粉末である場合は
、オキシ水酸化鉄あるいは酸化鉄の段階で、これらの親
水性化合物の水和物を被着し、その後これらを加熱還元
、または還元後酸化することによっても容易に親水性化
合物が磁性粉末の粒子表面に被着される。
In this way, the concentration of hydroxyl groups on the particle surface of magnetic powder is
Examples of hydrophilic compounds that adhere to the particle surface of the magnetic powder to improve the condition include cobalt oxide, nickel oxide,
Examples include calcium oxide, aluminum oxide, chromium oxide, zinc oxide, titanium oxide, and other inorganic oxides. These hydrophilic compounds can be attached to the particle surface by dissolving water-soluble compounds such as cobalt sulfate, nickel nitrate, calcium chloride, aluminum sulfate, chromium chloride, zinc chloride, and titanium chloride in water. After dividing the magnetic powder, these hydrophilic compounds are applied to the surface of the magnetic powder particles by adding alkali or acid, and then this is heated at a temperature of 100 to 1000°C. Cobalt oxide, nickel oxide,
Hydrophilic compounds such as calcium oxide, aluminum oxide, chromium oxide, zinc oxide, and titanium oxide are deposited on the surface of the magnetic powder particles. At this time, if the magnetic powder is iron oxide magnetic powder or metal magnetic powder obtained by heating reduction of iron oxyhydroxide or iron oxide or oxidizing it after reduction, these powders are processed at the stage of iron oxyhydroxide or iron oxide. The hydrophilic compound can also be easily deposited on the surface of the particles of the magnetic powder by depositing a hydrate of the hydrophilic compound and then reducing them by heating or oxidizing them after reduction.

また、磁性粉末の粒子表面に被着する疎水性化合物とし
ては、たとえば、疎水性シリカ、炭化水素、界面活性剤
などが挙げらる。これらの疎水性化合物の粒子表面への
被着は、たとえば、オルトケイ酸すl・リウム、メタゲ
イ酸ナトリウム、メタケイ酸カリウム、種々の組成の水
ガラスなどのケイ素化合物等をアルカリ水溶液に′/′
3解し、この溶液中に磁性粉末を分散させた後、炭酸ガ
スを吹き込んだり、酸を添加するなどの方法で中和して
、これらの疎水性化合物の水和物として磁性粉末の粒子
表面に被着し、次いで、これを100〜1000℃の温
度で加熱し疎水性化処理するなどして行われ、疎水性酸
化ケイ素が磁性粉末の粒子表面に被着される。この際、
磁性粉末がオキシ水酸化鉄あるいは酸化鉄を加熱還元、
または還元後酸化して得られる酸化鉄磁性粉末あるいは
金属磁性粉末である場合は、オキシ水酸化鉄あるいは酸
化鉄の段階で、これらの疎水性化合物の水和物を被着し
、次いで、これを100〜1000℃の温度で加熱し疎
水性化処理した後、これらを加熱還元、または還元1&
酸化することによっても容易に疎水性化合物が磁性粉末
の粒子表面に被着される。また、加熱還元または還元後
酸化して得られた磁性粉末の表面に疎水性炭化水素ある
いは界面活性剤等による表面被覆処理を行って疎水性化
することも可能であるが、無機物の方がより好ましい。
Examples of the hydrophobic compound that adheres to the surface of the magnetic powder particles include hydrophobic silica, hydrocarbons, and surfactants. The adhesion of these hydrophobic compounds to the particle surface can be achieved, for example, by adding silicon compounds such as sulfur and lithium orthosilicate, sodium metasilicate, potassium metasilicate, and water glasses of various compositions to an alkaline aqueous solution.
After dispersing the magnetic powder in this solution, it is neutralized by blowing carbon dioxide gas or adding acid to form a hydrate of these hydrophobic compounds on the particle surface of the magnetic powder. This is then heated at a temperature of 100 to 1000° C. to make it hydrophobic, so that hydrophobic silicon oxide is deposited on the surface of the magnetic powder particles. On this occasion,
Magnetic powder heat-reduces iron oxyhydroxide or iron oxide,
Alternatively, in the case of iron oxide magnetic powder or metal magnetic powder obtained by oxidation after reduction, hydrates of these hydrophobic compounds are deposited at the iron oxyhydroxide or iron oxide stage, and then this is After heating at a temperature of 100 to 1000°C to make them hydrophobic, they are subjected to thermal reduction or reduction 1&
A hydrophobic compound is easily adhered to the particle surface of the magnetic powder by oxidation. It is also possible to make the surface of the magnetic powder obtained by thermal reduction or oxidation after reduction hydrophobic by coating it with a hydrophobic hydrocarbon or a surfactant, but inorganic materials are more effective. preferable.

このような磁性粉末の粒子表面への親水性化合物および
疎水性化合物の被着は、これらを被着する磁性粉末粒子
表面の水酸基濃度に応じて、いずれか−方のみを被着し
てもよく、また両者を同時に被着してもよい。磁性粉末
粒子表面の水酸基濃度は、これらの親水性化合物および
疎水性化合物の被着量などによって調整され、親水性化
合物が被着されると磁性粉末粒子表面の水酸基′bツ度
が高(なり、疎水性化合物が被着されると磁性粉末粒子
表面の水酸基濃度が低くなる。
The hydrophilic compound and the hydrophobic compound may be attached to the surface of the magnetic powder particles depending on the hydroxyl group concentration on the surface of the magnetic powder particle to which they are attached. , or both may be applied at the same time. The concentration of hydroxyl groups on the surface of the magnetic powder particles is adjusted by the amount of these hydrophilic compounds and hydrophobic compounds deposited, and when the hydrophilic compounds are deposited, the concentration of hydroxyl groups on the surface of the magnetic powder particles increases. When a hydrophobic compound is deposited, the concentration of hydroxyl groups on the surface of the magnetic powder particles decreases.

このようにして、磁性粉末の粉末粒子表面に親水性化合
物、疎水性化合物などを被着し、粒子表面の水酸基の濃
度を2〜10個/ nlの範囲内としたBET法による
比表面積が6 On? / g以上の磁性粉末は、特に
限定されるものではないが、強いて挙げるとすれば、た
とえば、Fe、Feを主体として各種金属を添加した金
属磁性粉末、C。
In this way, a hydrophilic compound, a hydrophobic compound, etc. are coated on the surface of the powder particles of magnetic powder, and the specific surface area is 6 by the BET method with the concentration of hydroxyl groups on the particle surface being within the range of 2 to 10 pieces/nl. On? The magnetic powder having a weight of more than / g is not particularly limited, but examples include Fe, metal magnetic powder containing mainly Fe and various metals added, and C.

、Niなどの金属磁性粉末、あるいはこれらの合金磁性
粉末、r−Fe203粉末、Fe3O4粉末、r−Fe
203とFe3O4の中間酸化鉄粉末、Co含有rFe
2O3粉末、CO含有Fe3O4粉末、バリウムフェラ
イト磁性粉末、および各種金属を添加したバリウムフェ
ライト磁性粉末などが好適なものとして挙げられる。
, metal magnetic powder such as Ni, or alloy magnetic powder thereof, r-Fe203 powder, Fe3O4 powder, r-Fe
Intermediate iron oxide powder of 203 and Fe3O4, Co-containing rFe
Suitable examples include 2O3 powder, CO-containing Fe3O4 powder, barium ferrite magnetic powder, and barium ferrite magnetic powder added with various metals.

以上のように、BET法による比表面積が60m/g以
上で、かつ粒子表面の水酸基の濃度が2〜10個/ n
 mの範囲内にある磁性粉末は、分散性、充填性および
配向性に優れ、その結果、この種の磁性粉末を使用して
磁気記録媒体を型造すると、電磁気的特性および耐久性
が充分に向上された磁気記録媒体が得られる。
As described above, the specific surface area measured by the BET method is 60 m/g or more, and the concentration of hydroxyl groups on the particle surface is 2 to 10 pieces/n.
Magnetic powder within the range of An improved magnetic recording medium is obtained.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 平均長径0.25μm、軸比(長径/短径)15/1の
ゲータイト粉末20gをI N  N a OH水溶液
21中に分散し、これに0.5モル/lの硫酸アルミニ
ウム25mj!を加えて充分に分散しながら炭酸ガスを
吹き込み、ゲータイト粉末の表面にアルミナ水和物を被
着した。次いで、これをよく洗浄してから乾燥し、空気
中にて300℃で加熱焼成した。次に、この焼成後のア
ルミナ被着へマタイI・粉末20gを11のlN−Na
OH水溶液に分散し、1モル/lのオルトケイ酸ソーダ
10m1を加えて攪拌した。充分に攪拌した後、この1
懸濁液に炭酸ガスを吹き込み、p H10以下に中和し
て、ヘマタイト粉末の粒子表面にアルミナ水和物および
ケイ酸水和物の2層被膜を形成した。次いで、700℃
の温度で2時間加熱してケイ酸水和物の疎水性化処理を
行った。
Example 1 20 g of goethite powder with an average major axis of 0.25 μm and an axial ratio (major axis/minor axis) of 15/1 was dispersed in an IN NaOH aqueous solution 21, and 25 mj of 0.5 mol/l aluminum sulfate was added to this. was added and carbon dioxide gas was blown into the powder while sufficiently dispersing it, thereby depositing alumina hydrate on the surface of the goethite powder. Next, this was thoroughly washed, dried, and fired in air at 300°C. Next, 20 g of Matai I powder was added to the alumina coating after firing in 11 lN-Na.
It was dispersed in an OH aqueous solution, 10 ml of 1 mol/l sodium orthosilicate was added, and the mixture was stirred. After stirring thoroughly, add this 1
Carbon dioxide gas was blown into the suspension to neutralize it to a pH of 10 or less to form a two-layer coating of alumina hydrate and silicic acid hydrate on the surface of the hematite powder particles. Then 700℃
The silicic acid hydrate was hydrophobized by heating at a temperature of 2 hours.

次いで、粒子表面にアルミナ水和物と疎水性化されたシ
リカ被膜とを形成したヘマクイ[粉末を、水素気流中、
500℃で4時間加熱還元して、粒子表面にアルミナ被
膜および疎水性化されたシリカ被膜を有する金属鉄磁性
粉末を得た。この金属鉄磁性粉末は、保磁力が1600
エルステント′、飽和磁化量が120 emu/ g、
 B ET法による比表面積は65 g / gであっ
た。また、アルミナの被着量は、A l / F eの
原子換W重量比で5重量%、疎水性化されたシリカの被
着量は、Si/Feの原子換算重量比で0.8重量%で
あった。さらに粒子表面の水酸基濃度は6個/nlT?
であった。このようにして得られた金属鉄磁性粉末を使
用し、 金属鉄磁性粉末        100重量部VAGH
(U、C,C社製、塩化ビ  10〃ニル−酢酸ビニル
−ビニルア ルコール共重合体) バンデソクスT−5201(大  6 〃日本インキ化
学工業社製、ポ リウレタン) ミリスチン酸           5 〃JIS−5
00(旭電化社製、力  1 〃−ボンブラック) メチルイソブチルケトン     85/ll−ルエン
            85  “の組成からなる組
成物を3j!′giのスチール裂ボールミル中に入れ、
これを72時間回転させ、よく分散させて磁性ペースト
を調製した。その後、この磁性ペーストに、トルエン4
0重量部とコロネートしく日本ポリウレタン工業社盟、
三官能性低分子量イソシアネート化合物)2重量部をさ
らに加え、磁性塗料を調製した。この磁性塗料を厚さ1
2μmのポリエステルフィルム上に、乾燥後の塗布厚が
4μmとなるように塗布、乾燥し、鏡面加工処理を行っ
た後、l/2インチ幅に裁断して磁気テープをつくった
Next, the Hemaqui powder, which has alumina hydrate and a hydrophobized silica film formed on the particle surface, was heated in a hydrogen stream.
The particles were thermally reduced at 500° C. for 4 hours to obtain metal iron magnetic powder having an alumina coating and a hydrophobicized silica coating on the particle surface. This metallic iron magnetic powder has a coercive force of 1600
Elstent', saturation magnetization is 120 emu/g,
The specific surface area by BET method was 65 g/g. In addition, the amount of alumina deposited is 5% by weight in terms of the atomic W weight ratio of Al/Fe, and the deposited amount of hydrophobized silica is 0.8% by weight in terms of the Si/Fe atomic weight ratio. %Met. Furthermore, the concentration of hydroxyl groups on the particle surface is 6/nlT?
Met. Using the metal iron magnetic powder thus obtained, 100 parts by weight of metal iron magnetic powder VAGH
(Manufactured by U, C, C, vinyl chloride 10-vinyl acetate-vinyl alcohol copolymer) Bandesox T-5201 (Dai 6, manufactured by Nippon Ink Chemical Co., Ltd., polyurethane) Myristic acid 5 JIS-5
00 (manufactured by Asahi Denka Co., Ltd., power 1〃〃-Bon black) Methyl isobutyl ketone 85/1-luene 85'' was placed in a 3j!'gi steel cracked ball mill,
This was rotated for 72 hours to ensure good dispersion to prepare a magnetic paste. Then, add 4 toluene to this magnetic paste.
0 parts by weight and Coronate Japan Polyurethane Industry Association,
A magnetic paint was prepared by further adding 2 parts by weight of a trifunctional low molecular weight isocyanate compound. Apply this magnetic paint to a thickness of 1
It was coated on a 2 μm polyester film to a dry coating thickness of 4 μm, dried, mirror-finished, and then cut into 1/2 inch width to produce a magnetic tape.

実施例2 平均長径0.05μm、板状比(長径/短径)3/l、
保磁カフ50エルステツド、飽和磁化量55emu/g
、BET法による比表面積61m/gのバリウムフェラ
イト粉末100gをI N −N a OH水溶液2β
中に懸濁させてよく分散させた。次いで、これに1モル
/!!のオルトケイ酸ソーダ3Q Qmj!を加えて、
よく攪拌しながら炭酸ガスを通気し、溶液のp Hを9
以下にした。これを水洗、乾燥後、700°Cで2時間
空気中で加熱処理し、表面のケイ酸水和物を疎水性化処
理した。このようにして得られたバリウムフェライトは
、保磁力が750エルステンド、飽和磁化量が52 e
mu/g、BET法による比表面積が60m/gで、疎
水性化されたシリカの被着量は、Si/バリウムフェラ
イトのff1(l比で3.2重量%であった。さらに粒
子表面の水酸基濃度は611N/nn?であった。次い
で、このようにして得られたバリウムフェライト粉末を
使用し、実施例1と同様にして磁気テープをつくった。
Example 2 Average major axis 0.05 μm, plate ratio (major axis/minor axis) 3/l,
Retention cuff 50 oersted, saturation magnetization 55 emu/g
, 100 g of barium ferrite powder with a specific surface area of 61 m/g by the BET method was added to an I N -N a OH aqueous solution 2β
It was suspended and dispersed well. Next, add 1 mol/! ! Sodium orthosilicate 3Q Qmj! In addition,
Aerate carbon dioxide gas while stirring well to bring the pH of the solution to 9.
I made it below. After washing with water and drying, this was heat-treated in air at 700°C for 2 hours to make the silicic acid hydrate on the surface hydrophobic. The barium ferrite thus obtained has a coercive force of 750 e and a saturation magnetization of 52 e.
mu/g, and the specific surface area by the BET method was 60 m/g, and the amount of hydrophobized silica deposited was 3.2% by weight in ff1 (l ratio) of Si/barium ferrite. The hydroxyl group concentration was 611 N/nn? Then, a magnetic tape was produced in the same manner as in Example 1 using the barium ferrite powder thus obtained.

比較例1 実施例1において、表面に被覆されたケイ酸水和物の疎
水性化処理を省いた以外は、実施例1と同様にして、保
磁力が1580エルステツド、飽和磁化量が122 e
mu/ g、 B ET法による比表面積が66 m 
/ gで、アルミナの被着量がAI/Feの原子換算重
量比で5重量%、ケイ酸水和物の被着量が、S i /
 F eの原子換算重量比で0.8重量%、粒子表面の
水酸基濃度が12個/ n mの金属鉄磁性粉末を占、
磁気テープをつくった。
Comparative Example 1 A coercive force of 1580 oersted and a saturation magnetization of 122 e were prepared in the same manner as in Example 1, except that the hydrophobic treatment of the silicic acid hydrate coated on the surface was omitted.
mu/g, specific surface area by BET method is 66 m
/ g, the amount of alumina deposited is 5% by weight in atomic weight ratio of AI/Fe, and the amount of deposited silicic acid hydrate is Si / g.
A metal iron magnetic powder with an atomic weight ratio of Fe of 0.8% by weight and a hydroxyl group concentration on the particle surface of 12/nm,
I made magnetic tape.

比較例2 実施例2において、ケイ酸水和物のバリウムフェライト
粉末粒子表面への波管処理およびケイ酸水和物の疎水性
化処理を省き、磁性塗料の組成において、実施例2で使
用した磁性粉末に代えて、保磁力が750エルステツド
、飽和磁化量が55emu/ g 、 B ET法によ
る比表面積が61m/gで、粒子表面の水酸基濃度が1
1(内/ n mのバリウムフェライト粉末を使用した
以外は実施例2と同様にして磁気テープをつくった。
Comparative Example 2 In Example 2, the wave tube treatment on the surface of barium ferrite powder particles of hydrated silicic acid and the hydrophobization treatment of hydrated silicic acid were omitted, and the composition of the magnetic paint used in Example 2 was omitted. In place of the magnetic powder, a material with a coercive force of 750 oersted, a saturation magnetization of 55 emu/g, a specific surface area of 61 m/g by the BET method, and a hydroxyl group concentration on the particle surface of 1
A magnetic tape was produced in the same manner as in Example 2 except that barium ferrite powder of 1/nm was used.

比較例3 実施例1において、平均長径0.25μm、軸比(長径
/短径)15/1のゲータイト粉末に代えて、平均辰径
0.55μm、軸比15/1のデークイ1−粉末を用い
た以外は、実施例1と同様にして、保磁力が1020エ
ルステツド、飽和磁化量が136 emu/ g、 B
 ET法による比表面積が35rrr/gで、アルミナ
の被着量がA I / F eの原子換算重量比で5重
量%、疎水性化されたシリカの被着量がS i / F
 eの原子換算重量比で0.8重量%、粒子表面の水酸
基濃度が7個/ n rr?の金属鉄磁性粉末を得、磁
気テープをつくった。
Comparative Example 3 In Example 1, instead of the goethite powder with an average major axis of 0.25 μm and an axial ratio (major axis/minor axis) of 15/1, Dekui 1 powder with an average major diameter of 0.55 μm and an axial ratio of 15/1 was used. The same procedure was used as in Example 1 except that the coercive force was 1020 oersted, the saturation magnetization was 136 emu/g, and B
The specific surface area measured by the ET method is 35 rrr/g, the amount of alumina deposited is 5% by weight in atomic weight ratio of A I / Fe, and the deposited amount of hydrophobized silica is S i / F
The atomic weight ratio of e is 0.8% by weight, and the concentration of hydroxyl groups on the particle surface is 7/n rr? We obtained metallic iron magnetic powder and made magnetic tape.

比較例4 実施例2において、平均長径0.05μm、板状比(長
径/短径)3/1、保磁カフ50エルステツド、飽和磁
化量55 emu/ g 、 B ET法による比表面
積61r+?/gのバリウムフェライト粉末に代えて、
平均長径0.2μm、板状比3/1、保磁力370エル
ステツド、飽和磁化量57 emu/ g、BET法に
よる比表面積が29m/gのバリウムフェライトを用い
た以外は、実施例2と同様にして、保磁力が395エル
ステツド、飽和磁化量が56 emu/g、BET法に
よる比表面積が28m/gで、疎水性化されたシリカの
被着量がSi/バリウムフェライトの重量比で0.8重
量%、粒子表面の水酸基濃度が6個/ n mのバリウ
ムフェライト粉末を得、磁気テープをつくった。
Comparative Example 4 In Example 2, the average major axis was 0.05 μm, the plate ratio (major axis/minor axis) was 3/1, the coercive cuff was 50 oersted, the saturation magnetization amount was 55 emu/g, and the specific surface area by BET method was 61 r+? /g of barium ferrite powder instead of
The same procedure as in Example 2 was used except that barium ferrite having an average major axis of 0.2 μm, a plate ratio of 3/1, a coercive force of 370 oersted, a saturation magnetization of 57 emu/g, and a specific surface area of 29 m/g by the BET method was used. The coercive force is 395 oersted, the saturation magnetization is 56 emu/g, the specific surface area by BET method is 28 m/g, and the amount of hydrophobic silica deposited is 0.8 in the weight ratio of Si/barium ferrite. Barium ferrite powder with a weight percent and a hydroxyl group concentration on the particle surface of 6/nm was obtained, and a magnetic tape was made.

各実施例および比較例で得られた磁気テープについて、
角型比、残留磁束密度、耐久性および磁性層の表面平滑
性を調べた。角型比の測定は、実施例1.比較例1およ
び3については水平方向の角型比を測定し、実施例2.
比較例2および4については垂直方向の角型比を測定し
た。また耐久性は市販VTRを使用し、−5°Cの恒温
室中で静止画像再生を行った時の出力が3dB低下する
までの時間を測定することにより判定した。さらに表面
平滑性は触針式粗さ計を使用し、触針速度0.06cm
/秒、カットオフ0.08mmの条件下で磁性層の表面
粗さくC,L、A、)を測定し、実施例1を基準として
下記の式に従って算出される相対値で表面平滑性の良否
を判断した。
Regarding the magnetic tapes obtained in each example and comparative example,
The squareness ratio, residual magnetic flux density, durability, and surface smoothness of the magnetic layer were investigated. The squareness ratio was measured in Example 1. For Comparative Examples 1 and 3, the squareness ratio in the horizontal direction was measured, and for Comparative Examples 1 and 3, the squareness ratio in the horizontal direction was measured.
For Comparative Examples 2 and 4, the squareness ratio in the vertical direction was measured. Furthermore, durability was determined by measuring the time until the output decreased by 3 dB when still images were reproduced using a commercially available VTR in a constant temperature room at -5°C. Furthermore, the surface smoothness was measured using a stylus-type roughness meter at a stylus speed of 0.06 cm.
The surface roughness (C, L, A,) of the magnetic layer was measured under the conditions of 0.08 mm cutoff and 0.08 mm cutoff, and the relative value calculated according to the formula below based on Example 1 was used to determine the quality of the surface smoothness. judged.

下記第1表はその結果である。Table 1 below shows the results.

〔発明の効果〕〔Effect of the invention〕

上記第1表から明らかなように、実施例1および2で得
られた磁性粉末を使用して得られた磁気テープ(実施例
1および2)は、いずれも比較例1ないし4で得られた
磁性粉末を使用して得られた磁気テープ(比較例工ない
し4)に比して、角型比および残留磁束密度が高く、耐
久性がよくて、さらに表面平滑性もよく、このことから
この発明で得られる磁性粉末は、分散性、充壜性および
配向性に優れ、このように磁性粉末の分散性、充虜性お
よび配向性が向上された結果、この磁性粉末を使用すれ
ば、電磁気的特性および耐久性が一段と向上された磁気
記録媒体が得られることがわかる。
As is clear from Table 1 above, the magnetic tapes obtained using the magnetic powders obtained in Examples 1 and 2 (Examples 1 and 2) were all similar to those obtained in Comparative Examples 1 to 4. Compared to the magnetic tapes obtained using magnetic powder (Comparative Examples No. 4 to 4), the squareness ratio and residual magnetic flux density are higher, the durability is better, and the surface smoothness is also better. The magnetic powder obtained by the invention has excellent dispersibility, filling property, and orientation. As a result of the improved dispersibility, filling property, and orientation of the magnetic powder, if this magnetic powder is used, electromagnetic It can be seen that a magnetic recording medium with further improved physical characteristics and durability can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、BET法による比表面積が60m^2/g以上で、
かつ粉末粒子表面の水酸基の濃度が2〜10個/nm^
2の範囲内にあることを特徴とする磁性粉末
1. The specific surface area by BET method is 60 m^2/g or more,
and the concentration of hydroxyl groups on the powder particle surface is 2 to 10 pieces/nm^
Magnetic powder characterized by being within the range of 2.
JP61144107A 1986-06-20 1986-06-20 Magnetic powder Pending JPS631003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144107A JPS631003A (en) 1986-06-20 1986-06-20 Magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144107A JPS631003A (en) 1986-06-20 1986-06-20 Magnetic powder

Publications (1)

Publication Number Publication Date
JPS631003A true JPS631003A (en) 1988-01-06

Family

ID=15354347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144107A Pending JPS631003A (en) 1986-06-20 1986-06-20 Magnetic powder

Country Status (1)

Country Link
JP (1) JPS631003A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338526A2 (en) * 1988-04-22 1989-10-25 Konica Corporation magnetic recording medium
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water
JP2006097123A (en) * 2004-02-24 2006-04-13 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
JP2010156054A (en) * 2004-02-24 2010-07-15 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
US7892316B2 (en) 2004-02-18 2011-02-22 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
JP2012080116A (en) * 2011-11-30 2012-04-19 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, production method for the same and magnetic recording medium
JP2014120699A (en) * 2012-12-19 2014-06-30 Alps Green Devices Co Ltd Fe-BASED SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC POWDER USING Fe-BASED SOFT MAGNETIC POWDER AND POWDER MAGNETIC CORE USING COMPOSITE MAGNETIC POWDER

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338526A2 (en) * 1988-04-22 1989-10-25 Konica Corporation magnetic recording medium
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water
US7892316B2 (en) 2004-02-18 2011-02-22 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US8323374B2 (en) 2004-02-18 2012-12-04 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US8398741B2 (en) 2004-02-18 2013-03-19 Hitachi Metals, Ltd. Fine composite metal particles and their production method, micro-bodies, and magnetic beads
JP2006097123A (en) * 2004-02-24 2006-04-13 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
JP2010156054A (en) * 2004-02-24 2010-07-15 Hitachi Metals Ltd Metallic microparticle, manufacturing method therefor, and magnetic bead
JP2012080116A (en) * 2011-11-30 2012-04-19 Dowa Holdings Co Ltd Magnetic powder for coating type magnetic recording medium, production method for the same and magnetic recording medium
JP2014120699A (en) * 2012-12-19 2014-06-30 Alps Green Devices Co Ltd Fe-BASED SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC POWDER USING Fe-BASED SOFT MAGNETIC POWDER AND POWDER MAGNETIC CORE USING COMPOSITE MAGNETIC POWDER

Similar Documents

Publication Publication Date Title
JPH0624062B2 (en) Magnetic recording medium
JPS631003A (en) Magnetic powder
EP0148634A2 (en) Ferromagnetic alloy particles for magnetic recording media and process for their manufacture
JPS6313122A (en) Magnetic powder
JP3398404B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2906075B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JPS6114642B2 (en)
JPS63818A (en) Magnetic recording medium
CA1246321A (en) Magnetic particles and method of production thereof
JPS60217529A (en) Magnetic powder for magnetic recording medium
JP2002329310A (en) Surface reforming magnetic particle powder for magnetic recording medium, surface reforming filler material for magnetic recording medium and surface reforming nonmagnetic particle powder for nonmagnetic ground surface layer for magnetic recording medium as well as magnetic recording medium
JPS6163921A (en) Magnetic powder and its production
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP3398430B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2001110035A (en) Acicular non-magnetic particle powder for non-magnetic base layer of magnetic recording medium, and magnetic recording medium
JPS63161522A (en) Magnetic powder and magnetic recording medium formed by using said powder
JP2001160212A (en) Non-magnetic particle powder for non-magnetic base layer of magnetic recording medium and magnetic recording medium
JPS6118323B2 (en)
JP2678480B2 (en) Metal magnetic powder
JP2588875B2 (en) Spindle-shaped magnetic iron powder
JPH06163232A (en) Magnetic powder for high-density magnetic recording medium
JPS6289226A (en) Magnetic powder and its production
JPH0745416A (en) Manufacture of magnetic particle and powder for magnetic recording