JPS627409A - Method and apparatus for separating suspended particles by sedimentation - Google Patents

Method and apparatus for separating suspended particles by sedimentation

Info

Publication number
JPS627409A
JPS627409A JP14603885A JP14603885A JPS627409A JP S627409 A JPS627409 A JP S627409A JP 14603885 A JP14603885 A JP 14603885A JP 14603885 A JP14603885 A JP 14603885A JP S627409 A JPS627409 A JP S627409A
Authority
JP
Japan
Prior art keywords
flow
particles
fins
suspended
pocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14603885A
Other languages
Japanese (ja)
Other versions
JPH0446603B2 (en
Inventor
Yoshitaka Ouchi
大内 喜孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14603885A priority Critical patent/JPS627409A/en
Publication of JPS627409A publication Critical patent/JPS627409A/en
Publication of JPH0446603B2 publication Critical patent/JPH0446603B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To effectively separate suspended particles by sedimentation, by arranging a large number of fins faced to the flow direction of a laterally directed suspension stream at an angle of 45-90 deg. in a sedimentation tank so as to hold parallel intervals in horizontal and vertical planes. CONSTITUTION:When a suspension stream W flows through the main flow passage 10 between upper and lower fins as a laminar parallel stream W', wake vortex streets 14 are generated in the boundary parts between the main flow passage 10 and fin pockets 13 and the suspended particles flowing in a state carried on the laminar parallel stream W' are involved in the wake vortex streets 14. The involved floc particles are flowed in the recirculation streams 15 in the pockets 13 to be impinged to each other while recirculated and revolved and flow so as to sweep the surfaces of the fins to be flocculated and granulated. The grown flocs are gravitationally fallen to enter the laminar parallel stream W' thereunder and collect the floc particles therein to be again flowed in the lower side pocket 13 and further grown to be successively sedimented and separated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は沈澱槽内での懸濁粒子の沈降分離方法及びそ
の装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for sedimentation and separation of suspended particles in a sedimentation tank.

〔従来の技術〕[Conventional technology]

従来、この種の沈降分離方法及び装置として、特公昭5
0−6663号公報に開示の発明(以下従来装置という
)が知られているが、この従来装置は沈澱槽内に平行間
隔を保って隔設される多数枚の傾斜薄板1に懸濁流の流
れ方向aと直角な多数のフィン2を第12図のように突
設した構成となっている。
Conventionally, as this type of sedimentation separation method and device,
The invention disclosed in Japanese Patent Application No. 0-6663 (hereinafter referred to as the conventional device) is known, and this conventional device has a suspension flow flowing through a large number of inclined thin plates 1 arranged at parallel intervals in a settling tank. It has a structure in which a large number of fins 2 are provided protrudingly at right angles to the direction a as shown in FIG.

C発明が解決しようとする問題点〕 前記従来装置は懸濁流が傾斜薄板1間の流路を流れる時
、主流路の層流的平行流域と、主流路とフィンポケット
3との境界部に生じる上流側フィン上縁を境界層剥離点
とした後流渦列と、フィンポケット3内で低速回転する
循環流の3つパターンを呈し、層流的平行流どして流れ
る懸濁流中のフロック粒子が重力の作用により後流渦列
に順次移動し、この後流渦列の挙動に随伴してフィンポ
ケット3内の循環流に流入され、粒子相互及び粒子とフ
ィン板面との衝突作用により凝集して、ポケット底壁面
上に沈降するようになるが、前記フィンポケット3がフ
ロック沈降面(ポケット底壁面)に開口部のない三方か
ら囲まれた第12図のような溝形断面形状に形成されて
いるので、このフィンポケット3の内底部及び内隅角部
に沈降したフロック粒子がスラッジとして付着し堆積す
るという問題があり、懸濁粒子を効果的に沈降分離させ
ることができない欠点があった。
C Problems to be Solved by the Invention] In the conventional device, when a suspension flow flows through the flow path between the inclined thin plates 1, a problem occurs at the laminar parallel flow area of the main flow path and the boundary between the main flow path and the fin pocket 3. Flock particles in a suspended flow flowing in a laminar parallel flow exhibiting three patterns: a trailing vortex train with the upper edge of the upstream fin as a boundary layer separation point, and a circulating flow rotating at low speed within the fin pocket 3. are sequentially moved to the trailing vortex street by the action of gravity, flow into the circulating flow in the fin pocket 3 along with the behavior of this trailing vortex street, and aggregate due to collisions between the particles and the particles and the fin plate surface. The fin pocket 3 is formed into a groove-shaped cross-sectional shape as shown in FIG. 12 surrounded from three sides with no openings on the floc settling surface (pocket bottom wall surface). Therefore, there is a problem that the settled floc particles adhere to and accumulate as sludge on the inner bottom and inner corners of the fin pocket 3, and there is a drawback that suspended particles cannot be effectively separated by sedimentation. Ta.

なお、前記のようなスラッジの付着堆積が生じると、こ
のスラッジの除去作業(清掃作業)を沈澱槽内を空にし
た状態で頻繁に行わなければならない。
In addition, when the above-mentioned adhesion and accumulation of sludge occurs, this sludge removal work (cleaning work) must be performed frequently with the inside of the sedimentation tank empty.

〔発明の目的〕[Purpose of the invention]

この発明の目的は沈降フロックと懸濁粒子の接触衝突の
頻度を高め、フロックの成長を促進し、フロックの構造
を改変することにより、懸濁粒子の沈降分離を能率的に
行う沈降分離方法及びその装置を提供することにある。
The purpose of the present invention is to provide a sedimentation separation method and method for efficient sedimentation separation of suspended particles by increasing the frequency of contact and collision between settled flocs and suspended particles, promoting floc growth, and modifying the floc structure. Our goal is to provide that device.

〔発明の概要〕[Summary of the invention]

前記の目的を達成するために、本発明の沈降分離方法は
上下フィン間の主流M10を層流的平行流W′として流
れる懸濁流Wの中のフロック粒子が上流側フィン縁部を
境界層剥離点とした後流渦列14に巻き込まれ、この後
流渦列14の挙動に随伴して横列フィン間のポケット内
循環流15に流入して、粒子相互及び粒子とフィン板面
との衝突作用によりuiし大きな粒子に造粒され、成長
したフロックがポケット部13の下側開口部から重力に
より順次下降し、その下を層流的平行流W′として流れ
る懸濁流Wに入り、この懸濁流に浮遊するフロック粒子
を捕捉して下部ポケット内の循環流15に流入し、この
下部ポケット内で更に肥大して順次に沈降分離されるよ
うにしたことを特徴とするものであり、またこの方法を
実施する本発明の沈降分離装置は沈澱槽5内に横向き懸
濁流Wの流れ方向aに対して45〜90°の角度θで対
面する多数のフィン12を水平面内及び垂直面内におい
て平行間隔を保つように配列して、上下フィン間に懸濁
流Wが層流的平行流W′として流れる主流路10を形成
すると共に、横列フィン間に上下面が前記主流路10に
開口したポケット部13を形成し、前記主流路10を懸
濁流Wが流れる時に上流側フィン縁部を境界層剥離点と
した後流渦列14と、ポケット内部の循環流15が生じ
るようにしたことを特徴とするものである。
In order to achieve the above object, the sedimentation separation method of the present invention causes the floc particles in the suspended flow W flowing through the main flow M10 between the upper and lower fins as a laminar parallel flow W' to separate the upstream fin edges from a boundary layer. The particles are caught up in the wake vortex line 14, which flows into the circulation flow 15 in the pocket between the row fins, and the particles collide with each other and with the fin plate surface. The grown flocs are granulated into large particles by ui, and the grown flocs sequentially descend by gravity from the lower opening of the pocket part 13, enter the suspension flow W flowing below as a laminar parallel flow W', and this suspension flow This method is characterized in that floc particles floating in the floc are captured and flowed into the circulating flow 15 in the lower pocket, where they further enlarge and are sequentially sedimented and separated. The sedimentation separator of the present invention has a large number of fins 12 facing at an angle θ of 45 to 90 degrees with respect to the flow direction a of the horizontal suspension flow W in the sedimentation tank 5 at parallel intervals in the horizontal plane and the vertical plane. A main channel 10 is formed between the upper and lower fins through which the suspended flow W flows as a laminar parallel flow W', and pocket portions 13 whose upper and lower surfaces open into the main channel 10 are formed between the row fins. is formed, and when the suspension flow W flows through the main channel 10, a trailing vortex row 14 with the upstream fin edge as a boundary layer separation point and a circulation flow 15 inside the pocket are generated. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の沈降分離方法の実施に直接使用される沈
降分離装置について第1図及び第2図の図面に従い説明
する。
Hereinafter, a sedimentation separation apparatus directly used for carrying out the sedimentation separation method of the present invention will be explained with reference to the drawings of FIGS. 1 and 2.

この懸濁粒子の沈降分aft装置は沈澱槽5内に横向き
懸濁流Wの流れ方向aに対して45〜90”の角度θ(
本実施例の場合はθ=60° となっている)で対面す
る多数のフィン12を水平面内及び垂直面内において平
行間隔を保つように第1図の如く配列し、フィン支持板
16で固定することにより、上下フィン間に懸濁流Wが
層流的平行流W′として流れる主流路10を形成すると
共に、横列フィン間に上下面が前記主流路10に開口し
たポケット部13を形成している。
This suspended particle sedimentation aft device is installed in the sedimentation tank 5 at an angle θ(
In this embodiment, a large number of fins 12 facing each other at θ=60° are arranged as shown in FIG. By doing so, a main channel 10 in which the suspended flow W flows as a laminar parallel flow W' is formed between the upper and lower fins, and a pocket portion 13 whose upper and lower surfaces are open to the main channel 10 is formed between the row fins. There is.

このように構成された沈降分離装置は、懸濁流Wが上下
フィン間の主流路10を層流的平行流W′として流れる
時、主流路10とフィンポケット13との境界部に上流
側フィン縁部を境界層剥離点とした後流渦列14が生じ
るようになり、層流的平行流W′にのって流動する懸濁
粒子が慣性力と重力の作用によって層流的平行流W′か
らはずれ前記の後流渦列14に巻き込まれる。この時、
前記フィン12のポケット部13内には低速回転する循
環流15が形成されているので、後流渦列14で巻き込
まれたフロック粒子はポケット内循環流15に流入し、
ボゲット部13内で循環旋回することにより、粒子相互
及び粒子とフィン板面との衝突が起り、この衝突作用の
繰返しによりフィン板面を掃流しながら凝集し徐々に大
きな粒子に造粒される。そして、フィンポケット部13
内で成長したフロックはポケット部13の下側開口部か
ら重力により順次下降し、その下を層流的平行流W′と
して流れる懸濁流Wに直交状態で入り、この懸濁流Wに
浮遊するフロック粒子を捕捉して、下側ポケット部13
内の循環流15に再度流入し、この下部ポケット内で更
に肥大して順次に沈降分離して行くようになる。
In the sedimentation separator configured in this way, when the suspended flow W flows through the main channel 10 between the upper and lower fins as a laminar parallel flow W', an upstream fin edge is formed at the boundary between the main channel 10 and the fin pocket 13. A trailing vortex train 14 is generated with the boundary layer separation point at the boundary layer separation point, and the suspended particles flowing in the laminar parallel flow W' become laminar parallel flow W' due to the action of inertia and gravity. It deviates from the flow and gets caught up in the wake vortex row 14. At this time,
Since a circulating flow 15 rotating at a low speed is formed in the pocket portion 13 of the fin 12, the floc particles caught up in the trailing vortex row 14 flow into the pocket circulating flow 15.
As the particles circulate and swirl within the boget portion 13, collisions occur between the particles and between the particles and the fin plate surface, and by repeating this collision action, the particles aggregate while sweeping the fin plate surface, and are gradually granulated into larger particles. And the fin pocket part 13
The flocs grown inside the pocket part 13 are successively lowered by gravity from the lower opening of the pocket part 13 and enter the suspension flow W flowing below as a laminar parallel flow W' in a perpendicular state, and the flocs floating in this suspension flow W are The particles are captured and the lower pocket part 13
It flows again into the circulating flow 15 inside the pocket, further enlarges in this lower pocket, and is sequentially sedimented and separated.

即ち、前記フロックは懸濁粒子群との接触衝突の頻度を
順次に高めて成長を促進し、次第に大きなフロック構造
に改変されて、短時間で沈澱槽底部に到達し、能率的に
沈降分離されることになる。
That is, the flocs successively increase the frequency of contact and collision with suspended particles to promote growth, and the floc structure is gradually modified into a larger floc structure, which reaches the bottom of the sedimentation tank in a short time and is efficiently sedimented and separated. That will happen.

この場合、前記フロックは旋回、接触衝突を繰返すこと
によって、フロックに含有されている水及び微細空気を
放出させるので、粒子の浮力を弱めることができ、また
不規則な粒子形状も表面積が小さくて沈降効率のよい円
形のフロック形状に改変される。
In this case, the flocs release the water and fine air contained in the flocs by repeating swirling and contact collisions, thereby weakening the buoyancy of the particles, and irregular particle shapes also have a small surface area. Modified into a circular floc shape with good sedimentation efficiency.

前記フロックの形成、成長あるいは改変には小さい旋回
流の循環が重要である。本発明による沈降分離装置は小
さい旋回循環流15を発生するので、沈降分離のよい凝
集フロックを効果的に作り出すことができる。
Circulation of a small swirling flow is important for the formation, growth or modification of the flocs. Since the sedimentation separator according to the present invention generates a small swirling circulation flow 15, it is possible to effectively create coagulated flocs with good sedimentation separation.

ポケット部13内の渦の形状〈循環流15の形状)はフ
ィン12の間隔Pと高さ2の比によって定まり、流路高
さdには殆んど影響されない。P/ff1−1のとき円
形の循環流15が一つでき、P/ff1−0.5では反
対方向に回転する二つの循環流15a 、 15bが第
6図、第10図及び第11図のように形成され、P/l
、−2以上になると懸濁流Wがポケット内部に入ってき
て渦ができなくなるか或いは出来ても極く小さい渦にな
ってしまうので、利用価値がなくなる。
The shape of the vortex in the pocket portion 13 (the shape of the circulating flow 15) is determined by the ratio of the interval P of the fins 12 to the height 2, and is hardly influenced by the channel height d. When P/ff1-1, one circular circulating flow 15 is created, and when P/ff1-0.5, two circulating flows 15a and 15b rotating in opposite directions are created as shown in FIGS. 6, 10, and 11. It is formed as follows, P/l
, -2 or more, the suspended flow W enters the inside of the pocket and no vortex is formed, or even if it is formed, it becomes an extremely small vortex, so there is no use value.

前記フィン12の断面長さ寸法としては数1から101
のオーダーで、フィン全体の横長さはフィンの強度、設
置方法及び沈澱槽5の規模等により決定される。また、
前記フィン12の材料としては合成樹脂、金属、コンク
リート等の非腐蝕性材料であればいずれのものであって
もよい。
The cross-sectional length dimension of the fin 12 is from number 1 to 101.
The horizontal length of the entire fin is determined by the strength of the fin, the installation method, the size of the settling tank 5, etc. Also,
The material of the fins 12 may be any non-corrosive material such as synthetic resin, metal, concrete, etc.

第3図は前記フィン12の断面形状を略く字形とし、逆
向き対向のく字形フィン12の間に上下面開口のポケッ
ト部13を形成した第2実施例を示し、第4図は前記フ
ィン12の断面形状を逆T字形とし、この逆T字形フィ
ン12の間に上下面開口のポケット部13を形成した第
3実施例を示し、第5図及び第6図は前記フィン12の
断面形状を三角形状及び菱形形状とし、この三角・菱形
フィン12の間に上下面開口のポケット部13を形成し
た第4.第5実施例を示し、第7図は前記フィン12の
断面形状を円弧形とし、逆向き対向の円弧形フィン12
の間に上下面開口のポケット部13を形成した第6実施
例を示し、第8図は前記フィン12の断面形状を斜行板
部の上下端に垂直延出板部を有するクランク形状とし、
逆向き対向のクランク形フィン12の間に上下面開口の
ポケット部13を形成した第7実施例を示し、第9図は
前記フィン12の断面形状を略く字形とし、懸濁流の流
れ方向に対向する各段2列ずつのく字形フィン12の間
に上下面開口のポケット部13を形成した第8実施例を
示し、第10図は前記フィン12の断面形状を高さ方向
中間部に菱形突起を有する垂直平板の断面形状とし、懸
濁流の流れ方向に対向する各垂直平板フィン12の間に
上下面開口のポケット部13(この場合にはポケット上
下部に2つの循環流15a 、 15bが生じる)を形
成した第9実施例を示している。
FIG. 3 shows a second embodiment in which the cross-sectional shape of the fins 12 is approximately dogleg-shaped, and a pocket portion 13 with an opening on the upper and lower surfaces is formed between the opposite dogleg-shaped fins 12, and FIG. A third embodiment is shown in which the cross-sectional shape of the fins 12 is an inverted T-shape, and pocket portions 13 with openings on the upper and lower surfaces are formed between the inverted T-shaped fins 12, and FIGS. 5 and 6 show the cross-sectional shape of the fins 12. The fourth fin has a triangular and rhombic shape, and a pocket portion 13 with an opening on the upper and lower surfaces is formed between the triangular and rhombic fins 12. A fifth embodiment is shown in FIG. 7, in which the cross-sectional shape of the fins 12 is arcuate, and the arcuate fins 12 facing in opposite directions are shown in FIG.
A sixth embodiment is shown in which a pocket portion 13 with an opening on the upper and lower surfaces is formed between the fins, and FIG.
A seventh embodiment is shown in which a pocket portion 13 with an opening on the upper and lower surfaces is formed between crank-shaped fins 12 facing in opposite directions, and FIG. An eighth embodiment is shown in which a pocket portion 13 with an opening on the upper and lower surfaces is formed between two rows of doglegged fins 12 in each row facing each other, and FIG. It has a cross-sectional shape of a vertical flat plate having protrusions, and a pocket part 13 with an upper and lower surface opening is provided between each vertical flat plate fin 12 facing in the flow direction of the suspended flow (in this case, two circulation flows 15a and 15b are formed in the upper and lower parts of the pocket). 9 shows a ninth embodiment in which a 3D film is formed.

また、第11図は前記フィン12の断面形状を斜行板部
の上下端に垂直延出板部を有するクランク形状とし、こ
のクランク形フィン12の上下端部を懸吊材17(この
懸吊材はロット、ワイヤローブ等であって、沈澱槽5上
に架設した図示しないビームから所定の間隔を保って沈
澱槽5内に懸吊され、必要に応じて下端部に重錘が取付
けられる)に固定して、横列フィン12間に上下面開口
のポケット部13を形成した第10実施例を示している
In addition, FIG. 11 shows that the cross-sectional shape of the fin 12 is a crank shape having vertically extending plate portions at the upper and lower ends of the diagonal plate portion, and the upper and lower ends of the crank-shaped fin 12 are connected to a hanging member 17 (this hanging member 17). The materials are rods, wire lobes, etc., and are suspended in the sedimentation tank 5 at a predetermined distance from a beam (not shown) installed above the sedimentation tank 5, and a weight is attached to the lower end as necessary). A tenth embodiment is shown in which pocket portions 13 with openings on the upper and lower surfaces are formed between the fins 12 in fixed rows.

なお、この第2乃至第10実施例におけるフロック粒子
(懸濁粒子)の沈降分離方法は第2図で述べた第1実施
例の場合と同様であるので、詳細な説明は省略する。
The method of sedimentation and separation of floc particles (suspended particles) in the second to tenth embodiments is the same as that in the first embodiment described in FIG. 2, so detailed explanation will be omitted.

〔発明の効果) この発明の懸濁粒子の沈降分離方法は前記のようなもの
であるから、沈降フロックと懸濁粒子の接触衝突の頻度
を高め、フロックの成長を促進し、フロックの構造を改
変することにより、懸濁粒子の沈降分離を能率的に行う
ことができる。
[Effects of the Invention] Since the method for sedimentation and separation of suspended particles according to the present invention is as described above, it increases the frequency of contact and collision between settled flocs and suspended particles, promotes the growth of flocs, and improves the structure of flocs. By modifying the method, it is possible to efficiently perform sedimentation and separation of suspended particles.

また、この発明による懸濁粒子の沈降分離装置はフィン
ポケット部の上下面が主流路に開口しているので、沈降
したフロックがポケット内で旋回し順次下降して行く際
に、懸濁粒子と接触衝突を繰返しながらフィン板面を滑
落するので、フィン板面を奇麗に掃流することができ、
従来装置のようなスラッジの付着堆積問題を簡単に解消
することができる。
In addition, in the apparatus for sedimentation and separation of suspended particles according to the present invention, the upper and lower surfaces of the fin pocket portion are open to the main flow channel, so that when the settled flocs rotate in the pocket and descend one by one, they are separated from the suspended particles. Since it slides down the fin plate surface while repeating contact and collision, it is possible to cleanly sweep the fin plate surface.
The problem of sludge adhesion and accumulation that occurs in conventional devices can be easily solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す沈降分離装置の一部
切欠斜視図、第2図は同装置による沈降分離方法の説明
図、第3図乃至第11図はフィンの断面形状と配列態様
を変化させた本発明装置の異なる実施例(第2乃至第1
0の実施例)を示す要部側面図、第12図は本発明の第
2図に対応した従来説明図である。 W・・・横向き懸濁流、W′・・・層流的平行流、a・
・・懸濁流の流れ方向、12・・・フィン、13・・・
ポケット部、14・・・後流渦列、15・・・循環流出
願人代理人 弁理士 鈴江武彦 第1図 第2図 W゛ 第3図 第6図 第7図 第11図 第12図
Fig. 1 is a partially cutaway perspective view of a sedimentation separation device showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of a sedimentation separation method using the same device, and Figs. 3 to 11 show the cross-sectional shape and arrangement of the fins. Different embodiments of the device of the present invention (second to first
FIG. 12 is a conventional explanatory diagram corresponding to FIG. 2 of the present invention. W... Lateral suspension flow, W'... Laminar parallel flow, a.
...Flow direction of suspension flow, 12...Fin, 13...
Pocket portion, 14...Wake vortex row, 15...Circulation outflow Applicant's agent Patent attorney Takehiko SuzueFigure 1Figure 2W゛Figure 3Figure 6Figure 7Figure 11Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)上下フィン間の主流路を層流的平行流として流れ
る懸濁流中のフロック粒子が上流側フィン縁部を境界層
剥離点とした後流渦列に巻き込まれ、この後流渦列の挙
動に随伴して横列フィン間のポケット内循環流に流入し
て、粒子相互及び粒子とフィン板面との衝突作用により
凝集し大きな粒子に造粒され、成長したフロックがポケ
ット部下側の開口部から重力により順次下降し、その下
を層流的平行流として流れる懸濁流に入り、この懸濁流
に浮遊するフロック粒子を捕捉して下部ポケット内の循
環流に流入し、この下部ポケット内で更に肥大して順次
に沈降分離されるようにしたことを特徴とする懸濁粒子
の沈降分離方法。
(1) The floc particles in the suspended flow flowing in the main channel between the upper and lower fins as a laminar parallel flow are caught in a wake vortex street with the upstream fin edge as the boundary layer separation point, and this wake vortex street Along with this movement, the flocs flow into the circulation flow inside the pocket between the rows of fins, aggregate and granulate into large particles due to collisions between the particles and between the particles and the fin plate surface, and the grown flocs flow through the opening at the bottom of the pocket. The flow descends sequentially due to gravity and enters the suspended flow flowing below as a laminar parallel flow. The floc particles suspended in this suspended flow are captured and flowed into the circulating flow in the lower pocket, where they are further A method for sedimentation and separation of suspended particles, characterized in that the particles are enlarged and then sedimented and separated in sequence.
(2)沈澱槽内に横向き懸濁流の流れ方向に対して45
〜90°の角度で対面する多数のフィンを水平面内及び
垂直面内において平行間隔を保つように配列して、上下
フィン間に懸濁流が層流的平行流として流れる主流路を
形成すると共に、横列フィン間に上下面が前記主流路に
開口したポケット部を形成し、前記主流路を懸濁流が流
れる時に上流側フィン縁部を境界層剥離点とした後流渦
列と、ポケット内部の循環流が生じるようにしたことを
特徴とする懸濁粒子の沈降分離装置。
(2) 45 mm in the direction of the horizontal suspension flow in the settling tank
A large number of fins facing each other at an angle of ~90° are arranged so as to maintain parallel spacing in a horizontal plane and a vertical plane to form a main channel in which a suspended flow flows as a laminar parallel flow between the upper and lower fins, A pocket portion whose upper and lower surfaces are open to the main channel is formed between the row fins, and when the suspension flow flows through the main channel, a wake vortex train with the upstream fin edge as a boundary layer separation point and circulation inside the pocket are formed. 1. A sedimentation separation device for suspended particles, characterized in that a flow is generated.
JP14603885A 1985-07-03 1985-07-03 Method and apparatus for separating suspended particles by sedimentation Granted JPS627409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14603885A JPS627409A (en) 1985-07-03 1985-07-03 Method and apparatus for separating suspended particles by sedimentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14603885A JPS627409A (en) 1985-07-03 1985-07-03 Method and apparatus for separating suspended particles by sedimentation

Publications (2)

Publication Number Publication Date
JPS627409A true JPS627409A (en) 1987-01-14
JPH0446603B2 JPH0446603B2 (en) 1992-07-30

Family

ID=15398700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14603885A Granted JPS627409A (en) 1985-07-03 1985-07-03 Method and apparatus for separating suspended particles by sedimentation

Country Status (1)

Country Link
JP (1) JPS627409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209709A (en) * 1987-02-27 1988-08-31 Yoshitaka Ouchi Method and apparatus for sedimentation of suspended particles
JPS63218216A (en) * 1987-03-04 1988-09-12 Yoshitaka Ouchi Sedimentation device for suspending particle
JPS63221813A (en) * 1987-03-11 1988-09-14 Yoshitaka Ouchi Settling and separating device with vertical fins for suspended particles
JP2018079440A (en) * 2016-11-17 2018-05-24 株式会社東芝 Inflow pipe unit and settling tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133965U (en) * 1977-03-31 1978-10-24
JPS53133965A (en) * 1977-04-25 1978-11-22 Nippon Solid Co Ltd Device for treating water
JPS5687408A (en) * 1979-11-20 1981-07-16 Nordstjernan Rederi Ab Method and device for separating inflowing mixed liquid
JPS5746005U (en) * 1980-08-25 1982-03-13
JPS57165207U (en) * 1981-04-14 1982-10-18
JPH0563278U (en) * 1992-01-30 1993-08-24 株式会社ゴーセン Ayuyu fishing mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284897A (en) * 1985-10-08 1987-04-18 Nippon Steel Corp Manufacture of flux cored wire for welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133965U (en) * 1977-03-31 1978-10-24
JPS53133965A (en) * 1977-04-25 1978-11-22 Nippon Solid Co Ltd Device for treating water
JPS5687408A (en) * 1979-11-20 1981-07-16 Nordstjernan Rederi Ab Method and device for separating inflowing mixed liquid
JPS5746005U (en) * 1980-08-25 1982-03-13
JPS57165207U (en) * 1981-04-14 1982-10-18
JPH0563278U (en) * 1992-01-30 1993-08-24 株式会社ゴーセン Ayuyu fishing mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209709A (en) * 1987-02-27 1988-08-31 Yoshitaka Ouchi Method and apparatus for sedimentation of suspended particles
JPS63218216A (en) * 1987-03-04 1988-09-12 Yoshitaka Ouchi Sedimentation device for suspending particle
JPS63221813A (en) * 1987-03-11 1988-09-14 Yoshitaka Ouchi Settling and separating device with vertical fins for suspended particles
JP2018079440A (en) * 2016-11-17 2018-05-24 株式会社東芝 Inflow pipe unit and settling tank

Also Published As

Publication number Publication date
JPH0446603B2 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
US8142666B1 (en) Baffle box deflectors and flow spreaders
US5096787A (en) Hydrostatic pump with static resistance for a mobile vehicle battery
US10982424B2 (en) Liquid quality system with drag inducing portions
BR0213983B1 (en) Decanting tank for decanting mineral slurries and Method of decanting a mineral slurries.
CN103405946A (en) Horizontal flow precipitation separation device
JPS627409A (en) Method and apparatus for separating suspended particles by sedimentation
JP3820433B2 (en) Oil / water separator
JP4988913B2 (en) Floc-forming inclined plate and a coagulating sedimentation treatment tank employing the flock-forming inclined plate
CN110327723A (en) A kind of method acoustic-electric coupling fine particle removing device and remove fine particle
JP2561084B2 (en) Sedimentation and separation device for suspended particles by vertical fins
JPH0366923B2 (en)
JPS59123504A (en) Cross-flow separator
JPS63209709A (en) Method and apparatus for sedimentation of suspended particles
CN206444419U (en) A kind of slurries isolating device and desulfurizing tower in wet desulfuration tower
CN202052360U (en) Horizontal-flow honeycomb cell type sedimentation device
JPS62225212A (en) Cross flow separator for separating substance in liquid
US11033835B1 (en) Liquid quality system with drag-inducing portions
CN218221210U (en) Sedimentation tank and water treatment system for preventing floating mud
JPS63218216A (en) Sedimentation device for suspending particle
CN206549837U (en) Plasma device and its discharge electrode, and desulfurization and dedusting demisting integrated apparatus
JP3184450B2 (en) Powder classifier and method
CN209317422U (en) A kind of flue gas processing device after smoke processing system and desulfurization
CN214130421U (en) Solid-liquid separator with reverse inclined flow pipe
CN103272409A (en) Coalescence strengthening and separating core body of oil-liquid separator
CN217367547U (en) Improved generation bispin tube bank dust removal defroster