JPS6259212B2 - - Google Patents

Info

Publication number
JPS6259212B2
JPS6259212B2 JP57146884A JP14688482A JPS6259212B2 JP S6259212 B2 JPS6259212 B2 JP S6259212B2 JP 57146884 A JP57146884 A JP 57146884A JP 14688482 A JP14688482 A JP 14688482A JP S6259212 B2 JPS6259212 B2 JP S6259212B2
Authority
JP
Japan
Prior art keywords
blades
trt
gas conditions
rotor
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57146884A
Other languages
Japanese (ja)
Other versions
JPS5937201A (en
Inventor
Yasuo Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14688482A priority Critical patent/JPS5937201A/en
Publication of JPS5937201A publication Critical patent/JPS5937201A/en
Publication of JPS6259212B2 publication Critical patent/JPS6259212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 この発明は炉頂圧回収タービン(以後TRTと
称す)の設計方法に関し、特に湿式ガス条件と乾
式ガス条件の両条件で使用可能なTRTの設計方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for designing a top pressure recovery turbine (hereinafter referred to as TRT), and particularly to a method for designing a TRT that can be used under both wet gas conditions and dry gas conditions.

最近のTRT設置の在り方として当面2〜3年
の間は湿式ガス条件で使用し、その後に乾式ガス
条件に切り換えて使用する傾向にある。ところで
湿式ガス条件と乾式ガス条件とでは常用重量流量
において断熱熱落差で約30〜40%の差があり、こ
のため従来のTRT設計方針は各ガス条件で専用
機として最適設計する方法がとられていた。した
がつて、当然のことながら、TRTのサイズは湿
式ガス専用機と乾式ガス専用機とでは異なつたも
のとなり、湿式ガス条件から乾式ガス条件に切り
換える際に全く新しいTRTに取り替える必要が
あつた。
The current trend in installing TRTs is to use them under wet gas conditions for two to three years, and then switch to dry gas conditions. By the way, there is a difference of about 30 to 40% in adiabatic thermal head under normal weight flow rates between wet gas conditions and dry gas conditions, and for this reason, the conventional TRT design policy is to optimally design a dedicated machine for each gas condition. was. Therefore, as a matter of course, the size of the TRT was different for wet gas-only machines and dry gas-only machines, and it was necessary to replace it with a completely new TRT when switching from wet gas conditions to dry gas conditions.

この発明の目的は1つのTRT本体にて動翼及
び静翼の取り替えのみで両ガス条件に使用できる
ようにしたTRT設計方法を提供せんとすること
にある。
The purpose of this invention is to provide a TRT design method that allows one TRT main body to be used for both gas conditions by simply replacing the rotor blades and stationary blades.

上記目的を達成するこの発明を以下に説明す
る。
This invention that achieves the above object will be described below.

(a) 湿式ガス条件と乾式ガス条件共に同一タービ
ン通路寸法とし、動翼及び静翼については各々
のガス条件で最適となる流体設計を行う。
(a) The turbine passage dimensions will be the same for both wet gas conditions and dry gas conditions, and the fluid design for the rotor blades and stationary blades will be optimized for each gas condition.

(b) 動翼及び静翼を除くTRT本体部品及び構成
を両ガス条件で使用できる構造寸法とし、一方
動翼及び静翼についてはTRT本体部品に対し
て取り付け、取りはずし可能に構成し、各々の
ガス条件に最適設計された専用翼を取付ける。
すなわち、湿式ガス条件で運転する時は湿式専
用翼を使用し、乾式ガス条件に切り換える時に
は、乾式専用翼に取り替える。
(b) The TRT main body parts and configuration, excluding the rotor blades and stator blades, have structural dimensions that can be used under both gas conditions, and the rotor blades and stator blades are constructed so that they can be attached to and removed from the TRT main body parts, and each A special wing designed to suit the gas conditions is installed.
That is, when operating under wet gas conditions, a wet-only blade is used, and when switching to dry gas conditions, it is replaced with a dry-only blade.

以下、付図に示すTRT組立断面図によりこの
発明を補足説明する。
The present invention will be supplementarily explained below with reference to the TRT assembly sectional view shown in the accompanying drawings.

1は入口外側ケーシング、2は出口デイフエー
ザケーシング、3は内側ケーシング、4は入口ベ
ルマウス、5はロータである。
1 is an inlet outer casing, 2 is an outlet diffuser casing, 3 is an inner casing, 4 is an inlet bell mouth, and 5 is a rotor.

一方ロータ5には動翼6が、そして内側ケーシ
ング3には動翼7が脱着可能な方法で取り付けら
れている。この動翼6及び静翼7を除く総ての
TRT本体部品及び構成を両ガス条件で使用でき
る構造寸法とし、各ガス条件に応じて動翼6及び
静翼7を取り替える。
On the other hand, a rotor blade 6 is attached to the rotor 5, and a rotor blade 7 is detachably attached to the inner casing 3. All of the parts except the moving blade 6 and stationary blade 7
The TRT main body parts and configuration have structural dimensions that can be used under both gas conditions, and the moving blades 6 and stationary blades 7 are replaced according to each gas condition.

上述の説明によつて湿式ガス条件から乾式ガス
条件に切り換える時、従来の専用機設計方法では
必要であつた湿式TRTの撤去と、全く新しく設
計した乾式TRTの製作、据付を必要とせず、単
一のTRTで動翼及び静翼の取り替えのみによつ
て乾式TRTに切り換えることができる。また、
動翼及び静翼は各々のガス条件に専用に設計され
たものを使用するので、従来の専用機並みのター
ビン効率を出し得る。
As explained above, when switching from wet gas conditions to dry gas conditions, there is no need to remove the wet TRT and manufacture and install a completely newly designed dry TRT, which was necessary with the conventional dedicated machine design method. One TRT can be converted to a dry type TRT by simply replacing the rotor and stator blades. Also,
Since the rotor blades and stationary blades are specially designed for each gas condition, it is possible to achieve turbine efficiency comparable to that of conventional dedicated aircraft.

従つて、従来の専用機設計方法では、湿式専用
TRTと乾式専用TRTの2つのTRT本体が必要で
あるのに対して、本発明では1つのTRT本体で
よく、各ガス条件において専用TRT並みのター
ビン効率を有する、経済的かつ高性能な湿式、乾
式両用TRTと成し得るものである。
Therefore, in the conventional dedicated machine design method,
While two TRT bodies, a TRT and a dry TRT, are required, the present invention requires only one TRT body, and is an economical and high-performance wet type that has turbine efficiency comparable to that of a dedicated TRT under each gas condition. This can be achieved as a dry dual-use TRT.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明のTRT構造を説明するための断
面図である。 1…入口外側ケーシング、2…出口ケーシン
グ、3…内側ケーシング、4…入口ベルマウス、
5…ロータ、6…動翼、7…静翼。
The figure is a sectional view for explaining the TRT structure of the present invention. 1... Inlet outer casing, 2... Outlet casing, 3... Inner casing, 4... Inlet bell mouth,
5... Rotor, 6... Moving blade, 7... Stationary blade.

Claims (1)

【特許請求の範囲】[Claims] 1 動翼、静翼を除くタービン本体は湿式ガス条
件あるいは乾式ガス条件のいずれにても使用可能
な構造寸法とし、動翼及び静翼はそれぞれ前記タ
ービン本体に対して取り付け、取り外し可能な構
造とし、ガス条件の切り換え時には、当該ガス条
件専用の動翼及び静翼に取り替えることにより高
性能を維持することを特徴とする炉頂圧回収ター
ビンの設計方法。
1 The turbine body, excluding the rotor blades and stator blades, shall have structural dimensions that can be used in either wet gas conditions or dry gas conditions, and the rotor blades and stator blades shall have a structure that can be attached to and removed from the turbine body, respectively. A method for designing a top pressure recovery turbine, characterized in that when switching gas conditions, high performance is maintained by replacing the moving blades and stationary blades with dedicated rotor blades and stationary blades for the gas conditions.
JP14688482A 1982-08-26 1982-08-26 Design of furnace top pressure recovery turbine Granted JPS5937201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14688482A JPS5937201A (en) 1982-08-26 1982-08-26 Design of furnace top pressure recovery turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14688482A JPS5937201A (en) 1982-08-26 1982-08-26 Design of furnace top pressure recovery turbine

Publications (2)

Publication Number Publication Date
JPS5937201A JPS5937201A (en) 1984-02-29
JPS6259212B2 true JPS6259212B2 (en) 1987-12-10

Family

ID=15417749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14688482A Granted JPS5937201A (en) 1982-08-26 1982-08-26 Design of furnace top pressure recovery turbine

Country Status (1)

Country Link
JP (1) JPS5937201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340406U (en) * 1986-08-31 1988-03-16
JPH08651U (en) * 1993-01-04 1996-04-16 徹也 西山 Steel frame two-by method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566623A (en) * 1978-11-14 1980-05-20 Mitsui Eng & Shipbuild Co Ltd Method of and apparatus for recovering energy possessed by exhaust gas of blast furnace
JPS562427A (en) * 1979-06-22 1981-01-12 Sumitomo Metal Ind Ltd Power generator for blast furnace top pressure turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566623A (en) * 1978-11-14 1980-05-20 Mitsui Eng & Shipbuild Co Ltd Method of and apparatus for recovering energy possessed by exhaust gas of blast furnace
JPS562427A (en) * 1979-06-22 1981-01-12 Sumitomo Metal Ind Ltd Power generator for blast furnace top pressure turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340406U (en) * 1986-08-31 1988-03-16
JPH08651U (en) * 1993-01-04 1996-04-16 徹也 西山 Steel frame two-by method

Also Published As

Publication number Publication date
JPS5937201A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
US3193185A (en) Compressor blading
US1622930A (en) Turbo machine
US1829674A (en) Elastic fluid turbine and the like
CN104343734B (en) Centrifugal compressor
GB712051A (en) Improvements in or relating to axial-flow fluid machines
JP2011513626A (en) Blade with 3D platform including inter-blade valve
GB754055A (en) Improvements in or relating to centrifugal fan wheels
CN105275499B (en) A kind of double disc turbine disk core air intake structures with centrifugal supercharging and effect of obturaging
JPS59170406A (en) Honeycomb-shaped labyrinth seal
JPS6259212B2 (en)
US3120374A (en) Exhaust scroll for turbomachine
US2931441A (en) Jet-driven helicopter rotor
US3055634A (en) Steam turbines
US2834536A (en) Spin vane controls for fans
GB742476A (en) Improvements in or relating to bladed stator and rotor constructions for fluid machines such as axial-flow turbines or compressors
US3109499A (en) Aircraft propeller with centrifugally induced air flow control features
JPH10306702A (en) Gas turbine blade
CN109209930A (en) Turbofan and air supply system
CN208396755U (en) A kind of novel advanced technique
CN208803875U (en) A kind of turbine blade locking plate
CN108643978A (en) A kind of novel advanced technique
JPS58144610A (en) Exhaust chamber structure in axial turbine
US3228657A (en) Dental engines
CN107947463B (en) Axial external cooling air path structure of turbine generator rotor end coil
US2073514A (en) Method of assembling packing rings in solid turbine rotors