JPS626305B2 - - Google Patents

Info

Publication number
JPS626305B2
JPS626305B2 JP56061418A JP6141881A JPS626305B2 JP S626305 B2 JPS626305 B2 JP S626305B2 JP 56061418 A JP56061418 A JP 56061418A JP 6141881 A JP6141881 A JP 6141881A JP S626305 B2 JPS626305 B2 JP S626305B2
Authority
JP
Japan
Prior art keywords
platinum
solution
plate
electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56061418A
Other languages
Japanese (ja)
Other versions
JPS57176670A (en
Inventor
Masashi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56061418A priority Critical patent/JPS57176670A/en
Publication of JPS57176670A publication Critical patent/JPS57176670A/en
Publication of JPS626305B2 publication Critical patent/JPS626305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、液体燃料電池、特に酸性メタノー
ル燃料電池用電極板の製造方法に関する。 従来の多孔質板に白金等の触媒を付着した燃料
電池用電極板としては、代表的なものとして、多
孔質カーボンに白金を付けたものがある。この電
極の製法としては、特開昭54−154048号公封に記
載されているように、多孔質カーボン板を塩化白
金酸水溶液に含浸した後、600℃程度に加熱され
た不活性ガス気流中で塩化白金酸を熱分解して、
カーボン板に白金を固定するか、又は塩化白金酸
水溶液に含浸した後10重量%程度のKOH水溶液
を用いて酸化白金として固定した後、ヒドラジン
を用いて還元する等の方法が実施されている。 しかしながら、このような従来の製造方法にあ
つては、付着された白金はカーボン細孔内深部ま
で入つてしまい、この部分は電極反応に関与せず
不用でありかつ無駄であるという問題点があつ
た。従つて、不用の触媒金属例えば白金をいかに
低減し、かつ電極反応に有効な表面層に触媒をい
かに多く付着させるかということが大きな課題で
あつた。 この発明は、このような従来の問題点に着目し
てなされたもので、多孔質板をその電極とする一
面を除いて気密に被覆し、次いで触媒金属化合物
の溶液に浸漬した後、細孔内にたまつた溶液を、
加熱による細孔内残留空気の圧力上昇によつて表
面層に圧送移動させるとともに蒸発によつて濃縮
し、多孔質板表面層の触媒金属を増大させること
により、上記問題点を解決することを目的として
いる。 以下、この発明を実施例により説明する。 カーボン・ブラツクを主成分とする多孔質カー
ボン板(例えば日本カーボン(株)製のカーボン・ブ
ラツクを主成分とした焼結板;気孔率40%)(10
mm×10mm×2mm)に対し、その電極として使用す
る一面を除いて接着剤アラルダイト(商品名;チ
バガイギー社製)で被覆した。次いで、このカー
ボン板5枚を白金濃度40g/の塩化白金酸水溶
液150c.c.(80℃)に一時間浸漬した後、10重量%
KOH水溶液(25℃)に3分間浸漬してカーボン
板表面層に存在する塩化白金酸水溶液を水に不溶
性の白金化合物としてカーボン板に固定する。次
いで、これを80℃、大気中(1時間)で加熱し、
細孔深部にまで入つた塩化白金酸水溶液を加熱に
よるカーボン板細孔内に残留した空気の圧力上昇
によつて表面層まで圧送・移動させ、かつ蒸発に
よつてカーボン板の表面層にこの液を濃縮させ
る。 ついで、このカーボン板を100%抱水ヒドラジ
ンに25℃、30分間浸漬し、付着している不溶性の
白金化合物を白金に還元しかつ固定する。 このように作成したカーボン板を電極として電
位走査法を用いて白金上に吸着した水素量を測定
することにより、白金表面積の比較を行なつた。
なお、比較のため、被覆をしない点とKOH溶液
で白金の不溶性白金化合物をつくつた後ただちに
ヒドラジンで還元する点以外は上記実施例と同じ
ものをつくり、同じ方法で白金表面積を測定し
た。この表面積を測定する方法は、白金原子1個
に水素原子が1個吸着するという原理を利用し
て、まず水素を十分に白金に吸着させた後、これ
を電気的にイオン化し、このイオン化に要する電
気量によつて表面積を求めた。その結果を次表に
示す。
The present invention relates to a method for manufacturing an electrode plate for a liquid fuel cell, particularly an acidic methanol fuel cell. A typical example of a conventional fuel cell electrode plate in which a catalyst such as platinum is attached to a porous plate is one in which platinum is attached to porous carbon. As described in JP-A-54-154048, this electrode is manufactured by impregnating a porous carbon plate with an aqueous solution of chloroplatinic acid and then placing it in a stream of inert gas heated to about 600°C. pyrolyze chloroplatinic acid with
Methods such as fixing platinum on a carbon plate, or impregnating it in an aqueous solution of chloroplatinic acid, fixing it as platinum oxide using an aqueous solution of KOH of about 10% by weight, and then reducing it with hydrazine have been implemented. However, in such conventional manufacturing methods, there is a problem that the deposited platinum enters deep into the carbon pores, and this part does not participate in the electrode reaction and is unnecessary and wasteful. Ta. Therefore, a major problem has been how to reduce unnecessary catalyst metals, such as platinum, and how to attach a large amount of catalyst to the surface layer that is effective for electrode reactions. This invention was made by focusing on these conventional problems. A porous plate is airtightly coated except for one side that will be used as an electrode, and then immersed in a solution of a catalytic metal compound. The solution accumulated inside
The purpose is to solve the above problems by increasing the pressure of residual air in the pores due to heating, forcing it to move to the surface layer, and concentrating it by evaporation, thereby increasing the amount of catalyst metal in the surface layer of the porous plate. It is said that This invention will be explained below with reference to Examples. Porous carbon plate mainly composed of carbon black (for example, a sintered plate mainly composed of carbon black manufactured by Nippon Carbon Co., Ltd.; porosity 40%) (10
mm x 10 mm x 2 mm) was coated with adhesive Araldite (trade name; manufactured by Ciba Geigy) except for one side to be used as an electrode. Next, five of these carbon plates were immersed for one hour in a 150 c.c. (80°C) chloroplatinic acid aqueous solution with a platinum concentration of 40 g/10% by weight.
The carbon plate is immersed in a KOH aqueous solution (25°C) for 3 minutes to fix the chloroplatinic acid aqueous solution present in the surface layer of the carbon plate as a water-insoluble platinum compound on the carbon plate. Next, this was heated at 80°C in the air (1 hour),
The chloroplatinic acid aqueous solution that has penetrated deep into the pores is pumped and moved to the surface layer by the pressure increase of the air remaining in the pores of the carbon plate due to heating, and this liquid is transferred to the surface layer of the carbon plate by evaporation. Concentrate. Next, this carbon plate is immersed in 100% hydrazine hydrate at 25°C for 30 minutes to reduce and fix the attached insoluble platinum compound to platinum. The platinum surface area was compared by measuring the amount of hydrogen adsorbed on platinum using the potential scanning method using the carbon plate thus prepared as an electrode.
For comparison, the same product as in the above example was made, except that it was not coated and that an insoluble platinum compound of platinum was prepared with a KOH solution and then immediately reduced with hydrazine, and the platinum surface area was measured using the same method. The method of measuring this surface area utilizes the principle that one hydrogen atom is adsorbed to one platinum atom. First, hydrogen is sufficiently adsorbed on platinum, and then it is electrically ionized. The surface area was determined by the amount of electricity required. The results are shown in the table below.

【表】 この結果から、本発明の製造方法によつて作成
した電極は、表面に白金が多く付着していること
がわかる。したがつて、燃料電池の電極として良
い性能を示す。すなわち、1M―H2SO4の電解質
を用いたメタノール燃料電池では、上記のように
3倍の表面積を得られるときには、電極の見かけ
の表面積が同じであつても9倍の電流を取りだす
ことができるというすぐれた結果を得ることがで
きる。 以上説明してきたように、この発明によれば、
多孔質板の細孔深部に入つた塩化白金酸水溶液等
の触媒金属の化合物の溶液を、加熱によつて生ず
る多孔質板細孔内の残留空気の圧力上昇によつて
当該溶液を表面積に圧送・移動しかつ濃縮させた
ため、多孔質板表面層の触媒付着量をかなり増大
でき、液体燃料電池用電極板としての性能を著し
く増大することができるというすぐれた効果が得
られる。
[Table] From the results, it can be seen that the electrode produced by the manufacturing method of the present invention has a large amount of platinum attached to the surface. Therefore, it exhibits good performance as an electrode for fuel cells. In other words, in a methanol fuel cell using a 1M-H 2 SO 4 electrolyte, if three times the surface area can be obtained as described above, nine times the current can be extracted even if the apparent surface area of the electrode is the same. You can get excellent results. As explained above, according to this invention,
A solution of a catalytic metal compound such as an aqueous solution of chloroplatinic acid that has entered the deep pores of a porous plate is pumped to the surface area by increasing the pressure of residual air in the pores of the porous plate caused by heating. - Since the catalyst is moved and concentrated, the amount of catalyst attached to the surface layer of the porous plate can be considerably increased, and the excellent effect of significantly increasing the performance as an electrode plate for liquid fuel cells can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質板をその一面を除いて気密に被覆し、
次いで触媒金属の化合物の溶液に浸漬した後、該
溶液から引上げて加熱し、細孔深部内残留空気の
圧力上昇によつて前記化合物の溶液を多孔質板の
表面層に移動させ、次いで該化合物を還元して固
定するようにしたことを特徴とする液体燃料電池
用電極板の製造方法。
1 Cover the porous plate airtight except for one side,
Next, after being immersed in a solution of the compound of the catalytic metal, it is pulled out from the solution and heated, and the solution of the compound is moved to the surface layer of the porous plate by the pressure increase of the air remaining deep inside the pores, and then the compound is immersed in the solution. 1. A method for manufacturing an electrode plate for a liquid fuel cell, characterized in that the electrode plate is fixed by reducing.
JP56061418A 1981-04-24 1981-04-24 Manufacture of electrode for liquid-fuel cell Granted JPS57176670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56061418A JPS57176670A (en) 1981-04-24 1981-04-24 Manufacture of electrode for liquid-fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56061418A JPS57176670A (en) 1981-04-24 1981-04-24 Manufacture of electrode for liquid-fuel cell

Publications (2)

Publication Number Publication Date
JPS57176670A JPS57176670A (en) 1982-10-30
JPS626305B2 true JPS626305B2 (en) 1987-02-10

Family

ID=13170528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56061418A Granted JPS57176670A (en) 1981-04-24 1981-04-24 Manufacture of electrode for liquid-fuel cell

Country Status (1)

Country Link
JP (1) JPS57176670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433509U (en) * 1987-08-25 1989-03-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433509U (en) * 1987-08-25 1989-03-01

Also Published As

Publication number Publication date
JPS57176670A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
JP3411897B2 (en) Active polymer electrolyte membrane for polymer electrolyte fuel cells
US4248682A (en) Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
Manzo‐Robledo et al. Electro‐oxidation of Carbon Monoxide and Methanol on Carbon‐Supported Pt–Sn Nanoparticles: a DEMS Study
US20050123816A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JPH05144444A (en) Fuel cell and electrode manufacturing method
US4414092A (en) Sandwich-type electrode
US4648945A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
CN105734606A (en) Structure of ultrathin membrane electrode for SPE water electrolysis and preparation and application of structure
US20170044678A1 (en) Porous electrode for proton-exchange membrane
US20040126631A1 (en) Fuel-regenerable fuel cell, system and process for generating power and process for regenerating fuel
JPS59166688A (en) Conductive layer on surface of solid electrolyte and production thereof
US4748091A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
TW460625B (en) A process for the electrolysis of an alkali mental halide brine in a electrolytic cell
JPS626305B2 (en)
JP2001338653A (en) Separator for fuel cell
JPS61216714A (en) Dehumidification
US4873121A (en) Cathode/membrane assembly and method of making same
JPH08164319A (en) Dehumidifying element
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
JPWO2007029607A1 (en) Precious metal fine particles and method for producing the same
JP3387046B2 (en) Fuel cell separator
JP3452096B2 (en) Method for manufacturing gas diffusion electrode for fuel cell
KR20210085486A (en) Current collector for reduction apparatus of carbon dioxide, reduction apparatus of carbon dioxide comprising the same, and reducing method of carbon dioxide using the same
JP3788490B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same