JPS6293638A - Apparatus and method for measuring component of two-metal type alloy - Google Patents

Apparatus and method for measuring component of two-metal type alloy

Info

Publication number
JPS6293638A
JPS6293638A JP60233594A JP23359485A JPS6293638A JP S6293638 A JPS6293638 A JP S6293638A JP 60233594 A JP60233594 A JP 60233594A JP 23359485 A JP23359485 A JP 23359485A JP S6293638 A JPS6293638 A JP S6293638A
Authority
JP
Japan
Prior art keywords
alloy
container
temperature
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60233594A
Other languages
Japanese (ja)
Inventor
Mamoru Okamoto
守 岡本
Hirohisa Miura
三浦 宏久
Tadao Oota
太田 忠夫
Toshio Natsume
夏目 敏夫
Shusuke Katagiri
片桐 秀典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60233594A priority Critical patent/JPS6293638A/en
Publication of JPS6293638A publication Critical patent/JPS6293638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To make it possible to rapidly measure the concn. of component metals constituting a two-metal type alloy with good accuracy, by regulating the tamp. of the alloy stagnated in a measuring container independently of the temp. of the alloy in a container main body. CONSTITUTION:A jet stream consisting of fine Mg-particles and oxidizing gas is allowed to flow in a Mg trap container 1 storing a molten Pb-Mg alloy 6 and this molten alloy is sent out to a Mg distillation chamber by send-out piping 11 and introducing piping 12. A heater 2 and a heater 14 are regulated to set not only the temp. of the molten alloy in the trap container 1 to about 300-750 deg.C but also the temp. of the molten alloy in a measuring container to temp. 50-100 deg.C higher than that of said alloy in the container 1 and a convection is generated by specific gravity difference to stirr the molten alloy. Next, after the heaters are cut off, cooling air is blown to the molten alloy by a cooling air blow-off apparatus 42 to cool the molten alloy in the measuring container 3 while the temp. variation thereof is measured by a thermocouple 5 to be recorded on a recorder 52 and pre-eutectoid temp. is determined to be converted to Mg-concn.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2金属系合金を構成づる成分金属の濃度を、
熱解析法によって測定する方法、及び該測定に用いる装
置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to increasing the concentration of component metals constituting a two-metal alloy.
This invention relates to a method of measuring using a thermal analysis method and an improvement of an apparatus used for the measurement.

本発明によると、速やかに、かつ、精度良く前記濃度を
1【Iることができ、また、測定装置の耐久性bLl!
好Cある。
According to the present invention, the concentration can be quickly and precisely determined by 1[I], and the durability of the measuring device bLl!
There is a good C.

[従来の技術] 2金属系合金を構成する成分金属のa度を測定する方法
として、熱解析法、化学分析法、発光分光分析法、比重
測定法等の方法が知られている。
[Prior Art] Methods such as thermal analysis, chemical analysis, emission spectrometry, and specific gravity measurement are known as methods for measuring the a degree of component metals constituting a two-metal alloy.

上記に45いて熱解析法は、成分金属の濃度によって合
金の初晶温度が異なるという性質を利用Jる測定方法で
あり、溶融状態にある2金属系合金の濃度を、池の3方
法に比し、比較的速やかに測定し得る方法として有用で
ある。
The thermal analysis method mentioned above is a measurement method that takes advantage of the property that the primary crystal temperature of the alloy differs depending on the concentration of the component metals. However, it is useful as a method that can be measured relatively quickly.

第4図は、熱解析法の実施に、従来より用いられている
装置の一例の模式図である。
FIG. 4 is a schematic diagram of an example of a device conventionally used for implementing a thermal analysis method.

図示の装置は、fI器本体1の上部に試料採取室70が
設置された構造を成し、該試料採取室70と前記B器本
体1との間で採取容器71を移仙させて2金属系合金6
の試料を採取し、その成分濃度を測定するものである。
The illustrated device has a structure in which a sample collection chamber 70 is installed on the upper part of the fI device main body 1, and a collection container 71 is transferred between the sample collection chamber 70 and the B device main body 1 to obtain two metals. Series alloy 6
The method involves taking a sample and measuring its component concentration.

以下、第4図図示の従来の装置による濃度測定方法を詳
述する。
The concentration measuring method using the conventional apparatus shown in FIG. 4 will be described in detail below.

容器本体1内には、2金属系合金(Pb−Mg合金)の
溶湯6が、酸素との反応を防止4るべ・(10mllH
Q以下の減J十下ぐ収容されている1、識溶湯6は、連
通管11を介してtvl蒸溜室(省図示)へ送られ、M
りを蒸発させて除去した後、連通管12より容器本体1
に還流する。一方、容器本体上部隅の流入口]3からは
、ノズル(杏図示)での断熱1111によって冷却され
た酸化性)Jスと霧状のMgとが噴流となって流入()
、該流入したMOは、溶湯6に捕集される。なお、2金
属系合金の溶湯6は、容器本体1の周囲に配設されl、
ニヒータ2によって加熱されており、また、該溶湯6の
1而には、スラグ61が浮遊している。
Inside the container body 1, a molten metal 6 of a two-metal alloy (Pb-Mg alloy) is placed at a temperature of 4°C (10mlH) to prevent reaction with oxygen.
The molten metal 1 and molten metal 6, which is stored in the lower part of J10 below Q, is sent to the tvl distillation chamber (not shown) via the communication pipe 11, and
After evaporating and removing the water, the container body 1 is removed from the communication pipe 12.
Reflux to. On the other hand, from the inlet 3 at the upper corner of the container body, oxidizing (J) and atomized Mg cooled by the heat insulation 1111 in the nozzle (shown in the figure) flow in as a jet ().
, the inflowing MO is collected in the molten metal 6. Note that the molten metal 6 of the two-metal alloy is arranged around the container body 1, and
It is heated by the ni-heater 2, and slag 61 is floating in one part of the molten metal 6.

溶湯6の試料採取に際しては、まず、試$41採取室7
0内を容器本体1と同程度に減圧する。
When collecting a sample of the molten metal 6, first, the sampling chamber 7
The inside of the container 0 is depressurized to the same extent as the container body 1.

次に、仕切りバルブ72を聞き、スライド棒73によっ
て採取合1W71を下すへ移動さぜ、溶湯6中に浸漬し
て試料を採取し、引き−[げた後、イ4切りバルブ72
を閉じる。
Next, listen to the partition valve 72, move the sample 1W71 down with the slide rod 73, immerse it in the molten metal 6 to collect the sample, and pull it out.
Close.

その後、試料採取室70内で試料を冷fJ11..)、
該冷却時の温度変化を熱電対5によって測定しC初晶温
度を求め、該初晶温度より熱解析法によって!vHJ1
1度を17る。
Thereafter, the sample is cooled in the sample collection chamber 70. .. ),
The temperature change during cooling is measured with a thermocouple 5, the C primary crystal temperature is determined, and from this primary crystal temperature, a thermal analysis method is used! vHJ1
1 degree equals 17.

あるいは、冷却した試料を試料採取室外へ取り出し、化
学分析法、発光分光分析法、比重測定法等の方法によっ
てMg11度を求める。
Alternatively, the cooled sample is taken out of the sampling chamber and Mg11 degrees is determined by a method such as chemical analysis, emission spectrometry, or specific gravity measurement.

[発明が解決しようとする問題点] 上記した従来の方法及び装置は、以下の欠点を有する。[Problem to be solved by the invention] The conventional methods and devices described above have the following drawbacks.

(1〉測定精度上の問題点 試料採取に際し、採取容器71内にスラグ61が混入し
、該混入しIζスラグによって、′a度の正確な測定が
妨げられる。
(1> Problems with measurement accuracy When sampling, the slag 61 gets mixed into the sampling container 71, and the mixed Iζ slag prevents accurate measurement of 'a degrees.

また、容器本体内の溶湯は、成分金属の比重差に起因し
て、部位による偏析を生じている。したがって、採取し
た試料の成分比が、必ずしも溶湯6の成分比を代表しな
い。
Furthermore, the molten metal within the container body is segregated depending on the location due to the difference in specific gravity of the component metals. Therefore, the component ratio of the sample taken does not necessarily represent the component ratio of the molten metal 6.

(2)測定の迅速性上の問題点 溶湯6から試料を採取し、該採取した試料の成分比を求
めている。y!!8すれば、測定に際し試料採取の手間
を要する。このため、溶湯の成分比のフィードバック制
御に長時間の時間Iれを伴い、制illが不正確となる
(2) Problems with speed of measurement A sample is collected from the molten metal 6, and the component ratio of the sample is determined. Y! ! 8, it takes time and effort to collect samples for measurement. For this reason, feedback control of the component ratio of the molten metal is accompanied by a long time delay, resulting in inaccurate illumination control.

また測定方法として、熱解析法ではなく、化学分析法、
発光分光分析法、比重測定法を採用し、試料を採取室外
へ取り出した後に測定する場合は、時1511れによる
弊害は、−囮顕著となる。
In addition, the measurement method is not a thermal analysis method, but a chemical analysis method.
When the emission spectrometry method and the specific gravity measurement method are adopted and the measurement is performed after taking the sample out of the collection chamber, the adverse effects caused by the time 1511 error become significant.

(3)装置の耐久性七の問題点 試料採取室70と容器本体1どを仕切る仕切りバルブ7
2及びシール材74、試料採取室70内の圧力を調11
等す6耕気バルブ75及びリークバルブ76、スライド
棒73をシールするシール材77等が熱によつ−C劣化
し、気密性が低■4る。
(3) Problems with device durability 7 Partition valve 7 that partitions the sample collection chamber 70 and the container body 1 etc.
2 and the sealing material 74, and the pressure inside the sample collection chamber 70 is adjusted 11.
The plowing valve 75, the leak valve 76, the sealing material 77 that seals the slide rod 73, etc. deteriorate due to heat, resulting in poor airtightness.

このため溶湯6の酸化が生じ、また、MOにあっては、
安全性上の問題も発生する。
For this reason, oxidation of the molten metal 6 occurs, and in MO,
Safety issues also arise.

また、バルブシール部、スライド棒等の18動部に、金
属蒸′fR物、スラグ等が付青し、居初竹の悪化を1&
 <。
In addition, 18 moving parts such as valve seals and slide rods are blued with metal vapors, slag, etc. to prevent deterioration of the weather.
<.

本発明はかかる事情に息み案出されたものであり、上記
した問題点を解決する測定方法及び測定装置の促供を目
的とする。
The present invention was devised in response to such circumstances, and aims to provide a measuring method and a measuring device that solve the above-mentioned problems.

[問題点を解決するための手段及び作用1本第1発明は
、 溶融状態の2金属系合金を収容する容器本体と、該容器
本体内に収容される合金を加熱する加熱手段と、 前記容器本体に連通し、該容器本体内に収容される合金
の一部を滞留させる測定容器と、該測定容器内に滞留す
る合金の温度を、前記容器本体内の合金の温度と独立に
調節する温度調節手段と、 前記測定容器内に滞留する合金の温度を経時的に測定す
る温度測定手段と、 を有することを特徴とする2金属系合金の成分測定装置
である。
[Means and Effects for Solving the Problems 1] The first invention comprises: a container body for accommodating a two-metal alloy in a molten state; a heating means for heating the alloy accommodated in the container body; and the container. a measuring container that communicates with the main body and retains a portion of the alloy contained in the container main body; and a temperature that adjusts the temperature of the alloy retained in the measuring container independently of the temperature of the alloy in the container main body. An apparatus for measuring components of a two-metal alloy, comprising: a regulating means; and a temperature measuring means for measuring the temperature of the alloy remaining in the measuring container over time.

また、本第2発明は、 容器本体に収容した溶融状態の2金属系合金の一部を、
該容器本体に連通ずる測定容器内に滞留させ、 該測定容器内に滞留させた合金の温度を変化させて、該
合金の初晶温度を測定し、 該初晶温度より、熱解析法によって、前記合金を構成す
る成分金属の濃度を1!することを¥1徴と覆る2金属
系合金の成分測定方法である。
In addition, the second invention provides a method for storing a part of the molten two-metal alloy contained in the container body.
The alloy is retained in a measurement container communicating with the container body, the temperature of the alloy retained in the measurement container is changed, the primary crystal temperature of the alloy is measured, and from the primary crystal temperature, by thermal analysis method, The concentration of the component metals constituting the alloy is 1! This is a method for measuring the components of two-metal alloys that covers the cost of ¥1.

以下、第1発明の各構成要素を説明づる。Each component of the first invention will be explained below.

容器本体は、溶湯を収容する耐熱性の容器である。容器
本体としては、例えば、特許請求の範囲第2項記載のよ
うに、霧状の第1金属を溶融状態の第2金屈中に捕集す
る捕集装置、用容器が想定される。なお、本発明が適用
される2金属系合金は、成分比によって初晶温度が異な
る合金であればよく、Cu −Mn 、Cu −Ni 
SA(+ −Au lFe−Mn 、Mg−8i等であ
る。
The container body is a heat-resistant container that contains molten metal. As the container body, for example, a container for a collection device that collects the atomized first metal in the second metal part in a molten state, as described in claim 2, is assumed. Note that the bimetallic alloy to which the present invention is applied may be any alloy whose primary crystal temperature differs depending on the component ratio, such as Cu-Mn, Cu-Ni
SA(+-Au lFe-Mn, Mg-8i, etc.).

加熱手段は、容器本体内の溶湯を、溶融状態に保ち得る
ものであればよい。加熱の態様は、ヒータ加熱、誘導加
熱を問わない。なお、加熱手段と測定容器とは断熱する
The heating means may be of any type as long as it can maintain the molten metal in the container body in a molten state. The heating mode may be heater heating or induction heating. Note that the heating means and the measurement container are insulated.

測定容器は、容器本体内の溶湯の一部を、溶湯の初晶温
度を求めるのに必要な温度測定の間、滞留させる耐熱性
容器である。
The measurement container is a heat-resistant container in which a portion of the molten metal within the container body remains during temperature measurements necessary to determine the primary crystal temperature of the molten metal.

温度g!1第1節は、測定容器内の溶湯の温度を、容器
本体内の溶湯の温度とは独立に、任意の温度に設定する
機能を有する。したがって、加熱手段と冷111手段と
を有することが望ましい。また、その制御系は、前記容
器本体の加熱手段の制御系とは独立していることが望ま
しい。なお、温度調節手段と容器本体とは、容器本体内
の溶湯の温度と測定容器内の溶湯の温度とを独立に1,
11 II+できるように断熱する。
Temperature g! The first section has a function of setting the temperature of the molten metal in the measurement container to an arbitrary temperature independently of the temperature of the molten metal in the container body. Therefore, it is desirable to have heating means and cooling means. Further, it is desirable that the control system is independent from the control system of the heating means of the container body. Note that the temperature adjustment means and the container body independently control the temperature of the molten metal in the container body and the temperature of the molten metal in the measurement container by 1,
11 II+ Insulate as possible.

温度測定手段は、測定容器内の溶湯の温度を経時的に測
定し、その初晶温度を求めるのに用いる。
The temperature measuring means is used to measure the temperature of the molten metal in the measuring container over time and to determine its primary crystal temperature.

温度測定手段としては、通常熱雷対を用いる。A thermal lightning pair is usually used as the temperature measuring means.

次に、第2発明を説明する。Next, the second invention will be explained.

第2発明において、第1発明と共通する部材、またはj
1i旬の意味は、第1発明と同様であるため、説明は省
略する。
In the second invention, a member common to the first invention, or
Since the meaning of 1i-jun is the same as that of the first invention, the explanation will be omitted.

初晶温度とは、溶湯を冷却していった場合において、晶
出の始まる温度である。一般に初晶温度は、2金属系合
金の場合には、成分金属の濃度によって異なる。したが
って、初晶温度を測定すれば、2金属系合金の成分比は
求まる。これが熱解析法の原理である。
The primary crystal temperature is the temperature at which crystallization begins when the molten metal is cooled. Generally, in the case of a two-metal alloy, the primary crystal temperature varies depending on the concentration of the component metals. Therefore, by measuring the primary crystal temperature, the component ratio of the two-metal alloy can be determined. This is the principle of thermal analysis method.

初品温度の検出は、一様に溶湯を冷がしつつ温度の経時
変動を測定し、一時的に温度低下の止まったポイントあ
るいは冷却の速度が変化したポイントより求める。即ち
、単位質量の溶湯の単位温度の低下に要する熱量の絶対
値よりも、単位質量の合金の晶出に要する熱量の絶対値
の方が大きいため、一様に冷u1シた場合には、初晶温
度において、一時的に温度低下が止まることを利用して
初晶温度を求めることができる。
The initial product temperature is detected by uniformly cooling the molten metal and measuring the temperature change over time, and finding the point where the temperature temporarily stops decreasing or the cooling rate changes. In other words, since the absolute value of the amount of heat required to crystallize a unit mass of alloy is greater than the absolute value of the amount of heat required to lower the unit temperature of a unit mass of molten metal, when cooling uniformly, The primary crystal temperature can be determined by utilizing the fact that the temperature drop temporarily stops at the primary crystal temperature.

なお、特許請求の範囲第4項記載のように、冷却に先だ
ち、容器本体内の溶湯と測定容器内の溶湯とを攪拌し、
偏析を解消すると、より精度の高い成分比を得ることが
できる。
In addition, as described in claim 4, prior to cooling, the molten metal in the container body and the molten metal in the measurement container are stirred,
By eliminating segregation, a more accurate component ratio can be obtained.

[実施例] 以下、本発明を具体的な実施例に基づいて説明する。[Example] The present invention will be described below based on specific examples.

第1図は、実施例装置の構成を説明する模式図である。FIG. 1 is a schematic diagram illustrating the configuration of an example device.

本実施例は、ノズルでの断熱膨張によって冷却されたM
aの微粒子を、pb溶溶湯捕集1る捕集装置内のPb−
MQ溶溶湯成分比を求めるものである。
In this example, M cooled by adiabatic expansion in the nozzle
The fine particles of a are collected from the Pb-
This is to find the MQ molten metal component ratio.

図示のように実施例装置は、F)b −M Q合金の溶
湯6を収容するMg捕集容器1と、該捕集容器1の側壁
及び底壁に配設され、捕集容器1内のPb−Mg合金6
を加熱して溶融状態に保つヒータ2と、捕集容器1の底
部に該捕集容器に連通ずるようにして設置された測定容
器3と、該測定容器3の側壁に配設されたヒータ41と
、該測定容器3の底部に設置され、前記ヒータ41の設
置部へ冷U」空気を送風する冷uj空気吹き出し装置4
2と、前記測定容器3の底部に突設された保護管51内
に収納され測定容器3内の溶湯の温度を測定づる熱電対
5、及び該熱電対5によって検出された温度を記録する
記録計52とを有する。
As shown in the figure, the embodiment device includes an Mg collection container 1 containing a molten metal 6 of F)b-MQ alloy, and a Mg collection container 1 disposed on the side wall and bottom wall of the collection container 1. Pb-Mg alloy 6
A heater 2 that heats and keeps it in a molten state, a measurement container 3 installed at the bottom of the collection container 1 so as to communicate with the collection container, and a heater 41 installed on the side wall of the measurement container 3. and a cold air blowing device 4 that is installed at the bottom of the measurement container 3 and blows cold air to the installation part of the heater 41.
2, a thermocouple 5 that is housed in a protective tube 51 protruding from the bottom of the measurement container 3 and measures the temperature of the molten metal in the measurement container 3; and a record that records the temperature detected by the thermocouple 5. 52 in total.

捕集容器1の上部隅には、ノズル(省図示)での断熱膨
張によって冷却されたMg微粒子と酸化性ガスとの噴流
を流入させ、溶湯6に捕集させるための流入口13が開
口している。また、捕集容器1の側壁には、溶湯6をM
g蒸溜室(省図示)へ送出し、Mgを蒸発させて除去し
IJ後、捕集a器1に還流4るための送出配管1]及び
導入配管12が設置されでいる。
An inlet 13 is opened at the upper corner of the collection container 1 to allow a jet of Mg fine particles and oxidizing gas cooled by adiabatic expansion in a nozzle (not shown) to flow in and collect in the molten metal 6. ing. Further, the side wall of the collection container 1 is coated with molten metal 6.
A delivery piping 1] and an introduction piping 12 are installed for sending the liquid to a distillation chamber (not shown), evaporating and removing Mg, and refluxing it to the collector a 1 after IJ.

また、捕集容器1内の溶湯を加熱するヒータ2の外側に
は断熱材20が配置され、−ノj、測定容器3内の溶湯
を加熱づるヒータ41の外側には、断熱材43が配置さ
れている。該断熱材43によって、ヒータ2とヒータ4
1とは相互に断熱され、捕集容器内の溶湯の温度と測定
容器内の溶湯の温度とを独立に1IIII III t
、 lりるJ:うになっている。
Further, a heat insulating material 20 is arranged on the outside of the heater 2 that heats the molten metal in the collection container 1, and a heat insulating material 43 is arranged on the outside of the heater 41 that heats the molten metal in the measurement container 3. has been done. The heat insulating material 43 connects the heater 2 and the heater 4.
1 is mutually insulated, and the temperature of the molten metal in the collection container and the temperature of the molten metal in the measurement container can be independently controlled.
, Liruru J: The sea urchin is turning.

以下、上記実施例装置による測定方法を説明する。The measurement method using the apparatus of the above embodiment will be explained below.

まず、ヒータ2及びヒータ41を調節して、捕集容器1
内の溶湯の温度を300〜750℃に、また測定容器3
内の溶湯の温度を上記温度より50〜100℃高い温度
に設定し、比1b差により対流を生じさせ、溶湯を攪拌
する。
First, adjust the heater 2 and heater 41 to
The temperature of the molten metal in the measurement container 3 is set to 300-750℃.
The temperature of the molten metal inside is set to a temperature 50 to 100°C higher than the above temperature, and the molten metal is stirred by generating convection due to the difference in ratio 1b.

次に、ヒーター切断後、必要に応じ冷却空ス吹き出し装
置42より、所定温度の冷L1空気を一定速度で吹き出
させ、測定容器3内の溶場を冷19じつつ、その温度変
動を熱電対5によって測定し、記録計52で記録する。
Next, after the heater is cut off, cold L1 air at a predetermined temperature is blown out at a constant speed from the cooling air blowing device 42 as needed, and while cooling the melt field in the measurement container 3, the temperature fluctuation is measured by thermocouples. 5 and recorded with a recorder 52.

第2図は、記録5152によって記録した測定容器3内
の溶湯の温度変動を表ずグラフである。
FIG. 2 is a graph showing the temperature fluctuation of the molten metal in the measurement container 3 recorded by the record 5152.

図示のように、グラフは、降下途中において一時的に平
Jffとなり(460’C)、その後再び冷却速度を変
化させて降下している。平坦及び冷却速度が遅くなって
いる部分は、冷却の熱量が晶出に費された部分であり、
これが初晶温度を与える。
As shown in the figure, the graph temporarily becomes flat Jff (460'C) during the descent, and then descends again while changing the cooling rate. The flat part and the part where the cooling rate is slow are the parts where the heat of cooling was spent on crystallization,
This gives the primary temperature.

Pb−Mg合金において、初晶温度460’Cに対応す
るMg濃度は、io、o%である。
In the Pb-Mg alloy, the Mg concentration corresponding to the primary crystal temperature of 460'C is io, o%.

このようにして、約60分でpb−Mg合金のMg1度
を求めることができた。なお、初晶温度からMQ濃度へ
の換算は、公知のデータを用いて行なった。
In this way, the Mg degree of the pb-Mg alloy could be determined in about 60 minutes. Note that conversion from primary crystal temperature to MQ concentration was performed using known data.

次に、Mg濃度の知られている試料を用いて本発明の測
定を行ない、測定結果とMo2度のデータを比較し、測
定の精度を評価した。その結果を第3図に示す。
Next, the measurement of the present invention was performed using a sample with a known Mg concentration, and the measurement results were compared with the Mo2 degree data to evaluate the accuracy of the measurement. The results are shown in FIG.

図示のように、本発明による測定の精度は、良好である
As shown, the accuracy of the measurements according to the invention is good.

[効果] 以上詳述したように本発明は、熱解析7人にJ、って2
金属系合金の成分比を精度良く、かつ、速A5かに測定
し11する方法、及び装置である。
[Effects] As detailed above, the present invention provides thermal analysis for 7 people, J, and 2
A method and apparatus for measuring the component ratio of metal alloys with high precision and speed.

実施例に述べたように、本発明によるど、111+1定
するだめの試料を採取する必要はない3.シたが−)で
測定が速やかである。
As mentioned in the Examples, according to the present invention, there is no need to collect samples to determine 111+1. Measurements can be made quickly.

また、装置に試料採取のための可動部分を設()なくと
もよいため、装置の耐久性が良い。
Furthermore, since the device does not need to have any moving parts for sample collection, the device has good durability.

また、被測定溶湯にスラブが混入しないため測定精度が
良好である。
In addition, since no slab is mixed into the molten metal to be measured, the measurement accuracy is good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例装置の構成を説明する模式図である。 第2図は、溶湯の温度測定結果を表1グラフである。第
3図は、Mqの濃度データと測定結果とを表ずグラフで
ある。第4図は、従来の測定装置を示す模式図である。 1・・・容器本体   2・・・加熱手段3・・・測定
容器   4・・・温度調節手段5・・・温度測定手段
FIG. 1 is a schematic diagram illustrating the configuration of an example device. FIG. 2 is a graph of Table 1 showing the temperature measurement results of the molten metal. FIG. 3 is a graph showing Mq concentration data and measurement results. FIG. 4 is a schematic diagram showing a conventional measuring device. 1... Container body 2... Heating means 3... Measuring container 4... Temperature adjusting means 5... Temperature measuring means

Claims (4)

【特許請求の範囲】[Claims] (1)溶融状態の2金属系合金を収容する容器本体と、 該容器本体内に収容される合金を加熱する加熱手段と、 前記容器本体に連通し、該容器本体内に収容される合金
の一部を滞留させる測定容器と、 該測定容器内に滞留する合金の温度を、前記容器本体内
の合金の温度と独立に調節する温度調節手段と、 前記測定容器内に滞留する合金の温度を経時的に測定す
る温度測定手段と、 を有することを特徴とする2金属系合金の成分測定装置
(1) A container body containing a two-metal alloy in a molten state, a heating means for heating the alloy housed in the vessel body, and a heating means communicating with the vessel body to heat the alloy housed in the vessel body. a measurement container in which a portion of the alloy remains; a temperature control means for adjusting the temperature of the alloy remaining in the measurement container independently of the temperature of the alloy in the container body; A component measuring device for a two-metal alloy, comprising: a temperature measuring means for measuring temperature over time;
(2)前記容器本体は、霧状の第1金属を溶融状態の第
2金属中に捕集する捕集装置用容器である特許請求の範
囲第1項記載の装置。
(2) The device according to claim 1, wherein the container body is a container for a collection device that collects atomized first metal in a molten second metal.
(3)容器本体に収容した溶融状態の2金属系合金の一
部を、該容器本体に連通する測定容器内に滞留させ、 該測定容器内に滞留させた合金の温度を変化させて、該
合金の初晶温度を測定し、 該初晶温度より、熱解析法によって、前記合金を構成す
る成分金属の濃度を得ることを特徴とする2金属系合金
の成分測定方法。
(3) Part of the molten bimetallic alloy contained in the container body is retained in a measurement container communicating with the container body, and the temperature of the alloy retained in the measurement container is changed to A method for measuring the components of a two-metal alloy, comprising: measuring the primary crystal temperature of the alloy; and using the primary crystal temperature to obtain the concentration of component metals constituting the alloy by a thermal analysis method.
(4)前記初晶温度の測定に先だち、前記測定容器内の
合金の温度と前記容器本体内の合金の温度とに50〜1
00℃の温度差を設け、該測定容器内の合金と該容器本
体内の合金とを対流させて攪拌する特許請求の範囲第3
項記載の方法。
(4) Prior to the measurement of the primary crystal temperature, the temperature of the alloy in the measurement container and the temperature of the alloy in the container body are 50 to 1
Claim 3: A temperature difference of 00°C is provided to cause the alloy in the measurement container and the alloy in the container body to convect and stir.
The method described in section.
JP60233594A 1985-10-19 1985-10-19 Apparatus and method for measuring component of two-metal type alloy Pending JPS6293638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233594A JPS6293638A (en) 1985-10-19 1985-10-19 Apparatus and method for measuring component of two-metal type alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233594A JPS6293638A (en) 1985-10-19 1985-10-19 Apparatus and method for measuring component of two-metal type alloy

Publications (1)

Publication Number Publication Date
JPS6293638A true JPS6293638A (en) 1987-04-30

Family

ID=16957504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233594A Pending JPS6293638A (en) 1985-10-19 1985-10-19 Apparatus and method for measuring component of two-metal type alloy

Country Status (1)

Country Link
JP (1) JPS6293638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113383A (en) * 2017-12-22 2019-07-11 国立大学法人九州工業大学 Estimating method of material mixture ratio of metal complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113383A (en) * 2017-12-22 2019-07-11 国立大学法人九州工業大学 Estimating method of material mixture ratio of metal complex

Similar Documents

Publication Publication Date Title
Furukawa et al. Thermal properties of aluminum oxide from 0 to 1200 K
Mulcahy et al. A stirred-flow reactor for investigating the kinetics of gaseous reactions: application to the decomposition of di-t-butyl peroxide
Furukawa et al. Calorimetric properties of diphenyl ether from 0° to 570° K
CN107557528B (en) A kind of molten steel temperature regulation method and device thereof
Turchanin et al. Enthalpies of formation of liquid (copper+ manganese) alloys
JPS6293638A (en) Apparatus and method for measuring component of two-metal type alloy
JPH02105046A (en) Analyzing device
EP0057596B1 (en) Apparatus for measuring melting point and boiling point of a sample
Scatchard et al. Equilibrium of Solid α-Silver—Zinc Alloys with Zinc Vapor1
EP0114688B1 (en) Sampler and an apparatus for hydrogen determination in molten metal
McKisson et al. Heats of Formation of Sodium-Tin Alloys Determined With A New High Temperature Calorimeter
Bros High-temperature calorimetry in metallurgy
Chipman Equilibrium in the oxidation of liquid iron by steam and the free energy of ferrous oxide in liquid steel
Stretz et al. The high temperature heat content of liquid yttrium by levitation calorimetry
JP3712837B2 (en) Analysis method of pyrolysis reaction of solid
Solar et al. Hydrogen transport in stagnant molten iron
Mrowec et al. A new thermobalance for studying the kinetics of high-temperature sulfidation of metals
Tang et al. Manganese and silicon activities in liquid carbon‐saturated Mn‐Si‐C alloys
Wolf et al. α-Uranium pentafluoride. I. Characterization
Busfield et al. Studies in the thermochemistry of sulphones. Part 3.—Fusion and vaporization heats of sulphones of the type RSO 2 CH 3
McCrone et al. Microscope Cold Stage for Controlled Study over the Range-100° to+ 100° C.
EP0558130A2 (en) Apparatus for analysing carbon products
Brooks et al. The enthalpy of a solid and liquid titanium-aluminium-vanadium alloy
US4427443A (en) Process and apparatus for automating a vacuum degasification cycle for metal alloys
Schlinger et al. Temperature Gradients in Turbulent Gas Streams. Measurement of Temperature, Energy, and Pressure Gradients.