JPS6278859A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6278859A
JPS6278859A JP60217873A JP21787385A JPS6278859A JP S6278859 A JPS6278859 A JP S6278859A JP 60217873 A JP60217873 A JP 60217873A JP 21787385 A JP21787385 A JP 21787385A JP S6278859 A JPS6278859 A JP S6278859A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
cooling
substrate
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217873A
Other languages
Japanese (ja)
Inventor
Ryohei Sato
了平 佐藤
Muneo Oshima
大島 宗夫
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60217873A priority Critical patent/JPS6278859A/en
Publication of JPS6278859A publication Critical patent/JPS6278859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To enhance the cooling efficiency by providing a groove and a cavity for performing the cooling in the circuit substrate, and packaging a semiconductor chip on the substrate so that the reverse surface thereof is directly in contact with the cooling medium, thereby achieving high density including the cooling system. CONSTITUTION:A semiconductor chip 1 has a plurality of concave connecting terminals 11 in the sides thereof, and on the reverse surface thereof sealing metallized part 14 is provided for completely blocking up the groove of the substrate. The circuit substrate has many concave grooves 16 corresponding to the chip 1, and they are interconnected by a plate-shaped or circular cavity 13. The chip 1 is soldered to the substrate 2. With this, high density including the cooling system is achieved, thereby enhancing the cooling efficiency.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高密度混成集積回路において大規模集積回路
チップから効率の良い熱放散をおこなうために冷却構造
を備えた半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor integrated circuit device having a cooling structure for efficient heat dissipation from a large-scale integrated circuit chip in a high-density hybrid integrated circuit.

〔発明の背景〕[Background of the invention]

近年、半導体技術の急速な進歩にともなって、超LSI
が作られ使用されている。この超LSIワット以上の大
きな電力を消費している。このため、この種の半導体集
積回路装置は、チクプ当)の発熱量が増大し、冷却が難
しくかつ熱設計が難しくなっている。
In recent years, with the rapid progress of semiconductor technology, ultra-LSI
is made and used. It consumes more power than this super LSI watt. For this reason, in this type of semiconductor integrated circuit device, the amount of heat generated by the chips increases, making cooling and thermal design difficult.

以下、従来技術による半導体集積回路装置の構造とその
放熱方法を図面を用いて説明する。
The structure of a conventional semiconductor integrated circuit device and its heat dissipation method will be described below with reference to the drawings.

第5図は従来技術の半導体集積回路装置の断面図、第6
図は従来技術の冷却用金属棒を有する半導体集積回路装
置の断面図、第7図は従来技術のセラミックパッケージ
を施した半導体集積回路装置の断面図である。第5図力
)ら第7図において、1は半導体集積回路チップ、2は
セラミック基板。
FIG. 5 is a cross-sectional view of a conventional semiconductor integrated circuit device, and FIG.
The figure is a sectional view of a semiconductor integrated circuit device having a conventional cooling metal rod, and FIG. 7 is a sectional view of a semiconductor integrated circuit device provided with a conventional ceramic package. In Figure 5) and Figure 7, 1 is a semiconductor integrated circuit chip, and 2 is a ceramic substrate.

3はハンダ、4は金属棒、5はリード端子、6FiAu
−!91共晶体、7はAgろう、8はガラス、9は放熱
フィン、10はワイヤである。
3 is solder, 4 is metal rod, 5 is lead terminal, 6FiAu
-! 91 is a eutectic, 7 is Ag solder, 8 is glass, 9 is a radiation fin, and 10 is a wire.

第5図に示す半導体集積回路装置は5多数の半導体集積
回路チップ1がハンダ3等により1回路基板であるセラ
ミック基板2にフェイスダウン実装されているため、放
熱が悪い。一般にこの種の放熱は、半導体集積回路チッ
プ1の裏面(填5図の半導体チップ1の上部)から、該
半導体集積回路チップ10発熱量の程度にしたがって、
空気の自然対流、空気の強制対流によっておこなわれて
いる。さらに発熱量の多い場合には、7レオン液体の強
制対流、7レオン液体の沸騰冷却、水の強制対流、水の
沸騰冷却、金属片による冷却等の冷却方法が考えられて
いるが、冷却のシステムが非常に複雑である欠点を有し
ている。
The semiconductor integrated circuit device shown in FIG. 5 has poor heat dissipation because five semiconductor integrated circuit chips 1 are mounted face down on a ceramic substrate 2, which is one circuit board, with solder 3 or the like. Generally, this type of heat radiation is performed from the back surface of the semiconductor integrated circuit chip 1 (the upper part of the semiconductor chip 1 in Figure 5), depending on the amount of heat generated by the semiconductor integrated circuit chip 10.
This is done by natural convection of air and forced convection of air. In cases where the amount of heat generated is even larger, cooling methods such as forced convection of 7 Leon liquid, boiling cooling of 7 Leon liquid, forced convection of water, boiling cooling of water, and cooling with metal pieces have been considered. The system has the disadvantage of being very complex.

第6図は、金属片による冷却の例である。この方法はチ
ップ1の裏面に冷却された金属棒を押当てて冷却をおこ
なうため、かなシの放熱が得られる。しかし、全体のモ
ジュールにおいては、多数の金属棒とこれらを冷却する
システムが必要で。
FIG. 6 is an example of cooling using a metal piece. In this method, a cooled metal rod is pressed against the back surface of the chip 1 for cooling, so that a large degree of heat radiation can be obtained. However, the entire module requires a large number of metal rods and a system to cool them.

複雑な冷却システムとなる欠点を有している。It has the disadvantage of requiring a complex cooling system.

第7図に示す半導体集積回路装置は、半導体集積回路チ
ップ1がAu−8i共晶体6で円筒状の放熱フィン9と
セラミック基板2をAgろう7で接着して、半導体集積
回路チップ1をセラミックによシパッケージングして構
成される。このような半導体集積回路装置の放熱は放熱
フィン9を前述したと同様な方法で冷却をおこなうが、
冷却装置も含めて装置全体が大きくなシ、高密度化でき
ない欠点がある。
In the semiconductor integrated circuit device shown in FIG. 7, the semiconductor integrated circuit chip 1 is made of Au-8i eutectic 6, and a cylindrical radiation fin 9 and a ceramic substrate 2 are bonded together using Ag solder 7. It is composed of various packaging. For heat dissipation of such a semiconductor integrated circuit device, the heat dissipation fins 9 are cooled in the same manner as described above.
The disadvantage is that the entire device, including the cooling device, is large and cannot be increased in density.

以上のように、従来技術による半導体集積回路装置は、
超LSIの実装を実現するに重要な冷却を高密度実装を
実現しつつ、効率良くおこなうにはまだまだ不十分であ
る欠点を有している。
As described above, the semiconductor integrated circuit device according to the conventional technology is
Although cooling, which is important for realizing ultra-LSI packaging, can achieve high-density packaging, it has the drawback that it is still insufficient to perform efficiently.

なお関連技術としては、実開昭59−152743号公
報が周知である。
Note that as a related technique, Japanese Utility Model Application Publication No. 59-152743 is well known.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した従来技術の欠点を除去し、高
密度でかつ高い放熱効率が得られる放熱構造を有する半
導体集積回路装置を提供することにある、。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit device having a heat dissipation structure that eliminates the drawbacks of the prior art described above and provides high density and high heat dissipation efficiency.

〔発明の概要〕[Summary of the invention]

この目的を達成するため1本発明は、高密度化を図るた
め1回路形成にのみ用いられていた回路基板に冷却をお
こなうための溝や空洞を設けて冷却媒体を流すようにし
、かつその基板上に半導体チップをその裏面が直接冷却
媒体に接するように実装するととくよシ、冷却システム
を含めた高密度化とすぐれた冷却効率欠得ることのでき
るようにしたことを特徴とする。これによシ、モジエー
ルサイズを従来の数分の1にでき、かつ高い放熱効率を
得ることができる。
In order to achieve this object, the present invention provides a circuit board that has been used only for forming one circuit in order to achieve high density, by providing grooves and cavities for cooling to allow a cooling medium to flow through the circuit board. By mounting a semiconductor chip on the top so that its back side is in direct contact with the cooling medium, it is characterized by high density including the cooling system and excellent cooling efficiency. As a result, the module size can be reduced to a fraction of the conventional size, and high heat dissipation efficiency can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による半導体集積回路装置の斜視図を示
す。第2図、第3図は第1図のAA線の断面における2
つの実施例図である。第4図は回路基板の作成方法を示
している。
FIG. 1 shows a perspective view of a semiconductor integrated circuit device according to the present invention. Figures 2 and 3 are 2 in the cross section taken along line AA in Figure 1.
FIG. FIG. 4 shows a method for making a circuit board.

第1図は半導体集積回路チップ1(以下半導体チップ)
を回路基板2に設けた凹状の溝16に対応させてはんだ
によ〕実装した例である。前記半導体チップ1は側面に
複数個の凹状の接続端子11を有している。またその裏
面には、基板の溝16を完全にふさぐだめの封止用メタ
ライズ14を有している。ここで、凹状の接続端子11
となる穴はウェーハの段階でレーザ、ドライエッチある
いは化学エッチによシ容易に形成することができる。
Figure 1 shows semiconductor integrated circuit chip 1 (hereinafter referred to as semiconductor chip)
This is an example in which the circuit board 2 is mounted with solder in correspondence with the concave groove 16 provided on the circuit board 2. The semiconductor chip 1 has a plurality of concave connection terminals 11 on its side surface. Further, the back surface thereof has a sealing metallization 14 that completely closes the groove 16 of the substrate. Here, the concave connection terminal 11
The holes can be easily formed at the wafer stage by laser, dry etching, or chemical etching.

また、接続端子11および封止用メタライズ14は蒸着
あるいはメッキによ!+、 Cr−CuあるいはTi−
Cu−Niのメタライズ層構成として形成されている。
In addition, the connection terminal 11 and the sealing metallization 14 are formed by vapor deposition or plating! +, Cr-Cu or Ti-
It is formed as a Cu-Ni metallized layer structure.

これらのメタライズ11.14にはむかえはんだをメッ
キや蒸着によシ形成しても良い。
Solder may be formed on these metallizations 11 and 14 by plating or vapor deposition.

一方前記回路基板2は半導体チップに対応させて多数の
凹状の溝16を設け、それらの間を板状あるいは丸状の
空洞13で結んだ構造を有している。この溝16と空洞
13は第4図に示すように。
On the other hand, the circuit board 2 has a structure in which a large number of concave grooves 16 are provided corresponding to the semiconductor chips, and a plate-shaped or round cavity 13 connects the grooves. The groove 16 and cavity 13 are as shown in FIG.

例えば3層の基板を貼合わせることによシ作成する。本
発明ではセラきツク基板を焼成して貼合わせている。ま
た基板の側のメタライズ12.14はAg−Pdペース
トの印刷・焼成によるAg−PdメタライズWペースト
の印刷・焼成後N1メッキしたW−Niメタライズおよ
び蒸着によるCr−CuあるいはTi−Cu−Niメタ
ライズによ多形成される。
For example, it is created by bonding three layers of substrates together. In the present invention, ceramic substrates are fired and bonded together. The metallization 12.14 on the substrate side is Ag-Pd metallization by printing and firing of Ag-Pd paste, W-Ni metallization plated with N1 after printing and firing of W paste, and Cr-Cu or Ti-Cu-Ni metallization by vapor deposition. Formed in polymorphism.

このようにして得られる半導体チップ1を回路基板2の
所定の位置にはんだ接続することによシ。
By soldering the semiconductor chip 1 thus obtained to a predetermined position on the circuit board 2.

第1図の半導体集積同装置を得ることができる。The semiconductor integrated device shown in FIG. 1 can be obtained.

第2図は第1図のAA’断面図で、半導体チップ1が回
路基板2の凹状溝16の部分に封止用はんだ15および
接続用はんた5によシ実装固定されていることを示して
いる。そして形成された空洞に、水やヘリウム等の冷却
媒体を流し、冷却する。
FIG. 2 is a cross-sectional view taken along line AA' in FIG. It shows. A cooling medium such as water or helium is then poured into the formed cavity to cool it.

冷却媒体はこの封止用はんだ15によシ外部にもれない
。また第3図は第2図と同様なAA’断面図で、凹状溝
16に細い突起17をセラミックのプレス成形によ多形
成した例を示している。これは冷却媒体に乱流を起こさ
せ冷却効率の向上を図るものである。
The cooling medium does not leak to the outside through this sealing solder 15. Further, FIG. 3 is a sectional view taken along the line AA' similar to FIG. 2, and shows an example in which multiple thin protrusions 17 are formed in the concave groove 16 by press molding of ceramic. This is intended to improve cooling efficiency by causing turbulence in the cooling medium.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、基板と一体化した冷却方
法と半導体チップの直接ボンディングにより、高密度で
、冷却効率の高いモジー−ルとすることが可能である。
As described above, according to the present invention, a module with high density and high cooling efficiency can be obtained by using a cooling method integrated with a substrate and direct bonding of a semiconductor chip.

これは、計算機における演算速度の向上、コストパフォ
ーマンスの良い実装系等を得ることができ、超高速・高
密度計算機システムに寄与する所大である。
This makes it possible to improve the calculation speed of a computer and obtain an implementation system with good cost performance, which is the key to contributing to ultra-high-speed, high-density computer systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の斜視図、第2図及び第3図は本発明の
断面図、第4図は本発明の基板作成に関する斜視図、第
5図は従来のフェイスダウンボンディングした半導体集
積回路装置の断面図、第6図は従来技術の第5図の構造
に冷却用の金属棒を押当てた構造の断面図、第7図は従
来技術のセラミックパッケージした半導体集積回路装置
の断面図である。 1・・・半導体集積回路チップ、2・・・回路基板。 11.12・・・接続端子、13・・・空洞、14・・
・封止用メタライズ、15・・・封止用はんだ、16・
・・凹状の溝。
FIG. 1 is a perspective view of the present invention, FIGS. 2 and 3 are cross-sectional views of the present invention, FIG. 4 is a perspective view of the substrate fabrication of the present invention, and FIG. 5 is a conventional face-down bonded semiconductor integrated circuit. FIG. 6 is a cross-sectional view of the device; FIG. 6 is a cross-sectional view of a structure in which a cooling metal rod is pressed against the conventional structure shown in FIG. 5; FIG. 7 is a cross-sectional view of a conventional ceramic-packaged semiconductor integrated circuit device. be. 1... Semiconductor integrated circuit chip, 2... Circuit board. 11.12... Connection terminal, 13... Cavity, 14...
・Metallization for sealing, 15...Solder for sealing, 16・
・Concave groove.

Claims (1)

【特許請求の範囲】[Claims] 1素子側面に設けられた接続端子と裏面のほぼ外周に設
けられた封止用メタライズとを有する半導体集積回路を
、上記接続端子およびメタライズに対応して設けられた
メタライズを有しかつ封止用メタライズから内側に放熱
用冷却媒体が通るための空洞を有する基板にはんだ接続
して構成されたことを特徴とする半導体集積回路装置。
A semiconductor integrated circuit having connection terminals provided on the side surface of one element and metallization for sealing provided almost on the outer periphery of the back surface, and a semiconductor integrated circuit having metallization provided corresponding to the connection terminals and metallization for sealing. 1. A semiconductor integrated circuit device, characterized in that it is connected by solder to a substrate having a cavity through which a cooling medium for heat dissipation passes inside metallization.
JP60217873A 1985-10-02 1985-10-02 Semiconductor integrated circuit device Pending JPS6278859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217873A JPS6278859A (en) 1985-10-02 1985-10-02 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217873A JPS6278859A (en) 1985-10-02 1985-10-02 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6278859A true JPS6278859A (en) 1987-04-11

Family

ID=16711107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217873A Pending JPS6278859A (en) 1985-10-02 1985-10-02 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6278859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146308A (en) * 1990-10-05 1992-09-08 Micron Technology, Inc. Semiconductor package utilizing edge connected semiconductor dice
JP2007220771A (en) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146308A (en) * 1990-10-05 1992-09-08 Micron Technology, Inc. Semiconductor package utilizing edge connected semiconductor dice
JP2007220771A (en) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same
JP4617266B2 (en) * 2006-02-15 2011-01-19 三菱電機株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7233494B2 (en) Cooling apparatus, cooled electronic module and methods of fabrication thereof employing an integrated manifold and a plurality of thermally conductive fins
US6175497B1 (en) Thermal vias-provided cavity-down IC package structure
US4758926A (en) Fluid-cooled integrated circuit package
US8115302B2 (en) Electronic module with carrier substrates, multiple integrated circuit (IC) chips and microchannel cooling device
US5051865A (en) Multi-layer semiconductor device
CA2002213C (en) High performance integrated circuit chip package and method of making same
US4860444A (en) Method of assembling a fluid-cooled integrated circuit package
JPH0758254A (en) Multichip module and manufacture thereof
JP2000150735A (en) Circuit assembled body and method for connecting radiator to integrated circuit device
CN102683302A (en) Radiating structure for single chip package and system-in-package
US4292647A (en) Semiconductor package and electronic array having improved heat dissipation
JPH08316382A (en) Electronic module for removing heat from semiconductor die and its preparation
JPS6278859A (en) Semiconductor integrated circuit device
KR100220249B1 (en) Thermally enhanced thin ball grid array package
JP3193142B2 (en) Board
JPH06252300A (en) Integrated circuit chip provided with cooling device and manufacture thereof
JPS61279157A (en) Cooling apparatus for semiconductor device
CN108417545A (en) A kind of power device and preparation method thereof
CN219040462U (en) Semiconductor power module bonded with SiC chip by aluminum-clad copper wire
JPS612350A (en) Semiconductor integrated circuit device
JPH03185900A (en) Semiconductor device and manufacture thereof
JP2718136B2 (en) Resin-sealed semiconductor device
JPH0422022B2 (en)
KR20240030767A (en) Heat dissipation structure for high-power LED lighting
JPS60241240A (en) Semiconductor device