JPS626700B2 - - Google Patents

Info

Publication number
JPS626700B2
JPS626700B2 JP54154629A JP15462979A JPS626700B2 JP S626700 B2 JPS626700 B2 JP S626700B2 JP 54154629 A JP54154629 A JP 54154629A JP 15462979 A JP15462979 A JP 15462979A JP S626700 B2 JPS626700 B2 JP S626700B2
Authority
JP
Japan
Prior art keywords
oil
acid
reaction
olefin metathesis
metathesis reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54154629A
Other languages
Japanese (ja)
Other versions
JPS5677243A (en
Inventor
Takeshi Nishiguchi
Shinichi Goto
Katsuhisa Sugizaki
Naruyuki Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Perfumery Industry Co filed Critical Takasago Perfumery Industry Co
Priority to JP15462979A priority Critical patent/JPS5677243A/en
Publication of JPS5677243A publication Critical patent/JPS5677243A/en
Publication of JPS626700B2 publication Critical patent/JPS626700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は9―オクタデセンニ酸ジエステルの製
造法、更に詳細には、天然の動植物油から9―オ
クタデセンニ酸ジエステルを得る新規な工業的製
造法に関する。 9―オクタデセンニ酸ジエステルは、これを閉
環させることによりムスク香料として重要なシベ
トンに導くことができる極めて有用な化合物であ
る。 従来、この化合物を製造する方法としては、オ
レイン酸メチルエステルをオレフインメタセシス
反応に付す方法が知られている〔P.B.Van Dam
ら:J.Am.Oil Chem.Soc.,51,389―392
(1974)及び特開昭52―118447号〕。しかし、この
方法は原料のオレイン酸メチルエステルが天然油
脂に比べ高価であり、また、その反応性もあまり
高くないので、工業的製法としては満足できるも
のではない。 また一方、オリーブ油についてオレフインメタ
セシス反応を行つた報告〔○イJ.C.S.Chem.Comm.
,1121―1222(1972)、及び○ロJ.Am.Oil Chem.
Soc.,51,389―392(1974)〕がなされている
が、○イの文献では、その反応生成物中に9―オク
タデセンを確認したにとどまり、また○ロの文献で
は、生成物の考察は行つているが、これを単離定
量していない。 本発明者は、オリーブ油のオレフインメタセシ
ス反応について鋭意研究を重ねた結果、この反応
成積体をアルコール性アルカリ金属アルコラート
で処理すると9―オクタデセンニ酸ジエステルが
得られることを見出した。更にまた、本発明者
は、オリーブ油の如きオレイン酸を主な構成脂肪
酸とするトリグリセライドのみならず、リノール
酸、リノレン酸を構成脂肪酸とするトリグリセラ
イドの場合にも同様に9―オクタデセンニ酸ジエ
ステルが得られることを見出した。 本発明は斯る新知見に基いて完成されたもの
で、オレイン酸、リノール酸、リノレン酸を主な
構成脂肪酸とするトリグリセライドをオレフイン
メタセシス反応に付し、次いで得られる成積体を
アルコール性アルカリ金属アルコラートで処理し
て9―オクタデセンニ酸ジエステルを製造する方
法である。 本発明において、油脂の不飽和脂肪酸残基がオ
レイン酸のみの場合は、オレフインメタセシス反
応は、反応式をトリグリセライドの一つの構成脂
肪酸で示すと、次の反応式に従つて進行する。 2・C8H17CH=CH(CH27COOR′ 〓C8H17CH=CHC8H17+R′OOC (CH27CH=CH(CH27COOR′ オレフインメタセシス反応は可逆反応であるた
め、脂肪酸残基がリノール酸、リノレン酸を含む
場合には、多くのオレフイン化合物を生成しう
る。例えば、リノール酸残基、C5H11(CH=
CHCH22(CH26COOR′、どうしの反応では一
次生成物として、C5H11CH=CH
(CH27COOR′、C5H11―(CH=CHCH23
(CH26COOR′、C5H11CH=CHC5H11、C5H11
(CH=CHCH23C4H9、R′OOC(CH27CH=CH
(CH27COOR′、R′OOC(CH27(CH=
CHCH23(CH26COOR′、
The present invention relates to a method for producing 9-octadecenedioic acid diester, and more particularly, to a novel industrial production method for obtaining 9-octadecenedioic acid diester from natural animal and vegetable oils. 9-octadecenioic acid diester is an extremely useful compound that can be ring-closed to produce civetone, which is important as a musk fragrance. Conventionally, as a method for producing this compound, a method is known in which oleic acid methyl ester is subjected to an olefin metathesis reaction [PBVan Dam
et al.: J.Am.Oil Chem.Soc., 51 , 389―392
(1974) and Japanese Patent Application Laid-Open No. 118447/1983]. However, this method is not satisfactory as an industrial production method because the raw material, oleic acid methyl ester, is more expensive than natural oils and fats, and its reactivity is not very high. On the other hand, a report on olefin metathesis reaction for olive oil [○IJCSChem.Comm.
, 1121-1222 (1972), and ○Ro J. Am. Oil Chem.
Soc., 51 , 389-392 (1974)], but the literature in ○B only confirms 9-octadecene in the reaction product, and the literature in ○B does not discuss the product. has been carried out, but it has not been isolated or quantified. As a result of extensive research into the olefin metathesis reaction of olive oil, the present inventors discovered that 9-octadecenedioic acid diester can be obtained by treating this reaction product with an alcoholic alkali metal alcoholate. Furthermore, the present inventor has found that 9-octadecendioic acid diester can be obtained not only from triglycerides such as olive oil whose main constituent fatty acid is oleic acid, but also from triglycerides whose constituent fatty acids are linoleic acid and linolenic acid. I discovered that. The present invention was completed based on this new knowledge, and involves subjecting triglyceride whose main fatty acids are oleic acid, linoleic acid, and linolenic acid to an olefin metathesis reaction, and then treating the resulting product with an alcoholic alkali. This is a method for producing 9-octadecenedioic acid diester by treatment with a metal alcoholate. In the present invention, when the unsaturated fatty acid residue in the oil or fat is only oleic acid, the olefin metathesis reaction proceeds according to the following reaction formula, when the reaction formula is expressed by one constituent fatty acid of triglyceride. 2.C 8 H 17 CH=CH (CH 2 ) 7 COOR′ 〓C 8 H 17 CH=CHC 8 H 17 +R′OOC (CH 2 ) 7 CH=CH (CH 2 ) 7 COOR′ Olefin metathesis reaction is reversible Since it is a reaction, many olefin compounds can be produced when the fatty acid residue contains linoleic acid or linolenic acid. For example, linoleic acid residue, C 5 H 11 (CH=
CHCH 2 ) 2 (CH 2 ) 6 COOR′, in the reaction between them, C 5 H 11 CH=CH
(CH 2 ) 7 COOR′, C 5 H 11 - (CH=CHCH 2 ) 3
(CH 2 ) 6 COOR′, C 5 H 11 CH=CHC 5 H 11 , C 5 H 11
(CH=CHCH 2 ) 3 C 4 H 9 , R′OOC(CH 2 ) 7 CH=CH
(CH 2 ) 7 COOR′, R′OOC(CH 2 ) 7 (CH=
CHCH 2 ) 3 (CH 2 ) 6 COOR′,

【式】が生成す るが、未反応のリノール酸残基及びこれらの一次
生成物は更に反応しあつて、多くの二次反応生成
物を与えうる。しかし、ポリエンの反応で生成す
る1,4―シクロヘキサジエンは六員環のもつ特
異な安定性によりもはやメタセシス反応を行わ
ず、メタセシス反応の平衡系外に出るため最終的
には次のような反応が行われることになる。脂肪
酸残基がリノレン酸の場合も最終的にはリノール
酸の場合と同様な反応が行われる。 R―(CH=CHCH2o(CH26COOR′ →R―CH=CH―R+R′OOC(CH27 CH=CH(CH27COOR′+n−1/2
[Formula] is formed, but the unreacted linoleic acid residues and these primary products can further react with each other to give many secondary reaction products. However, due to the unique stability of the six-membered ring, the 1,4-cyclohexadiene produced in the polyene reaction no longer undergoes the metathesis reaction and exits the equilibrium system of the metathesis reaction, resulting in the following reaction. will be held. Even when the fatty acid residue is linolenic acid, the same reaction as in the case of linoleic acid takes place. R-(CH=CHCH 2 ) o (CH 2 ) 6 COOR'→R-CH=CH-R+R'OOC(CH 2 ) 7 CH=CH(CH 2 ) 7 COOR'+n-1/2

【式】 リノール酸の場合:R=C5H11,n=2 リノレン酸の場合:R=C2H5,n=3 これらの反応は、便宜上次の二つの反応に分解
して考えることができる。 R―(CH=CHCH2o(CH26COOR′→ n−1/2
[Formula] In the case of linoleic acid: R=C 5 H 11 , n=2 In the case of linolenic acid: R=C 2 H 5 , n=3 For convenience, these reactions can be considered by breaking them down into the following two reactions. I can do it. R-(CH=CHCH 2 ) o (CH 2 ) 6 COOR'→ n-1/2

【式】+R―CH=CH (CH27COOR′ …反応(A) 2・R―CH=CH(CH27COOR′ 〓R―CH=CH―R+R′OOC(CH27 CH=CH(CH27COOR′ …反応(B) R=C8H17,n=1のときオレイン酸 R=C5H11,n=2のときリノール酸 R=C2H5,n=3のときリノレン酸 反応生成物は複雑で分析、解析困難な混合組成
物であるが、後述の後処理の結果から反応(B)は平
衡反応であつてその反応率は理論的には50%であ
る。反応(B)により得られた反応生成物および未反
応のトリグリセライドを、更にアルコール性アル
カリ金属アルコラートで処理し、9―オクタデセ
ンニ酸アルキルエステル並びに飽和および不飽和
脂肪酸アルキルエステルを得る。回収された不飽
和脂肪酸アルキルエステルは再度公知の方法〔P.
B.Van Damら:J.Am.Oil Chem.Soc.,51,389
―392(1974)及び特開昭52―118447号〕に従い
オレフインメタセシス反応せしめ、9―オクダデ
センニ酸アルキルエステルとすることができる。 本発明の原料であるトリグリセライドとして
は、一般に市販されている天然動植物油脂のう
ち、ナタネ油、カラシ油等のエルカ酸型油脂及び
ヒマシ油等のオキシ酸型油脂を除き、そのほとん
どが使用できる。構成脂肪酸としてオレイン酸、
リノール酸又はリノレン酸を多く含む油脂は、例
えば「油脂化学便覧」、日本油化学協会編、丸善
株式会社出版(昭和33年発行)第26―31頁の表を
利用して適宜選択できる。好ましいトリグリセラ
イドとしては、例えばオリーブ油、サザンカ油、
椿油、茶油、カポツク油、ゴマ油、コメヌカ油、
大豆油、トウモロコシ油、パーム油、ヒマワリ
油、ベニバナ油(サフラワー油)、綿実油、落花
生油、牛脂等が挙げられる。 これらの油脂を本発明の原料に供する場合、そ
の中にオレフインメタセシス反応を阻害する、例
えば遊離脂肪酸、抗酸化剤、水等の活性水素化合
物が存在しないことが必要である。現在油脂工業
の分野で供給されている精製油脂においては遊離
脂肪酸は充分に除かれているから、抗酸化剤無添
加のものを使用するのが好ましい。また、古くな
つて品質が劣化し、酸価及び過酸化物価が高くな
つた油脂の場合には、例えば「油脂化学製品便
覧」油脂化学製品便覧編集委員会編、日刊工業新
聞社(昭和38年発行)第264―265頁に記載の如
く、苛性ソーダ溶液で洗浄する方法等によつて精
製して使用する。 オレフインメタセシス反応は、前述のJ.Am.
Oil Chem.Soc.,51,389―392(1974)及び「油
化学」25,No.11,779―783(1976)に記載の条件
下実施される。この際、触媒として、六塩化タン
グステン―テトラアルキルスズを使用するのが好
ましい。テトラアルキルスズ中Sn(n―C4H94
はSn(CH34及びSn(C2H54に比較し安価であ
り、沸点が高いのでとり扱いが容易であり、しか
も毒性が低く、活性も高いので特に好適である。 六塩化タングステン―Sn(n―C4H94の使用
量は、トリグリセライドの脂肪酸エステル基のモ
ル数と六塩化タングステンのモル数の比が15〜
60:1、特に30:1になるようにするのが好まし
く、またSn(n―C4H94と六塩化タングステン
の比は4:1〜6:1が好ましい。 本反応の溶媒としては、ベンゼン、クロルベン
ゼン、ブロムベンゼン、o―ジクロルベンゼン、
m―ジクロルベンゼン、1,2,4―トリクロル
ベンゼン、テトラクロルエチレン、1,1,2,
2―テトラクロルエタンを使用することができ
る。溶媒の量は多い方が、触媒の溶解度が高く、
粘度が低下するため収率が向上するが、実際には
原料油脂と等量(容積)使用するのがよい結果を
与える。 本反応は、水分が実質的に存在しない状態で行
う必要があり、このために、油脂と溶媒の混和物
を予め加熱して、白濁の留出物がなくなる迄留出
を行う。 本反応は、実験室的な小規模の場合には、重合
用アンプル又はコツク付の耐圧硝子管を使用し、
空間が液量の5倍以上あるようにして実施するの
が好ましいが、工業的には、撹拌機、冷却管付き
で、減圧又は乾燥した不活性ガス、例えば窒素あ
るいは炭酸ガス置換下に実施できる反応釜によつ
て行われる。 本反応を実施するには、乾燥した窒素ガスで置
換された容器に六塩化タングステン、油脂の溶媒
溶液、次いでSn(n―C4H94を順次入れ、好ま
しくは減圧下反応させる。反応温度は80〜120
℃、反応時間は2〜3時間が適当である。反応を
常圧下おこなう場合には触媒を2分し、その1つ
を最初に加えて反応を行い、次いで残りを加えて
更に反応を行うのが好ましく、斯くするときは収
率を理論値に近ずけることができる。 反応液は希アンモニア水を加えて触媒を分解
し、水層を除去し、有機層を分別蒸留する。分別
蒸留の初期の段階で、1,4―シクロヘキサジエ
ン(72.3〜72.5℃)、3―ヘキセン(68℃)、6―
ドデセン(220℃)、Sn(n―C4H94(270℃)、
9―オクタデセン(280℃)等の順序で回収され
る。斯くして回収されたSn(n―C4H94は次の
反応に再使用できる。 斯くして得られた蒸留残渣にアルコール性アル
カリ金属アルコラートを加えて加熱反応させる。
アルカリ金属アルコラートは、原料トリグリセラ
イドのエステル価より計算した理論量の1.3〜1.5
倍モルを使用し、これは0.2Nアルコール溶液と
して用いるのが好ましい。反応は40〜60分間加熱
還流することによつて完了する。 反応液は塩酸等で酸性としたのち、n―ヘキサ
ン等で抽出し、水で充分洗浄した後乾燥する。溶
媒を留去後残留物を減圧蒸留すれば、前留とし
て、未反応のトリグリセライドが飽和および不飽
和脂肪酸エステルとして回収され、次いで目的の
9―オクタデセンニ酸ジエステルが得られる。 回収された不飽和脂肪酸エステルは、オレフイ
ンメタセシス反応に付せば9―オクタデセンニ酸
ジエステルとすることができるので、再利用が可
能である。 本発明方法とオレイン酸メチルエステルをオレ
フインメタセシス反応に付す公知方法を比較すれ
ば、公知方法が原料として油脂より製造精製し
得られたオレイン酸メチルエステルを使用するの
に対し本発明方法は油脂をそのまま利用できるの
で原料が入手容易でかつ安価であり、オレフイ
ンメタセシス反応において、エステル基は触媒毒
として働き触媒の活性を低下せしめるが、トリグ
リセライドのエステル基はオレイン酸メチルのそ
れよりも立体障害が大きく、触媒を被毒する力が
弱いので、本発明方法の収率の方が良い等の利点
を有する。 叙上の如く、本発明によればオレイン酸メチル
エステルに比較し安価で、しかも入手容易なトリ
グリセライド(油脂)から9―オクタデセンニ酸
ジエステルを得ることができる。 そして、これはA.T.Blomquistら:J.Am.
Chem.Soc.,70,34―36(1948)記載のジケテン
法、特開昭52―118447号記載のデイツクマン法、
チーグラー法、ルチカ法、アシロイン縮合法等に
よつてムスク香料のシベトンに導くことができ
る。 次に本発明の実施例並びに9―オクタデセンニ
酸ジエステルからシベトンを製造するのに最も収
率のよいジケテン法を参考例として示す。 なお、本実施例において、理論収率とは反応率
50%の時の収率を100%とした値であり、したが
つて最高理論収率は200%となる。 実施例 1 乾燥窒素置換下50ml重合用アンプルに順次六塩
化タングステン1.3g、オリーブ油(オレイン酸
82%、リノール酸4%含有)18.5gおよびテトラ
―n―ブチルスズ3.0gを取り、次いでドライア
イス―メタノール液冷却下、真空中で封管した。
この重合用アンプルを振盪下80℃で3時間加熱
し、冷却後開封した。得られた反応混合物にベン
ゼン50mlおよび5%アンモニア水15mlを加えて触
媒を分解し、次いで水層を除き、ベンゼン層を3
回水洗後ベンゼンを留去した。更に減圧蒸留
(135℃/2mmHg)にてテトラ―n―ブチルスズ
および9―オクタデセンを留去後、残液に0.2N
ナトリウムメチラート―メタノール120mlを加
え、還流下40分加熱した。この反応液に水120ml
および2N―塩酸60mlを加え、n―ヘキサンで3
回抽出し、次いでn―ヘキサン層を合して中性と
なるまで水洗し、無水硫酸ナトリウムで乾燥し
た。n―ヘキサンを留去後減圧蒸留(168〜170
℃/0.3mmHg)すれば9―オクタデセンニ酸ジメ
チルエステル2.8g(理論収率61.0%)を得た。 実施例 2 80ml重合アンプルを使用し、六塩化タングステ
ン0.66g、オリーブ油18.5g、テトラ―n―ブチ
ルスズ1.5gおよびクロルベンゼン30mlを使用す
る以外は実施例1と同様にして9―オクタデセン
ニ酸ジメチルエステル3.0g(理論収率65.3%)
を得た。 実施例 3 乾燥窒素置換下50ml重合用アンプルに順次六塩
化タングステン0.7g、サフラワー油(オレイン
酸15%、リノール酸65%含有)15gおよびテトラ
―n―ブチルスズ2.3gを取り封管した。80℃に
加熱下3時間振盪し、冷却後開封した。得られた
反応混合物にベンゼン50mlと5%アンモニア水15
mlを加え、撹拌して触媒を分解し、水層を除いた
のちベンゼン層を3回水洗した。1,4―シクロ
ヘキサジエンおよびベンゼンの留去後、減圧下で
6―ドデセン次いでテトラ―n―ブチルスズおよ
び9―オクタデセンを留去した。この残液に
0.2Nナトリウムメチラート―メタノール溶液120
mlを加え、還流下で40分間加熱し、得られた反応
液に水120mlおよび2N―塩酸60mlを加え、n―ヘ
キサンで3回抽出した。n―ヘキサン層を合し、
中性になるまで水洗したのち無水硫酸ナトリウム
で乾燥した。n―ヘキサンの留去後減圧蒸留すれ
ば9―オクタデセンニ酸ジメチルエステル2.4g
(理論収率65%)を得た。 実施例 4 乾燥窒素置換下、80ml重合アンプルに六塩化タ
ングステン0.66g、テトラ―n―ブチルスズ1.5
g、オリーブ油18.5gおよびクロルベンゼン20ml
を取り、次いでドライアイス―メタノール液冷却
下に真空中で封管した。80℃で3時間振盪下反応
後開封し、さらにヘキサクロルタングステン0.4
g、テトラ―n―ブチルスズ1.0gを加えた。重
合アンプルを再度上記要領で封管して、さらに80
℃で3時間反応させた。この反応混合物を実施例
1と同様に処理して、9―オクタデセンニ酸ジメ
チルエステル4.0g(理論収率87%)を得た。 参考例 (1) 9―オクタデセンニ酸ジメチルエステルの加
水分解: 苛性カリ16gを水9.5mlおよびエタノール72
mlに溶解し、この中に9―オクタデセンニ酸ジ
メチルエステル20gを加え、還流下1.5時間加
熱した。ついで、大部分のエタノールを留去し
たのち、6N―塩酸で中和してジカルボン酸を
遊離せしめエーテルで抽出した。エーテル抽出
液を2回水洗し、無水硫酸ナトリウムで乾燥後
エーテルを留去し、減圧下十分に乾燥して9―
オクタデセンニ酸を得、つぎの閉環によるシベ
トン合成反応の原料に供した。 (2) シベトンの合成: 9―オクタデセンニ酸9gにチオニルクロリ
ド10mlおよびエーテル25mlを加え加温した。30
分後に温度を70℃に上げ、同温度に1時間保つ
た。ついでエーテルを留去し、減圧下過剰のチ
オニルクロライドを除き、9―オクタデセンニ
酸クロリドを得た。得られた9―オクタデセン
ニ酸クロリド4gを400mlのエーテルに溶解
し、これをエーテル1およびトリエチルアミ
ン20mlの入つた2の三つ口フラスコ中に還流
撹拌下16時間を要して滴下した。滴下速度の調
節と、滴下管の詰りを防ぐために、Hershberg
滴下ロート(Organic Synthesis Vol 18,16
頁W.J.Scottら記載)が好ましい。反応後エー
テル1を留去し、残液を3N―塩酸で洗浄
し、さらにエーテルを留去した。以上の閉環反
応の操作を2回行ない、2回分のケテンダイマ
ーを合わせ、これに苛性カリ4g、水8mlおよ
びメタノール120mlを加えて室温で2日間撹拌
した。さらに4時間還流下加熱したのち水500
mlを加え、n―ヘキサンで繰り返し抽出した。
得られたn―ヘキサン層を無水硫酸マグネシウ
ムで乾燥後減圧蒸留を行なえば、143〜148℃/
3mmHgのシベトン1.68g(収率29%)を得
た。シス体34%、トランス体66%であつた。
[Formula] +R-CH=CH (CH 2 ) 7 COOR' ...Reaction (A) 2.R-CH=CH (CH 2 ) 7 COOR'〓R-CH=CH-R+R'OOC (CH 2 ) 7 CH =CH ( CH2 ) 7COOR '... Reaction (B) When R= C8H17 , n=1 , oleic acid R=C5H11, when n=2, linoleic acid R=C2H5 , n = 3, linolenic acid The reaction product is a complex mixture composition that is difficult to analyze, but from the results of the post-processing described later, reaction (B) is an equilibrium reaction, and the reaction rate is theoretically 50 %. The reaction product obtained in reaction (B) and unreacted triglyceride are further treated with an alcoholic alkali metal alcoholate to obtain 9-octadecenioic acid alkyl ester and saturated and unsaturated fatty acid alkyl ester. The recovered unsaturated fatty acid alkyl ester was recovered using a known method [P.
B. Van Dam et al.: J. Am. Oil Chem. Soc., 51 , 389
392 (1974) and JP-A No. 52-118447], an olefin metathesis reaction can be carried out to obtain an alkyl 9-ocdadecenioic acid ester. As the triglyceride that is the raw material of the present invention, most of the commercially available natural animal and vegetable oils and fats can be used, except for erucic acid type oils and fats such as rapeseed oil and mustard oil, and oxyacid type oils and fats such as castor oil. Oleic acid as a constituent fatty acid,
Fats and oils containing a large amount of linoleic acid or linolenic acid can be appropriately selected using, for example, the table in "Oil and Fat Chemistry Handbook", edited by Japan Oil Chemists' Association, published by Maruzen Co., Ltd. (published in 1955), pages 26-31. Preferred triglycerides include, for example, olive oil, sasanqua oil,
Camellia oil, tea oil, kpotsk oil, sesame oil, rice bran oil,
Examples include soybean oil, corn oil, palm oil, sunflower oil, safflower oil, cottonseed oil, peanut oil, beef tallow, and the like. When these fats and oils are used as raw materials for the present invention, it is necessary that active hydrogen compounds such as free fatty acids, antioxidants, and water that inhibit the olefin metathesis reaction are not present therein. Since free fatty acids are sufficiently removed from refined oils and fats currently supplied in the oil and fat industry, it is preferable to use oils and fats that do not contain antioxidants. In addition, in the case of fats and oils that have deteriorated in quality due to aging and have high acid values and peroxide values, for example, "Oil and Fat Chemical Product Handbook" edited by the Oil and Fat Chemical Product Handbook Editorial Committee, Nikkan Kogyo Shimbun Publishing Co., Ltd. (1966) It is used after being purified by a method such as washing with a caustic soda solution as described on pages 264-265 (Publishing). The olefin metathesis reaction was described by the aforementioned J.Am.
It is carried out under the conditions described in Oil Chem. Soc., 51 , 389-392 (1974) and "Oil Chem. Soc." 25 , No. 11, 779-783 (1976). At this time, it is preferable to use tungsten hexachloride-tetraalkyltin as the catalyst. Sn in tetraalkyltin (n-C 4 H 9 ) 4
is particularly suitable because it is cheaper than Sn(CH 3 ) 4 and Sn(C 2 H 5 ) 4 , has a high boiling point and is easy to handle, has low toxicity, and has high activity. The amount of tungsten hexachloride-Sn(n- C4H9 ) 4 to be used is such that the ratio of the number of moles of the fatty acid ester group of the triglyceride to the number of moles of tungsten hexachloride is 15 to 15.
The ratio of Sn(n-C 4 H 9 ) 4 to tungsten hexachloride is preferably 4:1 to 6:1. Solvents for this reaction include benzene, chlorobenzene, bromobenzene, o-dichlorobenzene,
m-dichlorobenzene, 1,2,4-trichlorobenzene, tetrachloroethylene, 1,1,2,
2-tetrachloroethane can be used. The larger the amount of solvent, the higher the solubility of the catalyst.
Since the viscosity decreases, the yield improves, but in reality, using the same amount (volume) as the raw material oil gives good results. This reaction needs to be carried out in the substantial absence of water, and for this purpose, the mixture of fat and oil and solvent is heated in advance and distillation is carried out until there is no cloudy distillate. This reaction can be carried out on a small scale in a laboratory using a polymerization ampoule or a pressure-resistant glass tube with a pot.
It is preferable to carry out the process so that the space is at least 5 times the volume of the liquid, but industrially it can be carried out using a stirrer and a cooling pipe, and under reduced pressure or dry inert gas, such as nitrogen or carbon dioxide. It is carried out using a reaction vessel. To carry out this reaction, tungsten hexachloride, a solvent solution of oil and fat, and then Sn(n-C 4 H 9 ) 4 are sequentially placed in a container purged with dry nitrogen gas, and the reaction is preferably carried out under reduced pressure. Reaction temperature is 80-120
℃, and the reaction time is suitable for 2 to 3 hours. When the reaction is carried out under normal pressure, it is preferable to divide the catalyst into two parts, add one part first to carry out the reaction, and then add the remaining part to carry out further reaction. In this case, the yield should be close to the theoretical value. can be carried out. Dilute ammonia water is added to the reaction solution to decompose the catalyst, the aqueous layer is removed, and the organic layer is fractionally distilled. In the early stage of fractional distillation, 1,4-cyclohexadiene (72.3-72.5℃), 3-hexene (68℃), 6-
Dodecene (220℃), Sn (n-C 4 H 9 ) 4 (270℃),
9-octadecene (280℃) etc. are recovered in this order. Sn(n-C 4 H 9 ) 4 thus recovered can be reused in the next reaction. An alcoholic alkali metal alcoholate is added to the distillation residue obtained in this manner, and the mixture is heated and reacted.
The alkali metal alcoholate has a theoretical amount of 1.3 to 1.5 calculated from the ester value of the raw material triglyceride.
A twice molar amount is used, which is preferably used as a 0.2N alcohol solution. The reaction is completed by heating to reflux for 40-60 minutes. The reaction solution is made acidic with hydrochloric acid, etc., extracted with n-hexane, etc., thoroughly washed with water, and then dried. After the solvent is distilled off, the residue is distilled under reduced pressure to recover unreacted triglycerides as saturated and unsaturated fatty acid esters as a pre-distillate, and then to obtain the desired 9-octadecenioic acid diester. The recovered unsaturated fatty acid ester can be converted into 9-octadecenedioic acid diester by subjecting it to an olefin metathesis reaction, so it can be reused. Comparing the method of the present invention with the known method of subjecting oleic acid methyl ester to an olefin metathesis reaction, it is found that while the known method uses oleic acid methyl ester produced and purified from fats and oils as a raw material, the present method uses fats and oils as a raw material. Since the raw materials can be used as is, the raw materials are easy to obtain and inexpensive, and in the olefin metathesis reaction, ester groups act as catalyst poisons and reduce the activity of the catalyst, but the ester groups of triglycerides have greater steric hindrance than that of methyl oleate. The method of the present invention has advantages such as a better yield because it has a weaker ability to poison the catalyst. As described above, according to the present invention, 9-octadecendioic acid diester can be obtained from triglyceride (oil), which is cheaper and more easily available than oleic acid methyl ester. And this is AT Blomquist et al.: J.Am.
The diketene method described in Chem.Soc., 70 , 34-36 (1948), the Deitzkmann method described in JP-A-52-118447,
The musk fragrance civetone can be derived by the Ziegler method, the Ruchika method, the acyloin condensation method, etc. Next, examples of the present invention and a diketene method with the highest yield for producing civetone from 9-octadecenedioic acid diester will be shown as a reference example. In this example, the theoretical yield refers to the reaction rate.
This value is based on the yield at 50% as 100%, so the highest theoretical yield is 200%. Example 1 1.3 g of tungsten hexachloride, olive oil (oleic acid
82% (containing linoleic acid, 4%) and 3.0 g of tetra-n-butyltin were taken, and then sealed in a vacuum tube under cooling with a dry ice-methanol solution.
This polymerization ampoule was heated at 80° C. for 3 hours while shaking, and after cooling, it was opened. 50 ml of benzene and 15 ml of 5% aqueous ammonia were added to the resulting reaction mixture to decompose the catalyst, then the aqueous layer was removed, and the benzene layer was
After washing twice with water, benzene was distilled off. Furthermore, after removing tetra-n-butyltin and 9-octadecene by vacuum distillation (135℃/2mmHg), 0.2N was added to the residual liquid.
120 ml of sodium methylate-methanol was added and heated under reflux for 40 minutes. Add 120ml of water to this reaction solution.
and 60ml of 2N-hydrochloric acid, and then diluted with n-hexane.
After extraction, the n-hexane layers were combined, washed with water until neutral, and dried over anhydrous sodium sulfate. After distilling off n-hexane, vacuum distillation (168-170
℃/0.3 mmHg), 2.8 g (theoretical yield: 61.0%) of 9-octadecenioic acid dimethyl ester was obtained. Example 2 3.0 9-octadecenioic acid dimethyl ester was prepared in the same manner as in Example 1 except that an 80 ml polymerization ampoule was used and 0.66 g of tungsten hexachloride, 18.5 g of olive oil, 1.5 g of tetra-n-butyltin and 30 ml of chlorobenzene were used. g (theoretical yield 65.3%)
I got it. Example 3 Under dry nitrogen atmosphere, 0.7 g of tungsten hexachloride, 15 g of safflower oil (containing 15% oleic acid and 65% linoleic acid) and 2.3 g of tetra-n-butyltin were placed in a 50 ml polymerization ampoule and sealed. The mixture was shaken while heating at 80°C for 3 hours, and opened after cooling. Add 50 ml of benzene and 15 ml of 5% ammonia water to the resulting reaction mixture.
ml was added, the catalyst was decomposed by stirring, the aqueous layer was removed, and the benzene layer was washed three times with water. After 1,4-cyclohexadiene and benzene were distilled off, 6-dodecene, followed by tetra-n-butyltin and 9-octadecene were distilled off under reduced pressure. This residual liquid
0.2N sodium methylate-methanol solution 120
ml and heated under reflux for 40 minutes, 120 ml of water and 60 ml of 2N-hydrochloric acid were added to the resulting reaction solution, and the mixture was extracted three times with n-hexane. Combine the n-hexane layers,
After washing with water until neutral, it was dried over anhydrous sodium sulfate. After distilling off n-hexane, distillation under reduced pressure yields 2.4 g of 9-octadecenioic acid dimethyl ester.
(Theoretical yield: 65%). Example 4 Under dry nitrogen atmosphere, 0.66 g of tungsten hexachloride and 1.5 g of tetra-n-butyltin in an 80 ml polymerization ampoule.
g, 18.5 g of olive oil and 20 ml of chlorobenzene
The tube was then sealed in vacuo while cooling with a dry ice-methanol solution. After reacting at 80℃ for 3 hours with shaking, open the package and add 0.4 hexachlorotungsten.
g, and 1.0 g of tetra-n-butyltin were added. Seal the polymerization ampoule again as described above and add 80
The reaction was carried out at ℃ for 3 hours. This reaction mixture was treated in the same manner as in Example 1 to obtain 4.0 g (theoretical yield: 87%) of 9-octadecenioic acid dimethyl ester. Reference example (1) Hydrolysis of 9-octadecenioic acid dimethyl ester: 16 g of caustic potassium was mixed with 9.5 ml of water and 72 ml of ethanol.
ml, 20 g of 9-octadecenioic acid dimethyl ester was added thereto, and the mixture was heated under reflux for 1.5 hours. After most of the ethanol was then distilled off, the mixture was neutralized with 6N hydrochloric acid to liberate the dicarboxylic acid and extracted with ether. The ether extract was washed twice with water, dried over anhydrous sodium sulfate, the ether was distilled off, and thoroughly dried under reduced pressure to give 9-
Octadecenniic acid was obtained and used as a raw material for the next synthesis reaction of civetone by ring closure. (2) Synthesis of civetone: 10 ml of thionyl chloride and 25 ml of ether were added to 9 g of 9-octadeceneniic acid and heated. 30
After a few minutes, the temperature was raised to 70°C and kept at the same temperature for 1 hour. Then, the ether was distilled off and excess thionyl chloride was removed under reduced pressure to obtain 9-octadecenenioyl chloride. 4 g of the obtained 9-octadecenenioyl chloride was dissolved in 400 ml of ether, and this was added dropwise into a three-necked flask 2 containing ether 1 and triethylamine 20 ml under reflux and stirring for 16 hours. To adjust the drip rate and prevent clogging of the drip tube, Hershberg
Dripping funnel (Organic Synthesis Vol 18, 16
Page WJ Scott et al.) is preferred. After the reaction, ether 1 was distilled off, the residual liquid was washed with 3N-hydrochloric acid, and the ether was further distilled off. The above ring-closing reaction was carried out twice, and the two batches of ketene dimer were combined. To this was added 4 g of caustic potassium, 8 ml of water, and 120 ml of methanol, and the mixture was stirred at room temperature for 2 days. After heating under reflux for another 4 hours, water
ml and extracted repeatedly with n-hexane.
If the obtained n-hexane layer is dried with anhydrous magnesium sulfate and then distilled under reduced pressure, the temperature is 143-148℃/
1.68 g (yield 29%) of civetone was obtained at 3 mmHg. 34% was cis form and 66% was trans form.

Claims (1)

【特許請求の範囲】 1 オレイン酸、リノール酸、リノレン酸を主な
構成脂肪酸とするトリグリセライドをオレフイン
メタセシス反応に付し、次いで得られる成積体を
アルコール性アルカリ金属アルコラートで処理す
ることを特徴とする9―オクタデセンニ酸ジエス
テルの製造法。 2 オレフインメタセシス反応を、六塩化タング
ステンとテトラアルキルスズよりなる触媒の存在
下行う特許請求の範囲第1項記載の製造法。 3 トリグリセライドが、オリーブ油、椿油、茶
油、カポツク油、キヨウニン油、ベニバナ油、ヌ
カ油、大豆油、トウモロコシ油、パーム油、ヒマ
ワリ油、綿実油、落花生油、又は牛脂である特許
請求の範囲第1項記載の製造法。
[Claims] 1. A triglyceride whose main constituent fatty acids are oleic acid, linoleic acid, and linolenic acid is subjected to an olefin metathesis reaction, and the resulting product is then treated with an alcoholic alkali metal alcoholate. A method for producing 9-octadecenedioic acid diester. 2. The production method according to claim 1, wherein the olefin metathesis reaction is carried out in the presence of a catalyst consisting of tungsten hexachloride and tetraalkyltin. 3. Claim 1 in which the triglyceride is olive oil, camellia oil, tea oil, kapoku oil, quince oil, safflower oil, bran oil, soybean oil, corn oil, palm oil, sunflower oil, cottonseed oil, peanut oil, or beef tallow. Manufacturing method described in section.
JP15462979A 1979-11-29 1979-11-29 Production of 9-octadecenedioic acid diester Granted JPS5677243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15462979A JPS5677243A (en) 1979-11-29 1979-11-29 Production of 9-octadecenedioic acid diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15462979A JPS5677243A (en) 1979-11-29 1979-11-29 Production of 9-octadecenedioic acid diester

Publications (2)

Publication Number Publication Date
JPS5677243A JPS5677243A (en) 1981-06-25
JPS626700B2 true JPS626700B2 (en) 1987-02-13

Family

ID=15588360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15462979A Granted JPS5677243A (en) 1979-11-29 1979-11-29 Production of 9-octadecenedioic acid diester

Country Status (1)

Country Link
JP (1) JPS5677243A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501906B (en) 2001-03-26 2012-07-04 陶氏环球技术有限责任公司 Metathesis of unsaturated fatty acid esters or unsaturated fatty acids with lower olefins
MXPA04010803A (en) * 2002-04-29 2005-03-07 Dow Global Technologies Inc Intergrated chemical processes for industrial utilization of seed oils.
CN1802341A (en) 2003-01-13 2006-07-12 卡吉尔公司 Method for making industrial chemicals
JP4779121B2 (en) 2003-10-09 2011-09-28 ダウ グローバル テクノロジーズ エルエルシー Improved synthesis of unsaturated alcohols.
MX2007008359A (en) 2005-01-10 2007-09-06 Cargill Inc Candle and candle wax containing metathesis and metathesis-like products.
WO2007103460A2 (en) 2006-03-07 2007-09-13 Elevance Renewable Sciences, Inc. Colorant compositions comprising metathesized unsaturated polyol esters
JP2009529092A (en) 2006-03-07 2009-08-13 エレバンス リニューアブル サイエンシーズ, インク. Composition comprising unsaturated polyol ester metathesis reaction products
US8067610B2 (en) 2006-07-13 2011-11-29 Yann Schrodi Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
WO2008048520A2 (en) 2006-10-13 2008-04-24 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis and hydrocyanation
EP2076484B1 (en) 2006-10-13 2020-01-08 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes via olefin metathesis
EP2074079B1 (en) 2006-10-13 2011-08-10 Elevance Renewable Sciences, Inc. Metathesis methods involving hydrogenation and compositions relating to same
CN101558027B (en) 2006-10-13 2013-10-16 埃莱文斯可更新科学公司 Methods of making alpha, omega-dicarboxylic acid alkene derivatives by double decomposition
EP2157076A1 (en) * 2008-08-21 2010-02-24 Cognis IP Management GmbH Process for the preparation of unsaturated alpha, omega dicarboxylic acid diesters
US8436110B2 (en) 2008-10-31 2013-05-07 Dow Global Technologies Llc Olefin metathesis process employing bimetallic ruthenium complex with bridging hydrido ligands
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
WO2014168602A2 (en) 2011-12-28 2014-10-16 Elevance Renewable Sciences, Inc. Renewable fatty acid waxes and methods of making
JP2015523440A (en) 2012-06-20 2015-08-13 エレヴァンス リニューアブル サイエンシズ インコーポ Natural oil metathesis composition and method thereof
FR3024450B1 (en) * 2014-08-01 2018-01-26 Arkema France SYNTHESIS OF AN UNATURATED CYCLIC RAMIFICATION COMPOUND BY CROSS METATHESIS

Also Published As

Publication number Publication date
JPS5677243A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
JPS626700B2 (en)
CH636848A5 (en) PROCESS FOR PRODUCING N, N-DI (ETHYL) -META-TOLUAMIDE.
MX2014012447A (en) Process for the chemoselective reduction of terminally saturated carboxylic esters.
US4233232A (en) Manufacture of esters
DE3703585A1 (en) ALCOHOLS AND ETHERS WITH CYCLODODECYL AND CYCLODODECENYL GROUPS, THEIR PRODUCTION AND USE AS A FRAGRANCE
CH627432A5 (en) Process for the preparation of vinylcyclopropanecarboxylates
US1988021A (en) Production of unsaturated ketones
JPS629580B2 (en)
FR2464936A1 (en) PROCESS FOR THE PREPARATION OF MUSCONE
JPS622568B2 (en)
WO2007082847A1 (en) Method for producing bisabolol which is farnesol free or is low in farnesol
DE2361138A1 (en) METHOD FOR IMPLEMENTING DISUBSTITUTED DIENOPHILES WITH CYCLOPENTADIENE
US2937201A (en) Process for the production of azelaic acid
DE2461525A1 (en) METHOD FOR MANUFACTURING GAMMA-LACTONES
EP0346852B1 (en) Process for producing 4-chloro-3-alkoxybut-2E-ene acid alkyl esters
JP4786267B2 (en) Method for producing lactone and use of produced lactone as aromatic substance
EP0326959B1 (en) Perfume base composition comprising 2-cyclohexylpropanal and process for the preparation of this compound
GB1586671A (en) Manufacture of esters
JP2693160B2 (en) Method for producing 3-pentenoate ester
US3023246A (en) Production of branched unsaturated
Hirao et al. Fluoroalkylnorbornadienes and their corresponding valence isomer quadricyclanes—a light energy storage system
US2797236A (en) Lower alkanoate esters of 3-methyl-6-cyclohexylidene-1-hexen-3-ol and the corresponding 1-hexyn analog
US3917662A (en) Preparation of fatty acid esters
GB2163433A (en) Fluoronaphthalene chromium tricarbonyls useful as hydrogenation catalysts for polyunsaturated fatty acid residue-containing compositions
JP2001523655A (en) Palm and / or palm kernel unsaturated fatty alcohol