JPS6280971A - Internal reform catalyst material for fuel cell and its manufacture - Google Patents

Internal reform catalyst material for fuel cell and its manufacture

Info

Publication number
JPS6280971A
JPS6280971A JP60217910A JP21791085A JPS6280971A JP S6280971 A JPS6280971 A JP S6280971A JP 60217910 A JP60217910 A JP 60217910A JP 21791085 A JP21791085 A JP 21791085A JP S6280971 A JPS6280971 A JP S6280971A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
metal oxide
catalyst
catalyst material
voids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217910A
Other languages
Japanese (ja)
Inventor
Kazuhisa Higashiyama
和寿 東山
Susumu Yoshioka
進 吉岡
Makoto Shimoda
誠 下田
Tadataka Murakami
村上 忠孝
Masahito Takeuchi
将人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60217910A priority Critical patent/JPS6280971A/en
Publication of JPS6280971A publication Critical patent/JPS6280971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a catalyst material having thin thickness, wide area, and high mechanical strength by constituting with a catalyst carrier of porous particles of metals oxide filled in the voids of nonwoven fabric and catalytic active material dispersed on the surface of the catalyst carrier. CONSTITUTION:A catalyst material is formed with metal oxide fibers 1, voids 3 of fiber nonwoven fabric, and metal oxide porous particles 2 filled in the voids. Metal oxide fibers or particles are partially sintered by baking at high temperature and its strength is increased. Peeling-off or coming-off of active material which occurs when metal core is used is prevented. In addition, if alkali metal oxide or its precursor is added before baking, fibers and particles form a complex oxide with alkali metal oxide to bind both materials strongly. Thereby, mechanical strength of a molding is increased even if it is thin and has wide area.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、熔融炭酸塩型燃料電池の内部改質型触媒材料
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an internally reformed catalyst material for a molten carbonate fuel cell and a method for producing the same.

〔発明の背景〕[Background of the invention]

内部改質型触媒は、電池内部に設置されるため炭酸塩蒸
気に常にさらされる。そのため、触媒全構成する物質は
耐溶融塩性に優れていなければならない。このような材
料の特殊性に加え、さらに■薄層、■広面積、■高圧縮
強度、■高クリープ強度等を満足する構成及び構造でな
ければならない。
Internal reforming catalysts are installed inside the cell and are constantly exposed to carbonate vapor. Therefore, all the materials constituting the catalyst must have excellent molten salt resistance. In addition to these special characteristics of the material, it must also have a configuration and structure that satisfies (1) thin layer, (2) wide area, (2) high compressive strength, and (2) high creep strength.

このような要求を満足する触媒として、例えば、特開昭
59−27473号公報に示されるような、金属板上に
電気泳動法によシセラミック多孔質担体層を形成し、こ
れに触媒活性物質を分散させた”コーティング触媒”が
挙げられる。この発明では、形成される触媒層は極めて
薄く、また、その広面積化も比較的容易で燃料電池用の
触媒として優れたものである。
As a catalyst that satisfies these requirements, for example, as shown in Japanese Patent Application Laid-Open No. 59-27473, a ceramic porous carrier layer is formed on a metal plate by electrophoresis, and a catalytically active substance is added to this layer. An example of this is a "coated catalyst" in which In this invention, the catalyst layer formed is extremely thin, and it is relatively easy to increase the area of the catalyst layer, making it excellent as a catalyst for fuel cells.

しかし、この種の6コーテイング触媒”は、金属板と触
媒層との結合が物理的な付着力のみによるものであシ、
かつ、触媒層自身の強度もそれほど大きくないため、そ
の製造過程、あるいは、使用時に触媒層がはく離し易い
という問題がある。
However, with this type of 6-coated catalyst, the bond between the metal plate and the catalyst layer is only due to physical adhesion;
Moreover, since the strength of the catalyst layer itself is not so high, there is a problem that the catalyst layer is easily peeled off during the manufacturing process or during use.

”コーティング触媒”は金属板上に触媒層を付着させる
ものであるが、これに対して”成形触媒”は、打錠ある
いは押出し等の操作により触媒担体を所定の形状に予め
成形するものである。この種の触媒は一般の化学工業や
石油化学工業等に広く利用されておシ、その製造技術も
既に確立されている。しかし、この触媒製造技術は、本
来比較的小さな、ペレット状、ないしは、ハニカム状の
触媒を対象としたもので、面積1m!程度の燃料電池の
触媒用′としては必ずしも充分ではない。仮シに、押出
しあるいは加圧成形により所定の面積。
A "coated catalyst" is one in which a catalyst layer is attached to a metal plate, whereas a "shaped catalyst" is one in which a catalyst carrier is preformed into a predetermined shape by operations such as tabletting or extrusion. . This type of catalyst is widely used in the general chemical industry, petrochemical industry, etc., and its manufacturing technology has already been established. However, this catalyst manufacturing technology was originally intended for relatively small catalysts in the form of pellets or honeycombs, with an area of 1 m! It is not necessarily sufficient for use as a catalyst in a fuel cell. A predetermined area is created by extrusion or pressure molding on a temporary sheet.

厚さのものが得られたとしても、その機械的強度や成形
体の平面性は必ずしも満足ゆくものでないことが予想さ
れる。
Even if a thick product is obtained, it is expected that the mechanical strength and flatness of the molded product will not necessarily be satisfactory.

しかし、1成形触媒”は6コーテイング触媒”に比較し
て製造過程も簡便でその技術も確立されているものが多
いため、触媒性能も、信頼性の高い安定したものが得ら
れ易いという大きな利点をもつ。
However, compared to 6-coated catalysts, ``single-molded catalysts'' have a simpler manufacturing process and many have established technologies, so they have the great advantage of being able to easily obtain highly reliable and stable catalyst performance. have.

そこで、薄層化、広面積化に対応でき、かつ、機械的強
度も充分大きい“成形触媒″を得るための新しい触媒材
料の構成が必要となる。
Therefore, there is a need for a new catalyst material structure to obtain a "shaped catalyst" that can be made thinner and larger in area, and has sufficiently high mechanical strength.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、薄層、広面積で、かつ、機械的強度に
優れた内部改質型熔融炭酸塩燃料電池用の成形触媒材料
とその製造方法を提供することにある。
An object of the present invention is to provide a shaped catalyst material for an internally reformed molten carbonate fuel cell that has a thin layer, a wide area, and excellent mechanical strength, and a method for producing the same.

〔発明の概要〕[Summary of the invention]

通常、セラミック粒子成形体、特に、薄層成形体の機械
的強1ft−上げるには、金網を芯材に使用したり、繊
維質材料を混入することが行なわれる。
Usually, in order to increase the mechanical strength of a ceramic particle molded body, particularly a thin layer molded body, by 1 ft., a wire mesh is used as a core material or a fibrous material is mixed therein.

しかし、金網を芯材とした場合、成形体全体としての強
度は増加するものの、金網空間に充填された粒子層自体
の強度は変わらず、金属−セラミック間の結合も弱いた
め、はく離や脱落がおこる。
However, when wire mesh is used as a core material, although the strength of the molded body as a whole increases, the strength of the particle layer itself filled in the wire mesh space remains the same, and the bond between metal and ceramic is weak, resulting in peeling and falling off. It happens.

また、金属−セラミックの材質によっては熱膨張の大き
な差がはく離、脱落の主原因になる場合もある。
Further, depending on the metal-ceramic material, a large difference in thermal expansion may be the main cause of peeling or falling off.

一方、繊維質材料を混入する場合にもセラミック粒子と
の混合の際に繊維が切断され充分に添加効果が上がらな
い等の問題があろう 本発明は、従来高温用炉布等に利用されていた金属酸化
物繊維不織布における、触媒担体としての材質及び構造
の適性に着目したものである。
On the other hand, even if fibrous materials are mixed in, there may be problems such as the fibers being cut when mixed with ceramic particles and the addition effect not being sufficiently enhanced. This paper focuses on the suitability of the material and structure of the metal oxide fiber nonwoven fabric as a catalyst carrier.

第1図は、本発明による触媒材料の構造を概略的に示し
たものである。1は金属酸化物繊維、3は、繊維不織布
の空隙、2はその空隙内に充填された金属酸化物の多孔
質粒子である。金属酸化物の繊維及び粒子は高温度で焼
成することにより、(第2図に示す拡大概略図のように
)互いに一部融結し、強度を増加する。そのため、金属
を芯材に用いた場合のようにはく離や脱落などはおこら
ない。
FIG. 1 schematically shows the structure of the catalyst material according to the invention. Reference numeral 1 indicates metal oxide fibers, 3 indicates voids in the fibrous nonwoven fabric, and 2 indicates porous particles of metal oxide filled in the voids. By firing the metal oxide fibers and particles at high temperatures, they partially fuse together (as shown in the enlarged schematic diagram in FIG. 2) and increase their strength. Therefore, peeling or falling off does not occur, unlike when metal is used as the core material.

さらに、焼成前に、アルカリ金属酸化物、ないしは、そ
の前駆体(原料)全添加しておくと、繊維及び多孔質粒
子は焼成時にアルカリ金属酸化物との複酸化物を形成し
、この複酸化物が両者をより強く結合するようになる。
Furthermore, if the alkali metal oxide or its precursor (raw material) is completely added before firing, the fibers and porous particles will form a double oxide with the alkali metal oxide during firing, and this double oxide Things become more strongly connected to each other.

金属酸化物不織布は炉布としても使用されているもので
、不織布空隙への多孔質粒子の充填方法も懸濁液からの
濾過、あるいは、気体搬送濾過といった濾過操作の応用
により簡単に行なうことができる。そのため、混合時に
おける繊維の切断といった問題とは無縁となる。
Metal oxide nonwoven fabric is also used as furnace cloth, and the filling of porous particles into the voids of the nonwoven fabric can be easily carried out by applying filtration operations such as filtration from suspension or gas transport filtration. can. Therefore, there is no problem of fiber cutting during mixing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面だ基づいて詳述する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図は、本発明による触媒材料の製造方法の流れ図を
示したものである。本発明では、不織布の空隙内に多孔
質粒子を充填するのに、予め多孔質粒子を液体ないしは
気体に懸濁させたものを不織布に通じることによっても
達成できるが、本実施例では、不織布の没前した水溶液
中で直接多孔質粒子を沈澱させ、これを空隙内に充填す
る方法をとった。この方法によれば、空隙内に充填する
多孔質粒子の径を直接に制御できる。
FIG. 3 shows a flowchart of a method for producing a catalyst material according to the present invention. In the present invention, filling the voids of a nonwoven fabric with porous particles can also be achieved by passing porous particles suspended in a liquid or gas in advance through the nonwoven fabric. A method was used in which porous particles were directly precipitated in an aqueous solution and filled into the voids. According to this method, the diameter of the porous particles filled in the voids can be directly controlled.

第4図は、本実施例のa1沈澱生成とb、不織布での濾
過の二工程を行なうための装置概略図である。第4図に
おいて、1は空隙率95チのアルミナ(AItOs)不
織布で、ロート13のν紙がわりに設置されている。6
は溶液加熱浴で、多孔質粒子原料の硝酸アルミニウムC
AI2 (ND3 )2 )溶液を所定の温度に加熱で
きるよう二重管構造になっている。ここには攪拌翼8と
PH電極7が設置されている。10は硝酸アルミニウム
水溶液に添加されるアンモニア水である。ポンプ11に
よりロート13に滴下されたアンモニアは、加熱浴6か
ら供給される硝酸アルミニウムと攪拌棒15により混合
され反応することによって水酸化アルミニウム(AHO
H)s )全沈澱させる。このAI (OH) !沈澱
物はAl2O3多孔質粒子の前駆体であり、溶液温度に
対応した速度で粒子は成長する。濾過吸引ピン14は適
性な減圧になるようにコック13で調整されており、ロ
ート内に生成した沈澱は溶液とともに不織布1を通過す
る。その間不織布空隙に捕集されなかった微小な沈澱は
、循環ポンプ5により通路4を通り、浴6に戻る。コッ
ク14はロートからの液量とポンプ5の循環液量が等し
くなるように調整されている。微小粒子は装置間を循環
しながら成長し、最終的には不織布1の空隙に捕集され
る。
FIG. 4 is a schematic diagram of an apparatus for carrying out the two steps of this example: a1 precipitate formation and b) filtration using a nonwoven fabric. In FIG. 4, numeral 1 is an alumina (AItOs) nonwoven fabric with a porosity of 95 cm, which is placed in place of the ν paper in the funnel 13. 6
is a solution heating bath, and the porous particle raw material aluminum nitrate C
It has a double tube structure so that the AI2(ND3)2) solution can be heated to a predetermined temperature. A stirring blade 8 and a PH electrode 7 are installed here. 10 is ammonia water added to the aluminum nitrate aqueous solution. The ammonia dripped into the funnel 13 by the pump 11 is mixed with aluminum nitrate supplied from the heating bath 6 by the stirring bar 15 and reacts to form aluminum hydroxide (AHO).
H)s) Total precipitation. This AI (OH)! The precipitate is a precursor to the Al2O3 porous particles, and the particles grow at a rate that corresponds to the solution temperature. The filtration suction pin 14 is adjusted with a cock 13 so that the pressure is appropriately reduced, and the precipitate generated in the funnel passes through the nonwoven fabric 1 together with the solution. Fine precipitates that are not collected in the nonwoven fabric voids during this time are returned to the bath 6 through the passage 4 by the circulation pump 5. The cock 14 is adjusted so that the amount of liquid from the funnel and the amount of circulating liquid from the pump 5 are equal. The microparticles grow while circulating between the devices, and are eventually collected in the voids of the nonwoven fabric 1.

一度に多量の沈澱物が不織布を通過すると、空隙内を粒
子が均一に充填せず、不織布の上部に埋積するようにな
る。このような現象を防ぐとともに、既に捕集された粒
子もさらに空隙内で成長できるようにアンモニア水の滴
下は不織布上に行なわれるが、浴6中に行なってもほぼ
同様な効果が得られるっ 第4図に示す装置により得られた不織布の空隙内にはA
I (OH)3 粒子と溶液が含まれている。
If a large amount of precipitate passes through the nonwoven fabric at one time, the particles will not uniformly fill the voids and will be buried in the upper part of the nonwoven fabric. Ammonia water is dripped onto the nonwoven fabric in order to prevent this phenomenon and allow the already collected particles to grow further within the voids, but the same effect can also be obtained by dropping the ammonia water into the bath 6. In the voids of the nonwoven fabric obtained by the apparatus shown in FIG.
Contains I(OH)3 particles and solution.

PH電極が適量のアンモニアの滴下を知らせたら、コッ
ク14を閉じるこ−とによって、不織布の余分な溶液を
除く。
When the PH electrode indicates that the appropriate amount of ammonia has been dropped, the cock 14 is closed to remove excess solution from the nonwoven fabric.

得られた不織布では、アルミナ繊維と、水酸化アルミニ
ウムの粒子はただ混合しているだけでそD機械的強度は
極めて小さいっ 第5図は、先の工程で得られた不織布全所定の形状及び
厚さに成形、焼成するだめのSUS金型の概略図である
。第6図は第5図■−v矢視断面図である。1は不織布
、16.17は金型、20は金型を焼成温度まで加熱す
るヒータ、21はそのヒータ挿入口である。金型の上下
をプレス機で不織布1が所定厚さになるまで加圧した状
態でヒータ20に通電する。最初付着した水が蒸発し始
める。水蒸気はガス通気孔19.23’i通り、ガス通
気管18.22より排出される。さらに、温度が上がる
と水酸化アルミニウムは熱分解により酸化アルミニウム
(アルミナALOs)となる。その際、発生する水蒸気
も同様の通路を経て排出される。
In the obtained nonwoven fabric, the alumina fibers and aluminum hydroxide particles are simply mixed, and the mechanical strength is extremely low. Figure 5 shows that the nonwoven fabric obtained in the previous step has a specified shape and a FIG. 2 is a schematic diagram of an SUS mold for molding and firing to a certain thickness. FIG. 6 is a cross-sectional view taken along the line -v in FIG. 5. Reference numeral 1 denotes a nonwoven fabric, 16 and 17 a mold, 20 a heater for heating the mold to a firing temperature, and 21 a heater insertion port. The heater 20 is energized while the upper and lower sides of the mold are pressurized by a press machine until the nonwoven fabric 1 reaches a predetermined thickness. The water that initially adhered begins to evaporate. The water vapor is discharged through the gas vent 19.23'i and through the gas vent pipe 18.22. Further, as the temperature increases, aluminum hydroxide undergoes thermal decomposition and becomes aluminum oxide (alumina ALOs). At this time, the water vapor generated is also discharged through a similar path.

その後温度の上昇に伴ってアルミナ粒子とアルミナ繊維
は焼結し合い、焼成温度に対応し九強度を発現する。し
かし、焼成温度を上げ過ぎるとアルミナ粒子の比表面積
は著しく減少し触媒担体としては好ましくない。そこで
、焼成前にLiNo。
Thereafter, as the temperature rises, the alumina particles and alumina fibers sinter together, developing a strength corresponding to the firing temperature. However, if the calcination temperature is increased too much, the specific surface area of the alumina particles decreases significantly, making them undesirable as catalyst carriers. Therefore, LiNo was applied before firing.

の水溶液を不織布に浸み込ませておくと、600C程度
から繊維及び粒子アルミナと反応し、リチウムアルミネ
ー) (LiAIO□、複酸化物)を形成し、比表面積
を下げることなく、担体成形体の強妾ヲ増加させること
ができる。
When a nonwoven fabric is impregnated with an aqueous solution, it reacts with fibers and particle alumina at about 600C, forming lithium alumina (LiAIO□, double oxide), and forming a carrier molded body without lowering the specific surface area. The number of strong concubines can be increased.

リチウム以外のアルカリ金属塩でもほぼ同様の効果を得
ることができる。これらのアルカリは溶液として添加す
るだけでなく、水酸化物等の沈澱として水酸化アルミニ
ウムとともに不織布空隙【充填してもよく、更には、焼
成時にLict。
Almost the same effect can be obtained with alkali metal salts other than lithium. These alkalis can be added not only as a solution, but also as precipitates such as hydroxides, which can fill voids in the nonwoven fabric together with aluminum hydroxide.

Lr、co、の蒸気としてガス通気管18.22からガ
ス通気孔19.23を経て供給することによっても同様
の効果が得られる。
A similar effect can be obtained by supplying Lr, co, as vapor from the gas vent pipe 18.22 via the gas vent 19.23.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属酸化物線維の不織布が多孔質粒子
と化学的に結合した状態で芯材を形成することができる
ため、薄く、かつ、広面積の成形体としても機械的強度
を充分高くすることが可能である。
According to the present invention, since the core material can be formed in a state where the nonwoven fabric of metal oxide fibers is chemically bonded to porous particles, it has sufficient mechanical strength even as a thin and wide-area molded product. It is possible to make it higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の触媒材料の構造を示す概略
図、第3図は本発明の触媒の製造過程を示す流れ図、第
4図は本発明の一実施例の濾過装置概略図、第5図は本
発明の一実施例を示す成形装置概略図、第6図は第5図
の断面図である。 1・・・不織布繊維、2・・・多孔質粒子、3・・・不
織布空隙、6・・・水m、13・・・ロート、14・・
・吸引ピン、16.17・・・成形金型、20・・・加
熱ヒータ、18゜22・・・ガス通気管、19.23・
・・ガス通気孔。
Figures 1 and 2 are schematic diagrams showing the structure of the catalyst material of the present invention, Figure 3 is a flow chart showing the manufacturing process of the catalyst of the present invention, and Figure 4 is a schematic diagram of a filtration device according to an embodiment of the present invention. , FIG. 5 is a schematic diagram of a molding apparatus showing an embodiment of the present invention, and FIG. 6 is a sectional view of FIG. 5. DESCRIPTION OF SYMBOLS 1... Nonwoven fabric fiber, 2... Porous particle, 3... Nonwoven fabric void, 6... Water m, 13... Funnel, 14...
・Suction pin, 16.17... Molding mold, 20... Heater, 18° 22... Gas ventilation pipe, 19.23.
・Gas vent.

Claims (1)

【特許請求の範囲】 1、燃料電池内部に設置し、供給された炭化水素から成
る原料ガスを水素及び一酸化炭素に富んだ燃料ガスに変
換する触媒材料において、 金属酸化物等の繊維から成る不織布と、この不織布の空
隙に充填された金属酸化物等の多孔質粒子から構成され
た触媒担体と、前記触媒担体表面に分散した触媒活性物
質とから成ることを特徴とする燃料電池用内部改質触媒
材料。 2、前記触媒担体を構成する前記金属酸化物の前記不織
布と前記多孔質粒子において、その表層ないしは全体が
アルカリ金属酸化物との複酸化物ないしは無水酸素酸塩
を形成していることを特徴とする特許請求の範囲第1項
記載の燃料電池用内部改質触媒材料。 3、前記触媒担体を構成する前記不織布と前記多孔質粒
子が、ともにリチウムアルミネート(LiA10_2)
であることを特徴とする特許請求の範囲第1項記載の燃
料電池用内部改質触媒材料。 4、触媒材料を製造する方法において、 金属酸化物等の不織布を多孔質粒子原料の溶液中に浸漬
し、前記不織布の存在下で前記多孔質粒子もしくはその
前駆体を沈澱させる工程と、この工程で生じた沈澱を前
記不織布で濾過する工程と、 前記沈澱を空隙内に含む前記不織布を乾燥する工程と、 前記不織布を焼成し、触媒担体の成型体とする工程と、 前記触媒担体成型体に触媒活性物質を担持する工程とか
ら成ることを特徴とする燃料電池用内部改質触媒材料の
製造方法。 5、前記不織布の乾燥工程に先だち、前記不織布空隙内
にアルカリ金属酸化物もしくはその前駆体の沈澱ないし
は溶液を保持させることを特徴とする特許請求の範囲第
4項記載の燃料電池用内部改質触媒材料の製造方法。 6、前記不織布の焼成工程が、アルカリ金属塩の蒸気も
しくは融液の共存下で行なわれることを特徴とする特許
請求の範囲第4項記載の燃料電池用内部改質触媒材料の
製造方法。 7、前記不織布の乾燥工程及び焼成工程の少なくとも一
方が、平板もしくは波形状の金型での圧縮下で行なわれ
ることを特徴とする特許請求の範囲第4項記載の燃料電
池用内部改質触媒材料の製造方法。
[Claims] 1. A catalyst material installed inside a fuel cell to convert a supplied raw material gas consisting of hydrocarbons into a fuel gas rich in hydrogen and carbon monoxide, which is made of fibers such as metal oxides. An internal modification for a fuel cell characterized by comprising a nonwoven fabric, a catalyst carrier composed of porous particles such as a metal oxide filled in the voids of the nonwoven fabric, and a catalytically active substance dispersed on the surface of the catalyst carrier. quality catalyst material. 2. The nonwoven fabric and the porous particles of the metal oxide constituting the catalyst carrier are characterized in that the surface layer or the entirety thereof forms a double oxide or anhydrous oxyacid with an alkali metal oxide. An internal reforming catalyst material for fuel cells according to claim 1. 3. Both the nonwoven fabric and the porous particles constituting the catalyst carrier are lithium aluminate (LiA10_2)
The internal reforming catalyst material for fuel cells according to claim 1, characterized in that: 4. A method for producing a catalyst material, including the steps of: immersing a nonwoven fabric such as a metal oxide in a solution of a porous particle raw material, and precipitating the porous particles or their precursors in the presence of the nonwoven fabric; and this step. a step of filtering the precipitate generated in the nonwoven fabric; a step of drying the nonwoven fabric containing the precipitate in its voids; a step of firing the nonwoven fabric to form a catalyst carrier molded body; 1. A method for producing an internal reforming catalyst material for a fuel cell, comprising the step of supporting a catalytically active substance. 5. Internal reforming for fuel cells according to claim 4, characterized in that, prior to the step of drying the nonwoven fabric, a precipitate or a solution of an alkali metal oxide or its precursor is retained in the voids of the nonwoven fabric. Method for producing catalyst material. 6. The method for producing an internal reforming catalyst material for fuel cells according to claim 4, wherein the step of firing the nonwoven fabric is carried out in the presence of vapor or melt of an alkali metal salt. 7. The internal reforming catalyst for fuel cells according to claim 4, wherein at least one of the drying step and the firing step of the nonwoven fabric is performed under compression using a flat plate or corrugated mold. Method of manufacturing the material.
JP60217910A 1985-10-02 1985-10-02 Internal reform catalyst material for fuel cell and its manufacture Pending JPS6280971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217910A JPS6280971A (en) 1985-10-02 1985-10-02 Internal reform catalyst material for fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217910A JPS6280971A (en) 1985-10-02 1985-10-02 Internal reform catalyst material for fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPS6280971A true JPS6280971A (en) 1987-04-14

Family

ID=16711664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217910A Pending JPS6280971A (en) 1985-10-02 1985-10-02 Internal reform catalyst material for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS6280971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677327A1 (en) * 1994-02-18 1995-10-18 Westinghouse Electric Corporation Hydrocarbon reforming catalyst material and configuration of the same
DE102007061948A1 (en) 2007-12-21 2009-06-25 Mtu Onsite Energy Gmbh Internal reforming catalyst for fuel cell in fuel cell stack, comprises rod-form support coated with catalyst material and located in base part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677327A1 (en) * 1994-02-18 1995-10-18 Westinghouse Electric Corporation Hydrocarbon reforming catalyst material and configuration of the same
DE102007061948A1 (en) 2007-12-21 2009-06-25 Mtu Onsite Energy Gmbh Internal reforming catalyst for fuel cell in fuel cell stack, comprises rod-form support coated with catalyst material and located in base part

Similar Documents

Publication Publication Date Title
US3554929A (en) High surface area alumina coatings on catalyst supports
JP4642955B2 (en) Catalyst support and method for producing the same
US4247422A (en) Metallic supported catalytic system and a method of making it
EP1403231B1 (en) Method of producing a porous ceramic sintered body
US5336656A (en) Catalyst for production of nitric acid by oxidation of ammonia
WO2001036097A1 (en) Catalyst and method for preparation thereof
US8445402B2 (en) Preferential oxidation catalyst containing platinum, copper and iron
EP0098605B1 (en) Fuel cell catalyst member and method of making same
EP2664378A2 (en) Metal structure catalyst and preparation method thereof
JPH0217947A (en) Ceramic film structural body
US3595626A (en) Ceramic fillers and covers for packed beds
JPH04502878A (en) Microporous catalyst material or support structure
US7304013B2 (en) Metal oxide catalysts
JPH0657320B2 (en) Exhaust gas purification catalyst manufacturing method
RU2264350C2 (en) Reactor for catalytic production of hydrogen and carbon oxide
JPS6280971A (en) Internal reform catalyst material for fuel cell and its manufacture
CN107497303A (en) A kind of manufacture method of filtering material
CA2348625A1 (en) Production of hydrogen-containing gas streams
JPS63205143A (en) Preparation of combustion catalyst
JPH02298325A (en) Denatured membrane
JPS6171841A (en) Preparation of flute shaped ceramics supported catalyst
JPS6121702B2 (en)
RU2383389C1 (en) Catalyst head element, preparation method thereof (versions) and method of carrying out catalytic exothermal reactions
JP4737738B2 (en) Method for manufacturing catalytic converter
JP4014842B2 (en) Catalyst structure