JPS6283007A - Hydrophilic treatment of hollow yarn - Google Patents

Hydrophilic treatment of hollow yarn

Info

Publication number
JPS6283007A
JPS6283007A JP22114685A JP22114685A JPS6283007A JP S6283007 A JPS6283007 A JP S6283007A JP 22114685 A JP22114685 A JP 22114685A JP 22114685 A JP22114685 A JP 22114685A JP S6283007 A JPS6283007 A JP S6283007A
Authority
JP
Japan
Prior art keywords
plasma
hollow fiber
gas
membrane
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22114685A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
笹木 勲
Kenji Kushi
憲治 串
Takuji Fujii
卓司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP22114685A priority Critical patent/JPS6283007A/en
Publication of JPS6283007A publication Critical patent/JPS6283007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To turn the micro bores inside the membrane and also the inner face of membrane hydrophilic and durable by carrying out the two-stage plasma treatment to treat the membrane in low temperature plasma with the gas which able to form the hydrophilic radical after the micro porous hollow yarn membrane being treated with the plasma polymerizable gas. CONSTITUTION:The micro porous hollow yarn membrane 3 made of hydrophobic polymer such as polyethylene and the like is placed in the belljar-type plasma treater 1, and is treated with the plasma polymerizable gas such as methane gas having gas pressure 10<-4>-1torr under the high-frequency electric discharge. After the said gas is exhausted, the activated gas, which is able to form the hydrophilic radical such as O<2> gas, is treated in the low temperature plasma having the activated gas pressure 10<-4>-1torr. The porous hollow yarn membrane treated with the two-stage plasma turns hydrophilic not only in its outer face but also in the micro bores inside the membrane and the entire inside of the membrane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微多孔質中空糸膜の耐久性に優れた親水化処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for making microporous hollow fiber membranes hydrophilic with excellent durability.

[従来の技術] 最近、種々の分離プロセスに対して中空糸膜が使用され
つつある。中空糸膜は、平膜に比べ格段に大きな膜面積
をもたせることができるという利点がある。中空糸膜の
開発当初は、セルロース系樹脂やシリコン樹脂等を材料
とした均質中空糸膜が主体であったが、最近では、ポリ
オレフィン系の樹脂等を素材とする微多孔質中空糸膜が
、その微多孔質膜の細孔の構造に起因する優れた分離性
能と、その製造が簡易であることから注目されている。
[Prior Art] Recently, hollow fiber membranes have been used for various separation processes. Hollow fiber membranes have the advantage of having a much larger membrane area than flat membranes. When hollow fiber membranes were initially developed, homogeneous hollow fiber membranes were mainly made of materials such as cellulose resins and silicone resins, but recently, microporous hollow fiber membranes made of polyolefin resins, etc. The microporous membrane has attracted attention because of its excellent separation performance due to its pore structure and because it is easy to manufacture.

しかしながら、このポリオレフィン系樹脂等を素材とす
る微多孔質中空糸膜を水系の分離プロセスに対して使用
する際には、中空糸膜の有する微細な細孔内を水が通過
できるようにするために、この中空糸膜を親水化処理し
て使用する必要がある。
However, when using microporous hollow fiber membranes made of polyolefin resins etc. for aqueous separation processes, it is necessary to allow water to pass through the fine pores of the hollow fiber membranes. In order to use this hollow fiber membrane, it is necessary to make it hydrophilic.

従来、このようなポリオレフィン系中空糸膜の現水化処
理は、中空糸膜を、例えばアルコール、界面活性剤等の
親水化剤中に浸漬したり、親水性化合物をコーティング
したりすることによって実施されていた。これらの親水
化処理法は極めて簡易な方法ではあるが、親水性の持続
性には乏しく、水中に浸漬されている間は、中空糸膜の
微細な細孔の親水性は保持されるが、一旦中空糸膜が乾
燥すると、その親水性は即座に失なわれるという問題点
があり、ll1)l久性に優れた親水化処理方法の開発
が望まれていた。
Conventionally, such hydrophilic treatment of polyolefin hollow fiber membranes has been carried out by, for example, immersing the hollow fiber membranes in a hydrophilic agent such as alcohol or a surfactant, or coating them with a hydrophilic compound. It had been. Although these hydrophilic treatment methods are extremely simple, the sustainability of hydrophilicity is poor, and while the hollow fiber membrane's fine pores retain their hydrophilicity while immersed in water, There is a problem in that once a hollow fiber membrane dries, its hydrophilicity is immediately lost, and it has been desired to develop a hydrophilic treatment method with excellent durability.

一方、従来より疎水性高分子物質の表面の親水化処理方
法としては種々の方法が知られている。
On the other hand, various methods are conventionally known as methods for making the surface of hydrophobic polymeric substances hydrophilic.

例えば空気中での紫外線照射により親水基を形成する方
法、コロナ放電処理による方法、火炎処理による方法、
酸化性薬品処理による方法、酸化性ガス処理による方法
、プラズマ処理による方法等を挙げることができるが、
これらの方法はいずれも処理直後の親水性は良好なもの
が得られるが、時間がたつにつれその親水性が低下して
いくことはよく知られているところである。
For example, a method of forming a hydrophilic group by ultraviolet irradiation in the air, a method of corona discharge treatment, a method of flame treatment,
Examples of methods include oxidizing chemical treatment, oxidizing gas treatment, plasma treatment, etc.
It is well known that, although all of these methods yield products with good hydrophilicity immediately after treatment, the hydrophilicity deteriorates over time.

−例を挙げれば、特公昭58− 14553号に開示さ
れたプラズマ処理方法によれば、プラスチック成形品の
表面を酸素ガスの低温プラズマで処理した後、一酸化炭
素またはアルゴンの低温プラズマで処理する方法が示さ
れている。この方法によればプラスチック成形品表面の
親水化と、成形品中のiT(Q31j剤のブリードの抑
制とが安定して達成されることが報告されているが、こ
のような方法では当該特許の実施例中に記載されている
ように親水性は依然として経時的に低下しており、親水
性の長+iJI保存安定性が要求される微多孔質中空糸
膜の親水化においては不十分である。
- For example, according to the plasma treatment method disclosed in Japanese Patent Publication No. 58-14553, the surface of a plastic molded product is treated with low-temperature plasma of oxygen gas, and then treated with low-temperature plasma of carbon monoxide or argon. A method is shown. It has been reported that this method can stably make the surface of a plastic molded product hydrophilic and suppress the bleeding of the iT (Q31j agent) in the molded product. As described in the examples, the hydrophilicity still decreases over time, and is insufficient for hydrophilizing microporous hollow fiber membranes that require long hydrophilicity + iJI storage stability.

更に、通常のプラズマ処理法は、フィルム、シート、成
形体には適用できるものの、中空糸のようなフィブリル
が形成された微多孔質膜ではフィブリル破壊がおこり分
離性能の低下が著しいため、微多孔質中空糸膜の親水化
には適用できなかった。
Furthermore, although normal plasma treatment methods can be applied to films, sheets, and molded bodies, microporous membranes with fibrils such as hollow fibers undergo fibril destruction, resulting in a significant drop in separation performance. It could not be applied to hydrophilization of hollow fiber membranes.

[発明が解決しようとする問題点] 本発明者らは、微多孔質中空糸膜の耐久性のある親水化
処理方法について鋭意検討した結果、微多孔質中空糸膜
に架橋構造を形成し得るガスを特定条件下でプラズマ取
合させた後、親水基を形成する活性ガスを用いて特定条
件下で低温プラズマ処理する二段プラズマ処理により、
長期の耐久親水性を単に中空糸膜の外表面だけでなく、
中空糸膜の膜内の極く微細な細孔表面および中空系膜の
内面まで付与できることを見い出し本発明を完成するに
至った。
[Problems to be Solved by the Invention] As a result of intensive study on a durable hydrophilic treatment method for microporous hollow fiber membranes, the present inventors found that a crosslinked structure can be formed in microporous hollow fiber membranes. Through two-stage plasma treatment, gases are combined with plasma under specific conditions, and then low-temperature plasma treatment is performed under specific conditions using an active gas that forms hydrophilic groups.
Long-term durable hydrophilicity is achieved not only on the outer surface of the hollow fiber membrane, but also on the outer surface of the hollow fiber membrane.
The present inventors have discovered that the present invention can be applied to the surface of extremely fine pores in hollow fiber membranes and to the inner surface of hollow membranes.

本発明のl」的は、微多孔質中空糸膜の外表面、膜内の
微細な細孔および膜内面の全てに対して耐久性のある親
水化を付与する簡易な処理方法を提供することにある。
The objective of the present invention is to provide a simple treatment method that imparts durable hydrophilization to all of the outer surface of a microporous hollow fiber membrane, the fine pores within the membrane, and the inner surface of the membrane. It is in.

[問題点を解決するだめのL段] すなわち、本発明の微多孔質中空糸膜の親水化処理方法
は、疎水性高分子からなる微多孔質中空糸IIQを、ガ
ス圧力がlθ″〜I Lorrのプラズマ重合性ガス中
で処理し、該中空糸膜上に架橋構造を有するプラズマ重
合膜を形成し、次いで該中空糸膜を親水性基を形成する
活性ガスのガス圧力が10″〜I torrの低温プラ
ズマ中で処理する工程を有して構成される。
[Last step L to solve the problem] That is, in the method for hydrophilizing a microporous hollow fiber membrane of the present invention, a microporous hollow fiber IIQ made of a hydrophobic polymer is heated at a gas pressure of lθ'' to I Lorr's plasma polymerizable gas to form a plasma polymerized membrane having a crosslinked structure on the hollow fiber membrane, and then the hollow fiber membrane is heated to a gas pressure of 10'' to I The method includes a process of processing in a low-temperature plasma of torr.

[発明を実施するための好適なIE様]本発明の微多孔
質中空糸膜の親水化処理方法に於いては、先ず微多孔質
中空糸膜に架橋構造を形成し得る特定のプラズマ刊合性
ガス中でブラズマ屯合処理を行なう。該プラズマ重合性
ガスとしては、一酸化炭素、二硫化炭素、あるいはメタ
ン、エタン、エチレン、アセチレン等の炭素原子数が4
以下の炭化水素等のガスが高度の架橋結合を有するプラ
ズマ重合膜を形成することができるので好ましく用いら
れるが、特にメタンおよび二硫化炭素が高密度の架橋プ
ラズマ重合膜を形成するので好ましい。
[Preferred IE for carrying out the invention] In the method for hydrophilizing a microporous hollow fiber membrane of the present invention, first, a specific plasma bonding method that can form a crosslinked structure in the microporous hollow fiber membrane is used. Perform plasma treatment in a gas atmosphere. Examples of the plasma polymerizable gas include carbon monoxide, carbon disulfide, or gases having 4 carbon atoms such as methane, ethane, ethylene, and acetylene.
The following gases such as hydrocarbons are preferably used because they can form a plasma-polymerized film having a high degree of cross-linking, and methane and carbon disulfide are particularly preferred because they form a cross-linked plasma-polymerized film with a high density.

これらプラズマ重合性ガスによるプラズマ重合は、lO
″′1〜5 torrの圧力下での低温プラズマ中で実
施され、微多孔質中空糸膜上にプラズマ重合膜が形成さ
れる。プラズマ重合を効率よ〈実施するには、プラズマ
重合性ガスのガス圧力は10−3〜3torrの範囲で
あることがより好ましい。ガス圧力がS tartを越
えるとプラズマ重合膜中の架橋密度が低くなり、中空糸
膜の表面に耐久性のある親水基が形成されない。逆にガ
ス圧力が10” tart未満の場合には微多孔質中空
糸膜のフィブリル破壊が顕著になる。
Plasma polymerization using these plasma polymerizable gases is performed using lO
It is carried out in a low-temperature plasma under a pressure of 1 to 5 torr to form a plasma polymerized membrane on a microporous hollow fiber membrane. It is more preferable that the gas pressure is in the range of 10-3 to 3 torr.When the gas pressure exceeds Start, the crosslinking density in the plasma polymerized membrane decreases, and durable hydrophilic groups are formed on the surface of the hollow fiber membrane. On the contrary, when the gas pressure is less than 10'' tart, fibril destruction of the microporous hollow fiber membrane becomes significant.

プラズマ重合性ガスの低温プラズマを発生させるには、
電極間に1例えば13.58 MHz 、10〜500
W程度の電力を印加すればよい。重合時間は、印加電圧
、プラズマガス濃度、処理対象となる中空糸膜の膜厚、
処理j4.処理中空糸膜の供給方法等によっても相違す
るが、0.1秒から5分程度重合すれば十分である0重
合時間が長くなり過ぎると微多孔質中空糸膜のフィブリ
ルが切断されたり、中空糸膜の孔がふさがれたりする。
To generate low-temperature plasma of plasma polymerizable gas,
between the electrodes, e.g. 13.58 MHz, 10-500
A power of about W may be applied. The polymerization time depends on the applied voltage, plasma gas concentration, the thickness of the hollow fiber membrane to be treated,
Processing j4. It is sufficient to polymerize for about 0.1 seconds to 5 minutes, although it varies depending on the method of supplying the treated hollow fiber membrane. If the polymerization time is too long, the fibrils of the microporous hollow fiber membrane may be cut or the hollow fibers may The pores in the thread membrane become blocked.

逆に重合時間が短か過ぎる場合はプラズマ重合膜の形成
が充分でなかったりする。好ましいプラズマ重合性ガス
の低温プラズマ重合時間は1秒から30秒の範囲である
。もちろん、このプラズマ重合に先立ち、処理対象であ
る中空糸膜の洗浄、乾燥処理等を実施してもよい。
On the other hand, if the polymerization time is too short, the formation of a plasma polymerized film may not be sufficient. The preferred low temperature plasma polymerization time of the plasma polymerizable gas is in the range of 1 second to 30 seconds. Of course, prior to this plasma polymerization, the hollow fiber membrane to be treated may be subjected to cleaning, drying, etc.

プラズマ重合に際しての中空糸膜の処理装置内の配役の
態様については種々の方法が適宜採用される。例えばプ
ラズマ処理装置内に中空糸膜を適当な量をばらけた状態
で放置して、プラズマ重合を実施してもよいし、あるい
はまた、プラズマ処理装置内に給糸ロールと捲糸ロール
とを配設し、これらロールを回転させつつ、ロール間に
直線状に張られた中空糸膜に対して連続的にプラズマ重
合を実施してもよい。
Various methods can be appropriately adopted for the arrangement of hollow fiber membranes in the processing apparatus during plasma polymerization. For example, plasma polymerization may be carried out by leaving an appropriate amount of hollow fiber membranes in a scattered state in a plasma processing apparatus, or alternatively, a yarn feeding roll and a winding roll are arranged in a plasma processing apparatus. Plasma polymerization may be continuously performed on the hollow fiber membrane stretched linearly between the rolls while rotating these rolls.

このプラズマ重合により、微多孔質中空糸膜の表面(細
孔および中空糸内面をも含む)に使用した活性ガスの種
類に応じて、高密度の架橋プラズマ重合膜が形成される
。多孔質中空糸膜の表面に形成されるプラズマ重合膜は
、多孔質中空糸膜の材質、用途に応して最適なものがあ
るため、その材質、用途にかなったプラズマ重合性ガス
を使用して架橋プラズマ重合膜を生成させるのがよい。
Through this plasma polymerization, a high-density crosslinked plasma polymerized membrane is formed depending on the type of active gas used on the surface of the microporous hollow fiber membrane (including the pores and inner surface of the hollow fiber). The plasma polymerized membrane formed on the surface of a porous hollow fiber membrane is optimal depending on the material and purpose of the porous hollow fiber membrane, so use a plasma polymerizable gas that is suitable for the material and purpose. It is preferable to generate a crosslinked plasma polymerized film by

1−記のようにしてプラズマ重合性ガスによる低温プラ
ズマ重合を行った後、プラズマ重合性ガスの導入を停止
し、次に親水性基を形成する活性ガスを通気して圧力を
10′I〜I Torr、好ましくは10−3〜10’
 Torrに調整保持し、先のプラズマ重合性ガスの場
合のプラズマ発生方法に準じてプラズマを発生させ、プ
ラズマ処理を行う。この際のプラズマ処理時間も、印加
電圧等によっても相違するが、一般的には0.1秒〜1
分程度処理することによって十分[1的が達成されが、
より好ましくは1秒から10秒の範囲である。
After performing low-temperature plasma polymerization using a plasma polymerizable gas as described in 1-, the introduction of the plasma polymerizable gas is stopped, and then the active gas that forms a hydrophilic group is vented to increase the pressure to 10'I~. I Torr, preferably 10-3 to 10'
Torr is adjusted and maintained, and plasma is generated according to the plasma generation method for the plasma polymerizable gas described above, and plasma processing is performed. The plasma treatment time at this time also varies depending on the applied voltage, etc., but generally it is 0.1 seconds to 1 second.
By processing for about a minute, it is sufficient [1 target is achieved,
More preferably, it is in the range of 1 second to 10 seconds.

活性ガスの圧力が1 torrを超える場合は中空糸膜
の表面に充分な親水基が形成されず、一方、ガス圧力が
10” torr未溝の場合は中空糸膜の劣化やフィブ
リル破壊が顕著になる。処理時間については0.1秒未
満の時間では中空糸膜表面に十分な親水性基が形成され
ず、逆に1分を超える処理時間では先に形成されていた
プラズマπ金膜が活性プラズマにより除去されたり、微
多孔質中空糸膜のフィブリルが切断されたりする。
If the pressure of the active gas exceeds 1 torr, sufficient hydrophilic groups will not be formed on the surface of the hollow fiber membrane, while if the gas pressure is less than 10" torr, the deterioration of the hollow fiber membrane and fibril destruction will be significant. Regarding the treatment time, if the treatment time is less than 0.1 seconds, sufficient hydrophilic groups will not be formed on the surface of the hollow fiber membrane, and conversely, if the treatment time is more than 1 minute, the previously formed plasma π gold film will be activated. It is removed by plasma or the fibrils of the microporous hollow fiber membrane are cut.

プラズマ処理により親水性基を形成する活性ガスとして
は、酸素、窒素、アンモニア、メチルアミン、ジメチル
アミン、一酸化窒素、二酸化窒素、亜硫酸ガス、硫化水
素等のガスが優れた親水性基を形成するので好ましく、
これらは混合して使用してもよい。これらガスの取り扱
い性を考慮すると特に酸素およびアンモニアが好ましい
Active gases that form hydrophilic groups through plasma treatment include oxygen, nitrogen, ammonia, methylamine, dimethylamine, nitrogen monoxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide, and other gases that form excellent hydrophilic groups. Therefore, it is preferable,
These may be used in combination. Considering the ease of handling these gases, oxygen and ammonia are particularly preferred.

以I−のプラズマ重合およびプラズマ処理による二段階
処理により、フィブリル破壊をおこすことなく中空糸膜
に経時耐久性のある親水性を付与することが始めて可能
となった。
By the two-step treatment of plasma polymerization and plasma treatment described in I- below, it has become possible for the first time to impart hydrophilicity that is durable over time to hollow fiber membranes without causing fibril destruction.

一般に酸素、アンモニア等の活性ガスによるプラズマ処
理によりプラスチック表面が親水化されることはよく知
られているが、得られた親水性が経時的に劣化すること
もよく認められているところである。親水性の経時劣化
の原因としては、プラスチック表面に形成された親水基
が高分子のミクロ遅動によりプラスチック内部に回転し
、もぐり込んでしまうからであると一般に理解されてい
る。ところが親水性基を形成する活性ガスによるプラズ
マ処理の前に微多孔質中空糸膜表面に高密度の架橋プラ
ズマ重合膜を形成しておけば、第二段階のプラズマ処理
で得られた親水性が経時的に劣化しなくなることが判明
した。これは、二硫化)父素、メタン等のプラズマ重合
性ガスのプラズマ重合膜が炭化水素鎖を主体とする疎水
性高分子の表面部に高密度の架橋膜をうまく形成し、こ
れがプラスチック表面に形成された親水基の回転による
もぐり込みを防止する機能を果すためと考えられる。
Although it is generally known that plastic surfaces are made hydrophilic by plasma treatment with active gases such as oxygen and ammonia, it is also well recognized that the obtained hydrophilicity deteriorates over time. It is generally understood that the cause of hydrophilic deterioration over time is that hydrophilic groups formed on the plastic surface rotate and crawl into the interior of the plastic due to the microscopic slow motion of the polymer. However, if a high-density crosslinked plasma polymerized membrane is formed on the surface of the microporous hollow fiber membrane before plasma treatment with an active gas that forms hydrophilic groups, the hydrophilicity obtained in the second stage of plasma treatment can be improved. It has been found that it does not deteriorate over time. This is because a plasma-polymerized film of plasma-polymerizable gases such as father (disulfide) and methane successfully forms a high-density crosslinked film on the surface of a hydrophobic polymer mainly composed of hydrocarbon chains, and this forms on the plastic surface. This is thought to be because it functions to prevent the formed hydrophilic group from slipping in due to rotation.

したがって、第一段階のプラズマ屯合性カス雰囲気ドの
プラズマ利金条件は前記した範囲に必ず設定する必要が
あり、この条件範囲から外れた条件Fの処理によっては
本発明の目的は達成されない。
Therefore, it is necessary to set the plasma interest rate condition of the first step plasma merging gas atmosphere within the above-mentioned range, and the object of the present invention cannot be achieved by processing under condition F outside of this condition range.

なお、プラズマ処理方法には、上記の方法以外にも種々
あり、例えば放電周波数帯としては低周波、マイクロ波
、直流などを用いることができ、プラズマ発生様式もグ
ロー放電のほかコロナ放電、火花放電、無声放電などを
選ぶことができる。また電極も外部電極のほか内部電極
、コイル型など容量結合、誘導結合のいずれでもよい。
In addition, there are various plasma processing methods other than the above-mentioned methods. For example, low frequency, microwave, direct current, etc. can be used as the discharge frequency band, and the plasma generation mode also includes glow discharge, corona discharge, and spark discharge. , silent discharge, etc. In addition to external electrodes, the electrodes may also be internal electrodes, coil type, capacitive coupling, or inductive coupling.

しかし、どのような方法を採用するにせよ、放電熱によ
り処理対象である微多孔質中空糸膜の細孔が変形しない
ような処理条件を選定する必要がある。
However, no matter what method is adopted, it is necessary to select treatment conditions such that the pores of the microporous hollow fiber membrane to be treated are not deformed by the discharge heat.

プラズマ処理の対象とされる微多孔質中空糸膜について
は特に制限はないが、特に他の処理方法では耐久性のあ
る親水化が困難な、例えばポリエチレン、ポリプロピレ
ン、ポリエステル等の疎水性結晶性高分子を溶融紡糸し
て得られるプレカーサーを冷延伸および必要に応じて熱
延伸、熱セットして得られる微多孔質中空糸繊維が好適
である。
There are no particular restrictions on the microporous hollow fiber membranes that can be subjected to plasma treatment, but especially hydrophobic crystalline membranes such as polyethylene, polypropylene, and polyester that are difficult to make durable and hydrophilic using other treatment methods. Microporous hollow fiber fibers obtained by cold-stretching a precursor obtained by melt-spinning molecules and, if necessary, hot-stretching and heat-setting, are suitable.

とりわけ、ポリエチレンからなる特開昭57−1361
14号に開示されているような微多孔質中空糸膜および
ポリプロピレンからなる特公昭56−52123号に開
示されているような微多孔質中空糸膜に於いては、上記
プラズマ処理によっても種々の物性の低下、化学的劣化
も殆ど認られず、好ましい処理対象中空糸膜である。
In particular, JP-A-57-1361 made of polyethylene
In the microporous hollow fiber membrane as disclosed in No. 14 and the microporous hollow fiber membrane as disclosed in Japanese Patent Publication No. 56-52123 made of polypropylene, various effects can be obtained by the above plasma treatment. There is almost no decrease in physical properties or chemical deterioration, making it a preferred hollow fiber membrane to be treated.

」二記ポリエチレンからなる微多孔質中空糸膜は、微小
空孔が中空系膜の内壁面から外壁面へ相互に繋がった積
層構造を有し、空孔率が30〜90体積%で、その微小
空孔が (1) [lI長方向に配列したミクロフィブリルと該
ミクロフィブリルに対してほぼ直角に連結した結節部に
より形成される短冊状微小空孔であり、 (2)該ミクロフィブリルのqz均的な大さJ、と平均
的な長さんが du = 0.02〜0.3 騨、 L = 0 、5
〜3 、0 unであり、 (3)該結節部の繊維長方向への平均的な長さZKがね
〜0.1〜1.0μ であり、 (4)短1111状微小空孔の平均的な幅(TVと平均
的な長さZvが dV/dM 〜0.3〜5、 lv / dv =  
3〜50の関係にある、 ことにより特定されるものである。更に中空糸膜のエタ
ノール中でのバブルポイントが1〜20Kg/cm2の
範囲内に入るものが好適である。
The microporous hollow fiber membrane made of polyethylene mentioned above has a laminated structure in which micropores are interconnected from the inner wall surface to the outer wall surface of the hollow membrane, and the porosity is 30 to 90% by volume. The micropores are (1) rectangular micropores formed by microfibrils arranged in the length direction and nodules connected approximately at right angles to the microfibrils, and (2) qz of the microfibrils. The average size J and the average length are du = 0.02~0.3, L = 0,5
~3,0 un, (3) the average length ZK of the nodule in the fiber length direction is ~0.1~1.0μ, (4) the average length of the short 1111-shaped micropores. width (TV and average length Zv dV/dM ~0.3~5, lv/dv =
It is specified by having a relationship between 3 and 50. Furthermore, it is preferable that the bubble point of the hollow fiber membrane in ethanol falls within the range of 1 to 20 kg/cm2.

また、−1−記ポリプロピレンからなる微多孔質中空糸
膜は、その周壁部の厚さが40μ未満であり、かつその
周壁部には互いにつながった多数の微小空孔の孔半径の
分布曲線が200−1200への範囲内に少なくとも一
つの極大点を有することにより特定されるものである。
In addition, the microporous hollow fiber membrane made of polypropylene described in -1- has a peripheral wall thickness of less than 40μ, and the peripheral wall has a pore radius distribution curve of a large number of interconnected micropores. It is specified by having at least one local maximum point within the range of 200-1200.

このようにしてプラズマ処理された微多孔質中空糸膜は
、その外表面だけでなく、膜内の微細な細孔および内面
の全体に対し耐久性のある親水化が付与されている。プ
ラズマ処理により中空糸膜の外表面が親水化されること
は当然予測されることであるが、処理後の中空糸膜の外
表面の親水性は、保水性を測定することにより確認され
る。
In the microporous hollow fiber membrane treated with plasma in this manner, durable hydrophilization is imparted not only to the outer surface but also to the fine pores within the membrane and the entire inner surface. Although it is naturally expected that the outer surface of the hollow fiber membrane will be made hydrophilic by plasma treatment, the hydrophilicity of the outer surface of the hollow fiber membrane after treatment is confirmed by measuring water retention.

中空糸膜の保水性は以下の方法によって求めることがで
きる0例えば中空糸膜を内部に収納したモジュールを作
成し、このモジュールにエタノール、次いで水を通すこ
とによってモジュール内を完全に水置換し、この状態で
中空糸膜の膜面積、時間、圧力当りの透水量を求める0
次いでモジュール内の水を槽液した後、一定時間経過後
に再度モジュール内に水を供給し、初期とほぼ同様な条
件下で透水量を求める。この時の透水量を初期の透水量
で割って百分率表示するが、保水性が不良の中空系につ
いては初期と同等の透水量が得られない。
The water retention capacity of a hollow fiber membrane can be determined by the following method. In this state, calculate the membrane area of the hollow fiber membrane, time, and water permeation rate per pressure.
Next, after draining the water in the module into a tank liquid, water is again supplied into the module after a certain period of time has elapsed, and the amount of water permeation is determined under almost the same conditions as the initial stage. The water permeation amount at this time is divided by the initial water permeation amount and expressed as a percentage, but for hollow systems with poor water retention, the same water permeation amount as the initial amount cannot be obtained.

また、プラズマ処理により中空糸膜の膜内の微細な細孔
およびI+!2内面が親水化されていることは、処理後
の中空糸膜の透水圧を測定することにより確認される。
In addition, plasma treatment can reduce the fine pores in the hollow fiber membrane and I+! 2. It is confirmed that the inner surface has been made hydrophilic by measuring the water permeability pressure of the hollow fiber membrane after treatment.

透水圧は1例えば一端を封止した中空糸膜の中空部に水
圧をかけて水を供給し。
The permeation pressure is 1. For example, water is supplied by applying water pressure to the hollow part of a hollow fiber membrane whose one end is sealed.

水が中空糸膜を通って一定の水量で出水し始めるときの
水圧として求められる。
It is determined as the water pressure when a constant amount of water begins to flow through the hollow fiber membrane.

[発明の効果] このような本発明の処理方法によれば、疎水性高分子か
らなる微多孔質中空糸膜に対して、その外表面あみなら
ず、膜内の微細な細孔および内面の全てに対して耐久性
のある親水化を簡易に付与することが可能であり、独特
なミクロ構造の細孔を有し、優れた分離性能をもつ疎水
性高分子からなる微多孔質中空糸膜の応用分野を、より
拡大することが可能となった。
[Effects of the Invention] According to the treatment method of the present invention, not only the outer surface of a microporous hollow fiber membrane made of a hydrophobic polymer but also the fine pores and inner surface of the membrane are treated. A microporous hollow fiber membrane made of a hydrophobic polymer that can easily impart durable hydrophilic properties to any substance, has a unique microstructure of pores, and has excellent separation performance. It has become possible to further expand the field of application.

[実施例] 以下1本発明を実施例に基づき、より詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail based on examples.

実施例1 乎均内径が270μs、空孔率が70%、バブルポイン
トが2.2kg/cm2のポリエチレン中空糸(三菱レ
イヨン株製、グレードEHF−2707)を、平行平板
の内部電極を有する第1図に示したペルジャー型のプラ
ズマ処理機(電極間の距離は2ha)の中に、第1図の
ような状態で設置した。13.5EIMHzの高周波放
電下、出力50W、メタンガスの圧力1torrで、1
0秒間処理を行なった0次いでメタンガスガスを排気し
た後、02ガスを導入し、02ガスの圧力0.01to
rr、放電出力50Wで5秒間処理した。
Example 1 A polyethylene hollow fiber (manufactured by Mitsubishi Rayon Co., Ltd., grade EHF-2707) with an average inner diameter of 270 μs, a porosity of 70%, and a bubble point of 2.2 kg/cm2 was used as a first fiber having a parallel plate inner electrode. It was installed in the Pelger-type plasma processing machine shown in the figure (distance between electrodes is 2 ha) in the state shown in FIG. 1. Under high frequency discharge of 13.5EIMHz, output 50W, methane gas pressure 1torr, 1
After processing for 0 seconds and exhausting the methane gas, 02 gas was introduced and the pressure of 02 gas was 0.01 to
rr, and a discharge output of 50 W was applied for 5 seconds.

得られた中空糸を一週間放置した後、透水圧と保水性を
測定したところ、透水圧は3.5kg/cm2. 4時
間後に測定した保水性は99.8%であった。これに対
し未処理の中空糸EHF−2707の透水圧は5.6k
g/am2.4時間後の保水性は70%であった。
After the obtained hollow fibers were left for one week, water permeability and water retention were measured, and the water permeability was 3.5 kg/cm2. Water retention measured after 4 hours was 99.8%. On the other hand, the permeability pressure of untreated hollow fiber EHF-2707 is 5.6k.
Water retention after 2.4 hours in g/am was 70%.

更に、上記のプラズマ処理を行なった中空糸を6ケ月間
放置しておき、透水圧と保水性の再測定を行なったとこ
ろ、透水圧は3.f1kg/c■2.4時間後の保水性
は 100%を示し、優れた耐久親水性のあることが確
認された。
Furthermore, when the hollow fibers subjected to the above plasma treatment were left for 6 months and the water permeability and water retention properties were remeasured, the water permeability was 3. The water retention property after 2.4 hours was 100%, confirming that it had excellent durable hydrophilicity.

実施例2 実施例1で用いたのと同じ中空糸EHF−2707を、
第2図に示す13.58)Hlzの高周波誘導結合の鋼
管を有するガラス製チューブの中を連続的に通過できる
ように製作したプラズマ処理装置中に設置した。中空糸
をチューブ内を50m/secの速度で連続的に通しな
がら、高周波出力toow、 cs2ガス圧力0.01
tarrで処理した。放電区間は約30cmなので、処
理時間は約8 secである0次いで、C82ガスを排
気したのち、NH3ガスを導入し、中空糸を逆方向に5
 cm/secの速度で通しながら、高周波出力100
W、N)+3ガス圧力0.OO?torrで処理した。
Example 2 The same hollow fiber EHF-2707 used in Example 1 was
The plasma processing apparatus was installed in a plasma processing apparatus manufactured so that it could continuously pass through a glass tube having a high-frequency inductively coupled steel tube of 13.58) Hlz shown in FIG. While the hollow fiber was passed continuously through the tube at a speed of 50 m/sec, the high frequency output was too high and the cs2 gas pressure was 0.01.
Processed with tarr. Since the discharge section is about 30 cm, the processing time is about 8 seconds.Next, after exhausting the C82 gas, NH3 gas is introduced, and the hollow fiber is moved in the opposite direction for 5 seconds.
High frequency output 100 while passing at a speed of cm/sec
W, N) +3 gas pressure 0. OO? Processed with torr.

処理時間は約8 secである。The processing time is approximately 8 seconds.

得られた中空糸の1週間放置後の透水圧と保水性は、そ
れぞれ:18kg/am2.102%(4時間後)であ
った。同じサンプルを6ケ月間放置した後、透水圧と保
水性を再測定したところ、それぞれ2.9kg/ cm
2 と 101%(4時間後)となり、優れた耐久親水
性を示した。
The water permeability and water retention of the obtained hollow fibers after being left for one week were 18 kg/am 2.102% (after 4 hours), respectively. After the same sample was left for 6 months, the water permeability and water retention were re-measured and found to be 2.9 kg/cm each.
2 and 101% (after 4 hours), indicating excellent durable hydrophilicity.

参考例1 実施例1と同様の実験をポリエチレン製フィルムについ
て行ない1週間後、1ケ月後、3ケ月後、6ケ月後の水
に対する接触角を測定したところ、それぞれ43.44
.42.43度であった。
Reference Example 1 An experiment similar to Example 1 was conducted on a polyethylene film, and the contact angle with water was measured after 1 week, 1 month, 3 months, and 6 months, and the results were 43.44, respectively.
.. It was 42.43 degrees.

比較例1 実施例1と同じ中空糸およびプラズマ処理機を用いて、
中空糸を出力50W、02圧力0.4torrで10分
間処理した。
Comparative Example 1 Using the same hollow fiber and plasma treatment machine as in Example 1,
The hollow fiber was treated at an output of 50 W and an O2 pressure of 0.4 torr for 10 minutes.

この中空糸の6ケ月後の透水圧と保水性を測定したとこ
ろ、透水圧は5.1・kg/cm2.4時間後の保水性
は75%と不良であった。また、透水性測定中に中空糸
にピンホールが発生していることが観察され、その部分
より水が噴出した。一方、この中空糸の表面を電子顕微
鏡で観察したところ、多数のフィブリルが切断されてい
ることが判明した。
When the water permeability and water retention of this hollow fiber were measured after 6 months, the water permeability was 5.1·kg/cm and the water retention after 2.4 hours was poor at 75%. Furthermore, during the water permeability measurement, it was observed that pinholes were generated in the hollow fibers, and water spouted from the pinholes. On the other hand, when the surface of this hollow fiber was observed using an electron microscope, it was found that many fibrils were cut.

比較例2 実施例1と同じ中空糸及びプラズマ処理機を用いて、中
空糸をまず出力150W、メタンガス圧力2 torr
で10分間処理を行ない、次いでメタンガスをυ[気し
た後、02ガスを導入し、02ガス圧力2torr、出
力 +50W テ10分間処理した。
Comparative Example 2 Using the same hollow fiber and plasma treatment machine as in Example 1, the hollow fiber was first treated at an output of 150 W and a methane gas pressure of 2 torr.
After evaporating methane gas for 10 minutes, 02 gas was introduced, and treatment was performed for 10 minutes at 02 gas pressure of 2 torr and output of +50 W.

得られた中空糸を6ケ月間放置した後、透水圧と保水性
をΔ11定した。透水圧は5.6kg/ cm2、4時
間後の保水性は72%と不良であり、透水圧測定中にピ
ンホールの発生による水の噴出が観察された。また、中
空糸の表面を電子顕微鏡で観察したところ、多数のフィ
ブリルが切断されていることが判明した。
After the obtained hollow fibers were left for 6 months, water permeability and water retention were determined as Δ11. The permeability pressure was 5.6 kg/cm2, and the water retention after 4 hours was poor at 72%, and water gushing due to the generation of pinholes was observed during the permeability measurement. Furthermore, when the surface of the hollow fiber was observed using an electron microscope, it was found that many fibrils were cut.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は1本発明のプラズマ処理方法に用
いる処理装謁の一例を示す模式図である。
FIGS. 1 and 2 are schematic diagrams showing an example of a processing apparatus used in the plasma processing method of the present invention.

Claims (1)

【特許請求の範囲】 1)疎水性高分子からなる微多孔質中空糸膜を、ガス圧
力が10^−^4〜1torrのプラズマ重合性ガス中
で処理し、該中空糸膜上に架橋構造を有するプラズマ重
合膜を形成し、次いで該中空糸膜を親水性基を形成する
活性ガスのガス圧力が10^−^4〜1torrの低温
プラズマ中で処理する工程を有してなる微多孔質中空糸
膜の親水化処理方法。 2)前記プラズマ重合膜の形成を、一酸化炭素、二硫化
炭素、または炭素原子数が4以下の炭化水素の低温プラ
ズマ中で実施する特許請求の範囲第1項記載の親水化処
理方法。 3)前記プラズマ重合膜の形成を、メタンまたは二硫化
炭素の低温プラズマ中で実施する特許請求の範囲第2項
記載の親水化処理方法。 4)前記活性ガスが酸素、窒素、アンモニア、メチルア
ミン、ジメチルアミン、一酸化窒素、二酸化窒素、亜硫
酸ガスおよび硫化水素からなる群より選ばれた一種以上
である特許請求の範囲第1項記載の親水化処理方法。 5)前記活性ガスが酸素またはアンモニアである特許請
求の範囲第4項記載の親水化処理方法。 6)プラズマ重合膜形成時のプラズマ重合時間が0.1
秒〜5分の範囲である特許請求の範囲第1項記載の親水
化処理方法。 7)前記活性ガスによる低温プラズマ中での処理時間が
0.1秒〜1分の範囲である特許請求の範囲第1項記載
の親水化処理方法。
[Scope of Claims] 1) A microporous hollow fiber membrane made of a hydrophobic polymer is treated in a plasma polymerizable gas with a gas pressure of 10^-^4 to 1 torr, and a crosslinked structure is formed on the hollow fiber membrane. A microporous membrane comprising the steps of: forming a plasma-polymerized membrane with Hydrophilic treatment method for hollow fiber membranes. 2) The hydrophilic treatment method according to claim 1, wherein the plasma polymerized film is formed in a low-temperature plasma of carbon monoxide, carbon disulfide, or a hydrocarbon having 4 or less carbon atoms. 3) The hydrophilic treatment method according to claim 2, wherein the plasma polymerized film is formed in a low-temperature plasma of methane or carbon disulfide. 4) The active gas according to claim 1, wherein the active gas is one or more selected from the group consisting of oxygen, nitrogen, ammonia, methylamine, dimethylamine, nitrogen monoxide, nitrogen dioxide, sulfur dioxide gas, and hydrogen sulfide. Hydrophilic treatment method. 5) The hydrophilic treatment method according to claim 4, wherein the active gas is oxygen or ammonia. 6) Plasma polymerization time during plasma polymerization film formation is 0.1
The hydrophilic treatment method according to claim 1, wherein the treatment time is in the range of seconds to 5 minutes. 7) The hydrophilic treatment method according to claim 1, wherein the treatment time in the low-temperature plasma using the active gas is in the range of 0.1 seconds to 1 minute.
JP22114685A 1985-10-05 1985-10-05 Hydrophilic treatment of hollow yarn Pending JPS6283007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22114685A JPS6283007A (en) 1985-10-05 1985-10-05 Hydrophilic treatment of hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22114685A JPS6283007A (en) 1985-10-05 1985-10-05 Hydrophilic treatment of hollow yarn

Publications (1)

Publication Number Publication Date
JPS6283007A true JPS6283007A (en) 1987-04-16

Family

ID=16762184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22114685A Pending JPS6283007A (en) 1985-10-05 1985-10-05 Hydrophilic treatment of hollow yarn

Country Status (1)

Country Link
JP (1) JPS6283007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers

Similar Documents

Publication Publication Date Title
EP0513390B1 (en) Porous hollow fiber membrane of polyethylene and production thereof
US5547756A (en) Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes
JP5567327B2 (en) Atmospheric pressure microwave plasma treated porous membrane
Abednejad et al. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization
CN101439265B (en) Hydrophilic modification method of polymer microporous film
KR100443873B1 (en) Microporous film capable of forming pores having uniform size and shape and manufacturing method thereof
US4073733A (en) PVA membrane and method for preparing the same
JP5342775B2 (en) Method for producing polyolefin microporous membrane and microporous membrane
Yang et al. Microfiltration membranes prepared from acryl amide grafted poly (vinylidene fluoride) powder and their pH sensitive behaviour
US4032440A (en) Semipermeable membrane
JPS6261329B2 (en)
CN111644080B (en) High-hydrophilicity nanofiber coating-based nanofiltration membrane and preparation method thereof
JP5349151B2 (en) Grafted hollow fiber membrane and method for producing the same
US4734112A (en) Liquid membrane
GB2089285A (en) Hollow fiber membrane for separating gases and process for producing the same
Shimomura et al. Preparation of polyacrylonitrile reverse osmosis membrane by plasma treatment
JPS6283007A (en) Hydrophilic treatment of hollow yarn
Pal et al. Hydrophilic surface modification of polyacrylonitrile based membrane: effect of low temperature radio frequency carbon dioxide plasma
JPS6186908A (en) Treatment for making hollow yarn hydrophilic
GB2033830A (en) Process for producing polyacrylonitrile reverse osmotic membranes
Vigo et al. Poly (vinyl chloride) ultrafiltration membranes modified by glow discharge grafting of poly (acrylic acid)
Kravets et al. Modification of Poly (Ethylene Terephthalate) Track Membrane Properties by Plasma Chemical Method
JPS6259607B2 (en)
JPS60172309A (en) Preparation of compound film comprising hollow yarn
JP2001323091A (en) Method for processing surface of polymer