JPS63100062A - Manufacture of carbon fiber reinforced carbon composite material - Google Patents

Manufacture of carbon fiber reinforced carbon composite material

Info

Publication number
JPS63100062A
JPS63100062A JP61243137A JP24313786A JPS63100062A JP S63100062 A JPS63100062 A JP S63100062A JP 61243137 A JP61243137 A JP 61243137A JP 24313786 A JP24313786 A JP 24313786A JP S63100062 A JPS63100062 A JP S63100062A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
spun yarn
carbonized
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61243137A
Other languages
Japanese (ja)
Other versions
JPH0255393B2 (en
Inventor
小須田 弘幸
新島 健二
前沢 郁文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP61243137A priority Critical patent/JPS63100062A/en
Publication of JPS63100062A publication Critical patent/JPS63100062A/en
Publication of JPH0255393B2 publication Critical patent/JPH0255393B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維強化炭素複合材料の製造法に関する
ものである。更に詳しくは宇宙航空用構造材料、耐熱構
造部材又はブレーキ摩擦材料として利用される炭素II
N強化炭素複合材料の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing carbon fiber-reinforced carbon composite materials. More specifically, carbon II used as aerospace structural materials, heat-resistant structural members, or brake friction materials.
The present invention relates to a method for producing an N-reinforced carbon composite material.

(従来技術) 従来、炭素繊維強化炭素複合材料は、その耐熱性、高強
度、高弾性、耐薬品性及び軽量性の故に、宇宙航空用構
造材料、耐熱構造部材等に広く利用されている。この炭
素繊維強化炭素複合材料の製造には、通常、炭素繊維織
物の積層体が用いられるが、製造工程において、層間の
剥離が生じたり、削れによる変形が生じる4rどの理由
からその製造が困難であった。
(Prior Art) Conventionally, carbon fiber-reinforced carbon composite materials have been widely used as structural materials for aerospace, heat-resistant structural members, etc. because of their heat resistance, high strength, high elasticity, chemical resistance, and light weight. A laminate of carbon fiber fabrics is usually used to manufacture this carbon fiber-reinforced carbon composite material, but it is difficult to manufacture for several reasons, such as peeling between layers and deformation due to abrasion during the manufacturing process. there were.

(発明の目的) 本発明者等は、さきに、炭素繊維紡績糸織物を炭素1I
維強化炭素複合材料の製造に用いることを提示したく特
開昭60−8536号公報)。炭素mow紡績糸織物は
、炭素11111強化炭素複合材料の製造に適した基材
であるが、イの侵の検討において、このものを用いた場
合、織物の素材及び組織、並びに、製造条件によっては
、炭素繊維強化炭素複合材料の製造工程で剥離、変形等
が生じ、また得られICC炭素繊維強化炭素会合材料物
性が不均質になるなどの問題が生じることが判明した。
(Object of the Invention) The present inventors first developed a carbon fiber spun yarn fabric with carbon 1I.
(Japanese Unexamined Patent Application Publication No. 1985-8536) is proposed to be used in the production of fiber-reinforced carbon composite materials. Carbon mow spun yarn fabric is a suitable base material for manufacturing carbon-11111-reinforced carbon composite materials. It has been found that problems such as peeling, deformation, etc. occur during the manufacturing process of carbon fiber-reinforced carbon composite materials, and that the physical properties of the obtained ICC carbon fiber-reinforced carbon association materials become non-uniform.

本発明の目的は、かかる問題を解決して、均質で高度の
機械的強度を有する炭素繊維強化炭素複合材料を効率良
く製造することにある。
An object of the present invention is to solve this problem and efficiently produce a carbon fiber-reinforced carbon composite material that is homogeneous and has a high degree of mechanical strength.

〔発明の構成〕[Structure of the invention]

すなわち、本発明は下記のとおりのものである。 That is, the present invention is as follows.

1〜3デニールのアクリル系耐炎繊維の短繊維からなり
、撚り数が 100〜450回/IIlの5〜30番単
糸、又は、下撚り数が120〜450回/mで上撚り数
が85〜300回/請の2〜30番双糸にて構成された
紡績糸織物を、不活性雰囲気中で炭素化するか、又は、
炭素化に引続いて、黒鉛化シテ、高密a O,1〜0.
4(1/CI”の炭素NBN紡績糸織物とし、次いで該
炭素繊維紡績糸織物に熱硬化性樹脂を含浸させてプリプ
レグとなし、更に該プリプレグを積層した後、8I層物
厚さが当初の1/2〜1/4になるように圧縮をして成
形を行い、そして成形物を炭素化するか、又は、炭素化
に引続いて緻密化ずφか、又は、炭素化若しくは炭素化
・緻密化に引続いて黒鉛化することを特徴とする炭素繊
維強化炭素複合材料の製造法。
Consisting of short fibers of acrylic flame-resistant fibers of 1 to 3 deniers, number 5 to 30 single yarn with number of twists of 100 to 450 times/II, or number of first twists of 120 to 450 times/m and number of final twists of 85 A spun yarn fabric composed of twin yarns of numbers 2 to 30 of ~300 cycles per cycle is carbonized in an inert atmosphere, or
Following carbonization, graphitization, high density aO, 1-0.
4 (1/CI) carbon NBN spun yarn fabric, then the carbon fiber spun yarn fabric was impregnated with a thermosetting resin to make a prepreg, and the prepregs were further laminated, and the thickness of the 8I layer was reduced to the original thickness. The molded product is compressed to 1/2 to 1/4, and then the molded product is carbonized, or the carbonization is followed by φ without densification, or carbonization or carbonization. A method for producing a carbon fiber-reinforced carbon composite material characterized by densification followed by graphitization.

本発明において用いられる繊維は、ポリアクリロニトリ
ル繊維を既知の方法で耐炎化して得ることができる1〜
3デニールのアクリル系耐炎繊維である。このものの短
繊維は、通常、耐炎繊維をバイアスカットし、平均繊維
長60〜150II11としたものである。該短II雑
を紡績して、撚り数が100〜450回/lの5〜30
番単糸、又は下撚り数が120〜450回/Iで上撚り
数が85〜300回/陶の2〜30番双糸を作り、該双
糸にて紡績糸織物を得る。この範囲外の紡績糸織物を用
いて、炭素m雑像化炭素複合材料を製造した場合には、
その製造工程中に剥離等が生じ、良好な物性を有する炭
素繊維強化炭素複合材料を安定的に製造することが11
1mである。
The fibers used in the present invention can be obtained by making polyacrylonitrile fibers flame-resistant by a known method.
It is a 3 denier acrylic flame resistant fiber. These short fibers are usually made by bias-cutting flame-resistant fibers to have an average fiber length of 60 to 150II11. The short II miscellaneous material is spun to give 5 to 30 twists with a twist number of 100 to 450 times/l.
A number 2 to 30 single yarn or a number 2 to 30 double yarn with a number of first twists of 120 to 450 times/I and a number of final twists of 85 to 300 times/ceramic is made, and a spun yarn fabric is obtained from the double yarns. When a carbon m-imaged carbon composite material is manufactured using a spun yarn fabric outside this range,
Peeling etc. occur during the manufacturing process, making it difficult to stably manufacture carbon fiber-reinforced carbon composite materials with good physical properties.
It is 1m.

耐炎繊維紡績糸織物の織り組織は、通常の平綴、朱子織
又は杉綾織り等である。
The weaving structure of the flame-resistant fiber spun yarn fabric is a usual flat stitch, satin weave, herring twill weave, or the like.

このようにして得た耐炎繊維紡績糸織物を、窒素等の不
活性雰囲気中で通常700〜1500℃の温度で炭素化
するか、又は炭素化に引続いて通常2000〜3000
℃で黒鉛化して、炭素1雑紡績糸織物を得る。このもの
の嵩密度は0.1〜0.4g/ CI”であることが必
要である。嵩密度が0.1g/CIS未満であると、成
形時の圧縮比を大きくしなければ、成形物の所要炭素繊
維含有率が得られず、また、成形時の圧力が高くなりす
ぎて成形物中の残留応力が大きくなり、炭化時に剥離等
が生じる。嵩密度が0.4g /cn+”超であると、
熱硬化性樹脂の含浸が困難になり、プリプレグの表面に
樹脂リッチの層が形成され、炭素化時に剥離等が生じる
The thus obtained flame-resistant fiber spun yarn fabric is carbonized in an inert atmosphere such as nitrogen at a temperature of usually 700 to 1,500°C, or following carbonization, it is usually heated to a temperature of 2,000 to 3,000°C.
It is graphitized at ℃ to obtain a carbon 1 miscellaneous spun yarn fabric. The bulk density of this material must be 0.1 to 0.4 g/CI". If the bulk density is less than 0.1 g/CIS, the molded product will deteriorate unless the compression ratio during molding is increased. The required carbon fiber content cannot be obtained, and the pressure during molding becomes too high, resulting in large residual stress in the molded product, which causes peeling during carbonization.The bulk density is more than 0.4 g/cn+" and,
Impregnation with thermosetting resin becomes difficult, a resin-rich layer is formed on the surface of the prepreg, and peeling occurs during carbonization.

グを作成する。プリプレグの樹脂含有率は30〜55i
ifi%が好ましい。プリプレグの樹脂含有率が30重
愚見未満では、バインダーである樹脂の不足により、成
形物の炭素化時、肋間に剥離が生じやすい。また55重
迦%を超えると、必要とする繊維体積含有率を得るため
に、成形時の成形圧力を^くしなければならず、そうす
ると炭化時に割れが生じやりくなる。
create a group. The resin content of prepreg is 30-55i
ifi% is preferred. If the resin content of the prepreg is less than 30%, peeling between ribs is likely to occur during carbonization of the molded product due to insufficient resin as a binder. Moreover, if it exceeds 55% by weight, the molding pressure during molding must be reduced in order to obtain the required fiber volume content, which tends to cause cracks during carbonization.

更に、このプリプレグを所定の枚数積層した後、ホット
プレス等により、積層物厚さが当初の1/2〜1/4に
なるように圧縮をして、加熱し成形を行う。圧縮比が1
/2未満では成形物の炭素繊維含有率が低く、またプリ
プレグ層間の接触が不十分で、炭素化時に剥離が生じる
Furthermore, after laminating a predetermined number of prepregs, the prepregs are compressed using a hot press or the like so that the thickness of the laminate becomes 1/2 to 1/4 of the original thickness, and then heated and molded. Compression ratio is 1
If it is less than /2, the carbon fiber content of the molded product will be low, and the contact between the prepreg layers will be insufficient, resulting in peeling during carbonization.

圧縮比が1/4超では成形物の残留歪が大きくなりすぎ
、炭素化時に変形が生じやすくなる。
If the compression ratio exceeds 1/4, residual strain in the molded product becomes too large, and deformation tends to occur during carbonization.

次に成形物を、通常、窒素又はアルゴン等の不活性雰囲
気中700〜1500℃で炭素化するか、又は、これに
引続いて通常2000〜3000℃で黒鉛化、又は、炭
素化若しくは炭素化・緻密化に引続いて黒鉛化して、目
的の炭素繊維強化炭素複合材料とする。
The shaped article is then carbonized, usually at 700-1500°C in an inert atmosphere such as nitrogen or argon, or this is followed by graphitization, carbonization or carbonization, usually at 2000-3000°C.・Subsequent to densification, graphitization is performed to obtain the desired carbon fiber-reinforced carbon composite material.

また、必要により熱硬化性樹脂又はピッチ等を該炭素繊
維強化炭素複合材料に含浸した後、所要機械的強度が得
られるまで緻密化を繰り返してもよい。この緻密化の処
理は、高温に保持した炭素繊維強化炭素複合材料に炭化
水素ガスを加熱分解して炭素を蒸着する、いわゆるケミ
カル・ベーパー・デイポジション?A(CVD法)によ
って行ってもよい。
Further, if necessary, after impregnating the carbon fiber-reinforced carbon composite material with a thermosetting resin, pitch, or the like, densification may be repeated until the required mechanical strength is obtained. This densification process is a so-called chemical vapor day position process in which hydrocarbon gas is thermally decomposed and carbon is deposited on the carbon fiber-reinforced carbon composite material held at high temperature. A (CVD method) may be used.

炭素繊維紡績糸織物を構成するりJ素繊維の炭素含有率
は9」1%以上であることが好ましく、93i口量%未
満では、成形物の炭素化時に割れ、強度劣化等を起し良
好な炭素繊維強化炭素複合材料が1gられにくい。
It is preferable that the carbon content of the carbon fibers constituting the carbon fiber spun yarn fabric is 9.1% or more, and if it is less than 93i% by weight, it will cause cracking and strength deterioration during carbonization of the molded product, so it is not good. 1g of carbon fiber-reinforced carbon composite material is difficult to lose.

〔発明の効果〕〔Effect of the invention〕

本発明によると、特定の炭素繊維紡績糸織物を用い、特
定の条件下で製造することにより、均質な機械的強度の
高い炭素繊維強化炭素複合材料を容易に製造することが
できる。
According to the present invention, a homogeneous carbon fiber-reinforced carbon composite material with high mechanical strength can be easily produced by using a specific carbon fiber spun yarn fabric and producing it under specific conditions.

〔実施例〕〔Example〕

実施例1 1.9デニールの耐炎4a帷(東邦レーヨン社製、パイ
ロメツクス )を平均繊維長851111にカットした
短繊維を紡績して、下撚り数が288回/lで上撚り数
が177回/11の11番双糸を得た。該紡績糸を打ち
込み密度(径・緯糸共)32本/インチで8枚朱子にI
!J織した。得られた紡績糸織物を、窒素雰囲気中13
00℃で炭素化して、炭素含有率93.7!fi j?
k %、目付300g/s ’ 、厚す1.3I、嵩密
度0.23g/ce’の炭素繊維紡績糸織物とした。次
いで該織物にレゾール系フェノール樹脂を、樹脂含有率
が48重量%になるように塗布してプリプレグを作成し
た。該プリプレグを8%層した後、積層物厚さが圧縮前
の状態に比し1/3になるように圧縮をして、170℃
で加熱成形を行った。成形物を窒素雰囲気中で1000
℃で炭素化し、繊維体積含有率35容量%の炭素繊維強
化炭素複合材料を得た。
Example 1 Short fibers of 1.9 denier flame-resistant 4a cloth (manufactured by Toho Rayon Co., Ltd., Pyromex) cut to an average fiber length of 851111 were spun, and the number of first twists was 288 turns/l and the number of final twists was 177 turns/l. 11 No. 11 double yarns were obtained. The spun yarn was pounded into 8 sheets of satin at a density (both diameter and weft) of 32 yarns/inch.
! J woven. The obtained spun yarn fabric was heated in a nitrogen atmosphere for 13 minutes.
Carbonized at 00℃, carbon content 93.7! Fi j?
A carbon fiber spun yarn fabric having a weight of 300 g/s', a thickness of 1.3 I, and a bulk density of 0.23 g/ce' was prepared. Next, a resol-based phenolic resin was applied to the fabric so that the resin content was 48% by weight to prepare a prepreg. After layering 8% of the prepreg, it was compressed so that the thickness of the laminate was 1/3 of the thickness before compression, and heated at 170°C.
Heat molding was performed. The molded product was heated for 1000 min in a nitrogen atmosphere.
Carbonization was carried out at 0.degree. C. to obtain a carbon fiber-reinforced carbon composite material with a fiber volume content of 35% by volume.

この炭素繊維強化炭素複合材料には、剥離、割れ等は全
く認められなかった。
No peeling, cracking, etc. were observed in this carbon fiber reinforced carbon composite material.

実施例2 1.9デニールの耐炎繊維(前出)を平均Il帷長90
snにカットした短繊維を紡績して、下撚り数が417
回/−で上撚り数が258回/mで20番双糸を得た。
Example 2 1.9 denier flame resistant fiber (described above) with an average Il length of 90
Spun short fibers cut into sn, the number of first twists is 417
A No. 20 twin yarn was obtained with a ply twist count of 258 turns/m.

該紡績糸を打ち込み密度(経・緯糸共)38本/インチ
で平織に製織しIC,、得られた紡績糸織物を窒素雰囲
気中1300℃で炭素化して、炭素含有率93.8Φ間
%、目付165q/m ’、厚さ0.61111.嵩密
度0.28(1/ CI”の炭素繊維紡績糸織物とした
。該織物にレゾール系フェノール樹脂を、樹脂含有率が
44重石%にむるように塗布してプリプレグを作成した
。該プリプレグを積層した後、積層物厚さが圧縮前の状
態に比し、+/ 2.5になるように圧縮をして、17
0℃で加熱成形を行った。成形物を窒素雰囲気中で10
00℃で炭素化し、繊維体積含有率34容珊%の炭素繊
維強化炭素複合材料を得た。この炭素繊維強化炭素複合
材料には、剥離、割れ等は全く認められなかった。
The spun yarn was woven into a plain weave at a driving density (both warp and weft) of 38 threads/inch, and the resulting spun yarn fabric was carbonized at 1300°C in a nitrogen atmosphere to produce a carbon content of 93.8 Φ%. Fabric weight 165q/m', thickness 0.61111. A carbon fiber spun yarn fabric with a bulk density of 0.28 (1/CI) was prepared. A prepreg was prepared by applying a resol-based phenolic resin to the fabric so that the resin content reached 44%. After laminating, compress the laminate so that the thickness is +/2.5 compared to the state before compression, and
Heat molding was performed at 0°C. The molded product was placed in a nitrogen atmosphere for 10
Carbonization was carried out at 00°C to obtain a carbon fiber-reinforced carbon composite material with a fiber volume content of 34% by volume. No peeling, cracking, etc. were observed in this carbon fiber reinforced carbon composite material.

Claims (4)

【特許請求の範囲】[Claims] (1)1〜3デニールのアクリル系耐炎繊維の短繊維か
らなり、撚り数が100〜450回/mの5〜30番単
糸、又は、下撚り数が120〜450回/mで、上撚り
数が85〜300回/mの2〜30番双糸にて構成され
た紡績糸織物を、不活性雰囲気中で炭素化するか、又は
、炭素化に引続いて、黒鉛化して、嵩密度0.1〜0.
4g/cm^3の炭素繊維紡績糸織物とし、次いで該炭
素繊維紡績糸織物に熱硬化性樹脂を含浸させてプリプレ
グとなし、更に該プリプレグを積層した後、積層物厚さ
が当初の1/2〜1/4になるように圧縮をして成形を
行い、そして成形物を炭素化するか、又は、炭素化に引
続いて緻密化するか、又は、炭素化若しくは炭素化・緻
密化に引続いて黒鉛化することを特徴とする炭素繊維強
化炭素複合材料の製造法。
(1) Consisting of short fibers of acrylic flame-resistant fibers of 1 to 3 deniers, No. 5 to 30 single yarn with a number of twists of 100 to 450 times/m, or a number of first twists of 120 to 450 times/m, A spun yarn fabric composed of twin yarns number 2 to 30 with a twist number of 85 to 300 times/m is carbonized in an inert atmosphere, or subsequently carbonized and graphitized to increase bulk. Density 0.1~0.
A 4g/cm^3 carbon fiber spun yarn fabric is made, then the carbon fiber spun yarn fabric is impregnated with a thermosetting resin to form a prepreg, and the prepregs are further laminated to reduce the thickness of the laminate to 1/1 of the original thickness. The molded product is compressed to 2 to 1/4, and then the molded product is carbonized, or densified following carbonization, or carbonized or carbonized/densified. A method for producing a carbon fiber-reinforced carbon composite material, characterized by subsequent graphitization.
(2)炭素繊維紡績糸織物を構成する炭素繊維の炭素含
有率が93重量%以上である特許請求の範囲(1)記載
の方法。
(2) The method according to claim (1), wherein the carbon fibers constituting the carbon fiber spun yarn fabric have a carbon content of 93% by weight or more.
(3)プリプレグの樹脂含有率が30〜55重量%であ
る特許請求の範囲(1)記載の方法。
(3) The method according to claim (1), wherein the prepreg has a resin content of 30 to 55% by weight.
(4)炭素繊維強化炭素複合材料の繊維体積含有率が3
0〜45容量%である特許請求の範囲(1)記載の方法
(4) The fiber volume content of the carbon fiber reinforced carbon composite material is 3
The method according to claim (1), wherein the amount is 0 to 45% by volume.
JP61243137A 1986-10-15 1986-10-15 Manufacture of carbon fiber reinforced carbon composite material Granted JPS63100062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243137A JPS63100062A (en) 1986-10-15 1986-10-15 Manufacture of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243137A JPS63100062A (en) 1986-10-15 1986-10-15 Manufacture of carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPS63100062A true JPS63100062A (en) 1988-05-02
JPH0255393B2 JPH0255393B2 (en) 1990-11-27

Family

ID=17099339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243137A Granted JPS63100062A (en) 1986-10-15 1986-10-15 Manufacture of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPS63100062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280487A (en) * 1988-09-15 1990-03-20 Sumitomo Electric Ind Ltd Carbon fibver-reinforced composite carbon material
JPH03193664A (en) * 1989-12-22 1991-08-23 Nippon Steel Corp Carbon fiber reinforced carbon composite material
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686191U (en) * 1993-05-10 1994-12-13 株式会社竹中工務店 Work site alarm device
JP4074820B2 (en) * 2003-02-19 2008-04-16 東邦テナックス株式会社 Polyacrylonitrile-based oxidized fiber spun yarn

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280487A (en) * 1988-09-15 1990-03-20 Sumitomo Electric Ind Ltd Carbon fibver-reinforced composite carbon material
JPH03193664A (en) * 1989-12-22 1991-08-23 Nippon Steel Corp Carbon fiber reinforced carbon composite material
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP4582905B2 (en) * 2000-12-19 2010-11-17 東邦テナックス株式会社 Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet

Also Published As

Publication number Publication date
JPH0255393B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US3657061A (en) Reinforced carbon and graphite bodies
US3772115A (en) Process for producing reinforced carbon and graphite bodies
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
US5418063A (en) Carbon-carbon composite and method of making
EP0297695B1 (en) Process for fabricating carbon/carbon fibre composite
US5061414A (en) Method of making carbon-carbon composites
US4101354A (en) Coating for fibrous carbon material in boron containing composites
US4963301A (en) Method for fabrication of refractory composite tubing
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JPS63100062A (en) Manufacture of carbon fiber reinforced carbon composite material
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
US5554354A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
JPS6360155A (en) Manufacture of carbon/carbon composite material from nonwoven cloth as raw material
EP0803487B1 (en) Process for producing carbonaceous preform
JP4547754B2 (en) Pitch-based carbon fiber fabric
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JPH01203267A (en) Production of carbon/carbon composite material
KR20150103587A (en) Mold manufacturing method of carbon composites for using at high temperature and high pressure
JPH06116031A (en) Falsely unidirectional reinforced c/c composite material and its production
JPH04317465A (en) Carbon fiber reinforced carbon composite material
JPH04317470A (en) Carbon fiber reinforced carbon composite material
JPS63293051A (en) Carbon fiber reinforced carbon composite metarial
EP0806285B1 (en) Fiber structure for fiber reinforced composite material and method of making fiber reinforced composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
US5246639A (en) Method for producing carbon-carbon composite materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term