JPS62634A - Starting device for internal-combustion engine - Google Patents

Starting device for internal-combustion engine

Info

Publication number
JPS62634A
JPS62634A JP60136780A JP13678085A JPS62634A JP S62634 A JPS62634 A JP S62634A JP 60136780 A JP60136780 A JP 60136780A JP 13678085 A JP13678085 A JP 13678085A JP S62634 A JPS62634 A JP S62634A
Authority
JP
Japan
Prior art keywords
fuel
engine
flammable gas
air
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136780A
Other languages
Japanese (ja)
Other versions
JPH0355657B2 (en
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60136780A priority Critical patent/JPS62634A/en
Publication of JPS62634A publication Critical patent/JPS62634A/en
Publication of JPH0355657B2 publication Critical patent/JPH0355657B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To shorten a starting time of an engine, by a method wherein, after dropform fuel injected in a reactor is ignited, a ratio of fuel and air is controlled, and fuel concentration is increased to produce combustible gas. CONSTITUTION:Methanole and the like is injected through a fuel injection valve 14 into a reactor body 13, and dropform fuel is ignited by a glow plug 15. Thereafter, an amount of fuel and air fed through a fuel feed passage 29 and an air feed passage 17 is controlled, and fuel concentration is gradually increased. Combustible gas so produced is fed to the combustion of an engine through a feed passage 19. This enables sharp decrease of a starting time of an engine.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の始動装置に関し、例えばメタノール
等のアルコール燃料を使用する内燃機関の始動装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a starting device for an internal combustion engine, and for example, to a starting device for an internal combustion engine that uses alcohol fuel such as methanol.

〈従来の技術〉 メタノール等のアルコール燃料はガソリンに較べて着火
性能が悪いため、低温始動が困難であジアルコール燃料
を水素等に変換することにより低温始動性を改善するよ
うにするものがある。かかる従来例を第3図に示す(特
開昭52−113426号公報参照)。
<Prior art> Alcohol fuels such as methanol have poor ignition performance compared to gasoline, making it difficult to start at low temperatures.There are some systems that improve low-temperature startability by converting dialcohol fuel to hydrogen, etc. . Such a conventional example is shown in FIG. 3 (see Japanese Unexamined Patent Publication No. 113426/1983).

すなわち、メタノールを第1の開閉弁1を介して燃焼装
置2に供給して点火プラグ3によりメタノールを着火燃
焼させる。そして、燃焼装置2の燃焼作動によシ反応器
4を加熱し反応器4内をメタノールの反応温度まで高め
る。その後筒2の開閉弁5を介して反応器4にメタノー
ルを供給して反応させ水素を多量に含む可燃性ガスに変
換した後気化器6を介して機関Tに可燃性ガスを供給す
る。これによシ、低温始動性を向上させる。
That is, methanol is supplied to the combustion device 2 via the first on-off valve 1, and the methanol is ignited and burned by the spark plug 3. Then, the reactor 4 is heated by the combustion operation of the combustion device 2, and the inside of the reactor 4 is raised to the reaction temperature of methanol. Thereafter, methanol is supplied to the reactor 4 through the on-off valve 5 of the cylinder 2 and converted into a flammable gas containing a large amount of hydrogen.The flammable gas is then supplied to the engine T through the vaporizer 6. This improves low-temperature startability.

尚、8はバッテリ、9はエンジン千−スイッチである。Note that 8 is a battery and 9 is an engine switch.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の始動装置においては、
燃焼装置2と反応器4とを別個に設け、それぞれメタノ
ール燃料及び燃焼空気の制御を行なうようにしているの
で、構造が複雑となシコスト高となっていた。また、反
応器4を加熱して反応温度まで高めるために時間を要し
機関始動に時間がかかるという問題があった。
<Problems to be solved by the invention> However, in such a conventional starting device,
Since the combustion device 2 and the reactor 4 are provided separately and the methanol fuel and combustion air are controlled respectively, the structure is complicated and the cost is high. Further, there was a problem in that it took time to heat the reactor 4 and raise it to the reaction temperature, and it took time to start the engine.

本発明は、このような実状に鑑みてなされたもので、簡
易な構造でかつ短時間で可燃性ガスを形成できる内燃機
関の始動装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a starting device for an internal combustion engine that has a simple structure and can generate flammable gas in a short time.

く問題点を解決するための手段〉 このため、本発明は可燃性ガスを生成する中空状の反応
器本体と、該反応器本体内に筆体燃料を噴射する燃料噴
射弁装置と、噴射された燃料を着火させる着火装置と、
前記反応器本体内に空気を供給する空気供給通路と、前
記反応器本体内にて生成される可燃性ガスを機関に供給
する可燃性ガス供給通路と、可燃性ガスの温度を検出す
る温度センサと、検出された温度の増大に伴なって燃料
濃度を高めて可燃性ガス温度を略一定に保持すべく前記
反応器本体内に供給される燃料と空気との比率を制御す
る制御手段と、を備えるようにした。
Means for Solving the Problems> For this reason, the present invention provides a hollow reactor body that generates flammable gas, a fuel injection valve device that injects fuel into the reactor body, and a fuel injection valve device that injects fuel into the reactor body. an ignition device that ignites the fuel;
an air supply passage that supplies air into the reactor body; a flammable gas supply passage that supplies flammable gas generated within the reactor body to the engine; and a temperature sensor that detects the temperature of the flammable gas. and a control means for controlling the ratio of fuel and air supplied into the reactor body in order to increase the fuel concentration as the detected temperature increases and maintain the flammable gas temperature substantially constant; We prepared the following.

〈作用〉 このようにして、噴射された滴状の燃料に短時間で着火
した後、燃料と空気との供給比率を可燃性ガス温度に応
じて制御し、簡易な構造で可燃性ガスを短時間で生成し
、もって機関の始動性能を向上させる。
<Function> In this way, after the injected droplet-shaped fuel is ignited in a short time, the supply ratio of fuel and air is controlled according to the flammable gas temperature, and the flammable gas is ignited in a short time with a simple structure. generated in time, thereby improving the starting performance of the engine.

〈実施例〉 以下に、本発明の一実施例を第1図及び第2図に基づい
て説明する。
<Example> An example of the present invention will be described below based on FIGS. 1 and 2.

第1図において、機関(図示せず)の吸気マニホールド
11近傍には液体燃料としてのメタノ−ルを水素を含む
可燃性ガスに変換する反応器12が設けられている。
In FIG. 1, a reactor 12 for converting methanol as a liquid fuel into a flammable gas containing hydrogen is provided near an intake manifold 11 of an engine (not shown).

この反応器12には中空状の反応器本体13が形成され
、この反応器本体1′3の内部には本体13内壁との間
に所定の空隙を形成する筒状部材13aが取付けられて
いる。反応器本体13には前記筒状部材13&内にメタ
ノールを噴射する燃料噴射弁14が設けられている。ま
た、反応器本体13には前記燃料噴射弁14から噴射さ
れた滴状のメタノールに着火する着火装置としてのグロ
ープラグ15が設けられている。前記筒状部材13a内
に吸気絞弁16上流の吸入空気を導入する空気供給通路
17が設けられ、この空気供給通路17にはダイアフラ
ム式空気流量制御弁18が介装されている。
A hollow reactor main body 13 is formed in this reactor 12, and a cylindrical member 13a is attached inside the reactor main body 1'3 to form a predetermined gap between it and the inner wall of the main body 13. . The reactor main body 13 is provided with a fuel injection valve 14 for injecting methanol into the cylindrical member 13&. Further, the reactor main body 13 is provided with a glow plug 15 as an ignition device for igniting droplet-shaped methanol injected from the fuel injection valve 14. An air supply passage 17 for introducing intake air upstream of the intake throttle valve 16 is provided in the cylindrical member 13a, and a diaphragm type air flow control valve 18 is interposed in the air supply passage 17.

また、反応器本体13内上部空間と吸気絞弁11下流の
吸気マニホールド11内部空間と連通ずる可燃性ガス供
給通路19が設け゛られ、可燃性ガス供給通路19の入
口部には可燃性ガスの温度を検出するガス温度センサ2
Gが設けられている。前記反応器本体13外壁には機関
冷却水が流通する冷却水通路21が形成され、冷却水通
路21には冷却水温度を検出する水温センサ22が設け
られている。水温センサ22はバイメタル等によ多形成
され冷却水温度が所定値(例えば60℃)以下のときに
ONとなシ所定値を超えたときすなわち暖機完了後にO
FFとなるように構成されている。
Further, a flammable gas supply passage 19 is provided which communicates with the upper space inside the reactor main body 13 and the interior space of the intake manifold 11 downstream of the intake throttle valve 11. Gas temperature sensor 2 that detects temperature
G is provided. A cooling water passage 21 through which engine cooling water flows is formed in the outer wall of the reactor main body 13, and a water temperature sensor 22 for detecting the temperature of the cooling water is provided in the cooling water passage 21. The water temperature sensor 22 is made of bimetal or the like, and turns on when the cooling water temperature is below a predetermined value (for example, 60°C), and turns on when the coolant temperature exceeds a predetermined value, that is, after warm-up is completed.
It is configured to be a FF.

前記水温センサ22の一端子はイグニッションスイッチ
23を介してバッテリ24の子端子に接続され、水温セ
ンサ22の他端子は常開の第1リレー25のリレーコイ
ル25mの一端に接続されている。リレーコイル251
Lの他端は制御装置26に設けられたエミッタ接地のト
ランジスタ2Tのコレクタ端子に接続されている。前記
バッテリ24の子端子は前記第1リレー25のリレー接
点25bを介して前記グロープラグ15の一端に接続さ
れ、グローブ2グ15の他端は接地されている。
One terminal of the water temperature sensor 22 is connected to a child terminal of a battery 24 via an ignition switch 23, and the other terminal of the water temperature sensor 22 is connected to one end of a relay coil 25m of a normally open first relay 25. Relay coil 251
The other end of L is connected to the collector terminal of a common emitter transistor 2T provided in the control device 26. A child terminal of the battery 24 is connected to one end of the glow plug 15 via a relay contact 25b of the first relay 25, and the other end of the glow plug 15 is grounded.

また、制御装置26に設けられた常開の自己保持型の第
2リレー28のリレーコイル28aの一端はスタータモ
ータスイッチ29を介してバッテリ24の子端子に接続
され、リレーコイル28mの他端は接地されている。第
2リレー28のリレー接点28bの一端は前記第1リレ
ー25のリレーコイル25&の一端に接続され、リレー
接点28bの他端は前記燃料噴射弁14にメタノールを
供給する燃料供給通路29に介装された電磁式開閉弁3
0の入力端子に接続されている。また、第2リレー2B
のリレーコイル28aの他端は抵抗31とツェナーダイ
オード32とを介して接地され、ツェナーダイオード3
2の力V−ド端子は制御回路33の一端子に接続され制
御回路33の+端子に定電圧を印加する。
Further, one end of the relay coil 28a of the normally open self-holding type second relay 28 provided in the control device 26 is connected to the child terminal of the battery 24 via the starter motor switch 29, and the other end of the relay coil 28m is Grounded. One end of the relay contact 28b of the second relay 28 is connected to one end of the relay coil 25& of the first relay 25, and the other end of the relay contact 28b is connected to the fuel supply passage 29 that supplies methanol to the fuel injection valve 14. Electromagnetic on-off valve 3
Connected to the 0 input terminal. Also, the second relay 2B
The other end of the relay coil 28a is grounded via a resistor 31 and a Zener diode 32.
The power V- terminal of No. 2 is connected to one terminal of the control circuit 33, and a constant voltage is applied to the + terminal of the control circuit 33.

また、制御回路33の他端子には前記ガス温度センサ2
0の出力電圧が印加されている。このガス温度センサ2
0は可燃性ガスの温度上昇に伴なって出力電圧が増大す
るように構成されている。
Further, the other terminal of the control circuit 33 is connected to the gas temperature sensor 2.
An output voltage of 0 is applied. This gas temperature sensor 2
0 is configured such that the output voltage increases as the temperature of the combustible gas increases.

制御回路33の出力電圧は増巾器34を介してサーボパ
ルプ35に印加されておシ、サーボバルブ35は印加さ
れる出力電圧に応じて前記ダイヤフラム式空気流量制御
弁18の作動負圧を制御する。
The output voltage of the control circuit 33 is applied to the servo pulp 35 via the amplifier 34, and the servo valve 35 controls the operating negative pressure of the diaphragm air flow control valve 18 according to the applied output voltage. do.

尚、36はダイオード、3Tは反転増巾器である0 次に作用を第2図に示すタイムチャートに従って説明す
る。
36 is a diode, and 3T is an inverting amplifier.Next, the operation will be explained according to the time chart shown in FIG.

機関始動時には冷却水温度が低いため水温センサ22が
ONしているので、イグニッションスイッチ23をON
すると水温センサ22を介して第1リレー25のリレー
コイル25mにバッテリ24から電圧が印加される。こ
のとき、可燃性ガス供給通路18内の温度が低くガス温
度センサ20の出力電圧が低いためこの電圧が反転増巾
器3Tによシ反転されトランジスタ2Tのペース電流が
大きくなる。これによシトランジスタ2TがONし前記
第1リレー25のリレーコイル25mが励磁されるので
、リレー接点25bが閉結する。そしてグロープラグ1
5にバッテリ24から通電されグロープラグ15が予熱
される。
When the engine starts, the coolant temperature sensor 22 is on because the coolant temperature is low, so turn on the ignition switch 23.
Then, a voltage is applied from the battery 24 to the relay coil 25m of the first relay 25 via the water temperature sensor 22. At this time, since the temperature in the combustible gas supply passage 18 is low and the output voltage of the gas temperature sensor 20 is low, this voltage is inverted by the inversion amplifier 3T and the pace current of the transistor 2T increases. This turns on the transistor 2T and excites the relay coil 25m of the first relay 25, thereby closing the relay contact 25b. and glow plug 1
5 is supplied with electricity from the battery 24, and the glow plug 15 is preheated.

そして、スタータモータスイッチ29をONLクランキ
ングを開始すると、スタータモータスイッチ29を介し
て第2リレー2Bのリレーコイル28mに通電されてリ
レーコイル28ムが励磁されリレー接点28bが閉結さ
れる。これによシ、バッテリ24から水温センサ22及
びリレー接点28bを介して電磁式開閉弁30に通電さ
れ電磁式開閉弁30が開弁する。したがって、燃料噴射
弁14にメタノールが供給され燃料噴射弁14から筒状
部材13a内にメタノールが一定量噴射供給される。
When the starter motor switch 29 starts ONL cranking, the relay coil 28m of the second relay 2B is energized via the starter motor switch 29, the relay coil 28m is energized, and the relay contact 28b is closed. Accordingly, the electromagnetic on-off valve 30 is energized from the battery 24 via the water temperature sensor 22 and the relay contact 28b, and the electromagnetic on-off valve 30 opens. Therefore, methanol is supplied to the fuel injection valve 14, and a constant amount of methanol is injected and supplied from the fuel injection valve 14 into the cylindrical member 13a.

また、電磁式開閉弁30への通電と同時にリレーコイル
28及び抵抗31を介してバッテリ24から制御回路3
3の子端子に定電圧が印加される。
Also, at the same time as the electromagnetic on-off valve 30 is energized, the control circuit 3 is supplied from the battery 24 via the relay coil 28 and the resistor 31.
A constant voltage is applied to the child terminal of No.3.

このとき、ガス温度センサ26の出力電圧が低いので制
御回路33の出力が大となシ、サーボバルブ35が全開
される。これによシ、ダイヤフラム式空気流量制御弁1
8の作動負圧が大きくなシ、空気流量制御弁18が全開
する。
At this time, since the output voltage of the gas temperature sensor 26 is low, the output of the control circuit 33 is large and the servo valve 35 is fully opened. With this, diaphragm type air flow control valve 1
8, the air flow control valve 18 is fully opened.

したがって、筒状部材13a内に滴状のメタノールと空
気とが供給され、それらの混合気がグロープラグ15に
よシ着火され反応器本体13内の温度が上昇する。この
高温化された可燃性ガスが可燃性ガス供給通路19に流
入するとこのガス温度の増大に伴なってガス温度センサ
20の出力電圧が高くなる。そして、ガス温度センサ2
0の出力電圧が所定値に達すると反転増巾器37の出力
がL#とな夛トラジジスタ27がOFFされ第1リレー
25のリレー接点25&が開きグロープラグ15への通
電が停止される。
Therefore, droplets of methanol and air are supplied into the cylindrical member 13a, and the mixture thereof is ignited by the glow plug 15, causing the temperature inside the reactor body 13 to rise. When this heated combustible gas flows into the combustible gas supply passage 19, the output voltage of the gas temperature sensor 20 increases as the gas temperature increases. And gas temperature sensor 2
When the zero output voltage reaches a predetermined value, the output of the inverting amplifier 37 becomes L#, the transistor 27 is turned off, the relay contact 25 & of the first relay 25 opens, and the energization to the glow plug 15 is stopped.

さらに、ガス温度センサ20の出力電圧が高くなると制
御回路33の出力電圧が徐々に低下しサーボパルプ35
への出力が低下する。とれによシ、空気流量制御弁18
の作動負圧が小さくなシ空気流量制御弁18を介して筒
状部材13a内に供給される空気量が減少する。したが
って、筒状部材13&内のメタノール濃度が増加し生成
される可燃性ガス中の水素濃度が増大する。このように
して、可燃性ガス温度が充分な水素を含む可燃性ガス濃
度になる温度に保つように空気流量を制御する。
Furthermore, when the output voltage of the gas temperature sensor 20 increases, the output voltage of the control circuit 33 gradually decreases, and the servo pulp 35
The output to is reduced. Air flow control valve 18
Since the operating negative pressure is small, the amount of air supplied into the cylindrical member 13a through the air flow control valve 18 is reduced. Therefore, the methanol concentration within the cylindrical member 13& increases, and the hydrogen concentration in the generated combustible gas increases. In this way, the air flow rate is controlled so that the temperature of the flammable gas is maintained at a temperature where the concentration of combustible gas containing sufficient hydrogen is achieved.

そして、生成された可燃性ガスは吸気マニホールド11
を介して機関に供給され機関が始動する。
The generated flammable gas is then transferred to the intake manifold 11.
is supplied to the engine via the engine and the engine starts.

さらに、機関始動直後には冷却水温度は低いため水温ス
イッチ22はON状態に維持されるので、リレー接点2
8bからダイオード36を介してリレーコイル281に
通電されリレー接点28bが閉結される。水温スイッチ
22、第2リレー2Bのリレー接点28bを介して制御
回路33に定電圧が印加され、燃料と空気とが筒状部材
13&に供給される。これによシ、機関始動直後にも可
燃性ガスが機関に供給されるため暖機中の機関運転が安
定する。そして、暖機完了によシ冷却水温度が上昇する
と水温スイッチ20がOFFとなシ、第2リレー28の
りレーコイに28&への通電が停止されリレー接点28
bが開く。これによシ、電磁式開閉弁30への通電が停
止され燃料噴射弁14の噴射動作が停止すると共に、制
御回路33への定電圧印加が停止されてサーボバルブ3
5への通電が停止され空気供給動作が停止する。
Furthermore, since the cooling water temperature is low immediately after the engine starts, the water temperature switch 22 is maintained in the ON state, so the relay contact 2
The relay coil 281 is energized from the relay coil 281 through the diode 36, and the relay contact 28b is closed. A constant voltage is applied to the control circuit 33 via the water temperature switch 22 and the relay contact 28b of the second relay 2B, and fuel and air are supplied to the cylindrical member 13&. As a result, flammable gas is supplied to the engine immediately after the engine is started, thereby stabilizing engine operation during warm-up. Then, when the cooling water temperature rises due to completion of warm-up, the water temperature switch 20 is turned off, and the power supply to the second relay 28 and relay 28 & is stopped, and the relay contact 28 is turned off.
b opens. As a result, the power supply to the electromagnetic on-off valve 30 is stopped, the injection operation of the fuel injection valve 14 is stopped, and the constant voltage application to the control circuit 33 is stopped, so that the servo valve 3
5 is stopped, and the air supply operation is stopped.

以上説明したように、筒状部材138に噴射された滴状
のメタノールに着火させた後空気供給量を制御して生成
される可燃性ガス温度を略一定に保持させて充分に水素
を含む可燃性ガスを機関に供給するようにしたので、滴
状のメタノールに短時間で着火した後可燃性ガスも短時
間で生成でき機関を短時間で始動できる。また、従来の
如く燃焼装置を特に設けることなく可燃性ガスを生成で
き、構造が極めて簡易となシコストの低減化を図れる。
As explained above, after the droplet-shaped methanol injected into the cylindrical member 138 is ignited, the air supply amount is controlled to maintain the temperature of the generated combustible gas substantially constant, so that the combustible gas containing sufficient hydrogen can be heated. Since flammable gas is supplied to the engine, flammable gas can be generated in a short time after droplets of methanol are ignited in a short time, and the engine can be started in a short time. In addition, flammable gas can be generated without particularly providing a combustion device as in the conventional case, and the structure is extremely simple and cost can be reduced.

また、冷却水を反応器本体13&外方を通過させるよう
にしたので、冷却水が反応熱にょ夛加熱されるため、暖
機時間も著しく短縮できる。
Furthermore, since the cooling water is made to pass through the reactor main body 13 and outside, the cooling water is heated by the reaction heat, so that the warm-up time can be significantly shortened.

尚、本実施例では空気供給量を変化させてメタノール濃
度を高めるようにしたが逆に、メタノール噴射量を変化
させるように制御してもよい。
In this embodiment, the methanol concentration was increased by changing the air supply amount, but the methanol injection amount may be controlled to be changed instead.

〈発明の効果〉 本発明は、以上説明したように、噴射された滴状の燃料
に着火させた後、燃料と空気との比率を制御し燃料濃度
を高めて可燃性ガスを生成したので、短時間で可燃性ガ
スを生成でき、もって機関始動時間を大巾に短縮できる
。また従来例の燃焼装置を特に設けることなく可燃性ガ
スを生成でき装置の簡易化を図れ、もってコストの低減
化を図れる。
<Effects of the Invention> As explained above, the present invention generates flammable gas by igniting the injected droplet fuel and then controlling the ratio of fuel and air to increase the fuel concentration. Combustible gas can be generated in a short time, thereby greatly reducing engine starting time. Furthermore, flammable gas can be generated without particularly providing a conventional combustion device, and the device can be simplified, thereby reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は同上
のタイムチャート、第3図は内燃機関の始動装置の従来
例を示す構成図である。 12・・・反応器  13・・・反応器本体  14・
・・燃料噴射弁  15・・・グロープラグ  1T・
・・空気供給通路  18・・・空気流量制御弁  1
9・・・可燃性ガス供給通路  20・・・ガス温度ス
イッチ26・・・制御装置 特許出願人 日産自動車株式会社 代理人 弁理士 笹 島 富二雄 第2図 第3図
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a time chart of the same, and FIG. 3 is a block diagram showing a conventional example of a starting device for an internal combustion engine. 12... Reactor 13... Reactor main body 14.
・・Fuel injection valve 15・Glow plug 1T・
...Air supply passage 18...Air flow control valve 1
9...Flammable gas supply passage 20...Gas temperature switch 26...Control device patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 液体燃料を可燃性ガスに変換して該可燃性ガスを始動時
に機関に供給する内燃機関の始動装置において、可燃性
ガスを生成する中空状の反応器本体と、該反応器本体内
に液体燃料を噴射する燃料噴射弁装置と、噴射された燃
料を着火させる着火装置と、前記反応器本体内に空気を
供給する空気供給装置と、前記反応器本体内にて生成さ
れる可燃性ガスを機関に供給する可燃性ガス供給通路と
、可燃性ガスの温度を検出する温度センサと、検出され
た温度の増大に伴なつて燃料濃度を高めて可燃性ガス温
度を略一定に保持すべく前記反応器本体内に供給される
燃料と空気との比率を制御する制御装置と、を備えたこ
とを特徴とする内燃機関の始動装置。
A starting device for an internal combustion engine that converts liquid fuel into flammable gas and supplies the flammable gas to the engine during startup includes a hollow reactor body that generates the flammable gas, and a liquid fuel inside the reactor body. an ignition device that ignites the injected fuel; an air supply device that supplies air into the reactor body; a flammable gas supply passageway for supplying the flammable gas to the combustible gas; a temperature sensor for detecting the temperature of the flammable gas; 1. A starting device for an internal combustion engine, comprising: a control device that controls the ratio of fuel and air supplied into the engine body.
JP60136780A 1985-06-25 1985-06-25 Starting device for internal-combustion engine Granted JPS62634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136780A JPS62634A (en) 1985-06-25 1985-06-25 Starting device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136780A JPS62634A (en) 1985-06-25 1985-06-25 Starting device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS62634A true JPS62634A (en) 1987-01-06
JPH0355657B2 JPH0355657B2 (en) 1991-08-26

Family

ID=15183341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136780A Granted JPS62634A (en) 1985-06-25 1985-06-25 Starting device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS62634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731473A1 (en) * 1995-03-07 1996-09-13 Peugeot Starting device for motor vehicle internal combustion engine
WO2008016070A1 (en) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731473A1 (en) * 1995-03-07 1996-09-13 Peugeot Starting device for motor vehicle internal combustion engine
WO2008016070A1 (en) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JPH0355657B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4007590A (en) Catalytic convertor warming up system
US4233811A (en) Exhaust gas reaction control system
KR960706015A (en) (PROCESS FOR CONTROLLING THE FUEL SUPPLY TO AN INTERNAL COMBUSTION ENGINE WITH HEATABLE CATALYST)
US8347850B2 (en) Internal-combustion engine and homogeneous charge compression ignition process
WO2020208875A1 (en) Reformer system and engine system
US4209981A (en) Method and an apparatus to control the temperature of an engine exhaust gas purifying device
JPS58584B2 (en) ``Ninenkikan&#39;&#39;
US3793833A (en) Device for reducing harmful constituents of the waste gases in internal combustion engines of automobiles
JP2710269B2 (en) A catalytic heating burner for a spark ignition engine that does not require a fuel supply device and an air blower
JP7351270B2 (en) engine system
JPS62634A (en) Starting device for internal-combustion engine
JPH1151332A (en) Catalytic combustion type heater
JPS6225865B2 (en)
JPS60233341A (en) Air-fuel ratio controlling method for internal-combustion engine
JPS60116859A (en) Method of improving starting performance of diesel engine
US4094292A (en) Hot starter system for engines
CN205383028U (en) Utilize PTC temperature sensing ceramic heater&#39;s GDI sprayer
CA2307927A1 (en) Self-igniting gaseous fuel injector for internal combustion engine
WO2023119743A1 (en) Engine system
JPS6153429A (en) Fuel feeder for alcohol-blended fuel
KR910008911B1 (en) Air-fuel ratio control method for liquid gas
JPH0335960Y2 (en)
KR100394618B1 (en) An injector providing heating function and a method for controlling fuel injection using the injector
JPS56129748A (en) Auxiliary apparatus used for starting internal combustion engine
JPH02199271A (en) Temperature control method for glow plug