JPS6258125B2 - - Google Patents

Info

Publication number
JPS6258125B2
JPS6258125B2 JP53065681A JP6568178A JPS6258125B2 JP S6258125 B2 JPS6258125 B2 JP S6258125B2 JP 53065681 A JP53065681 A JP 53065681A JP 6568178 A JP6568178 A JP 6568178A JP S6258125 B2 JPS6258125 B2 JP S6258125B2
Authority
JP
Japan
Prior art keywords
metal
tin
electrode
nickel
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53065681A
Other languages
Japanese (ja)
Other versions
JPS54157296A (en
Inventor
Minoru Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6568178A priority Critical patent/JPS54157296A/en
Publication of JPS54157296A publication Critical patent/JPS54157296A/en
Publication of JPS6258125B2 publication Critical patent/JPS6258125B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は磁器コンデンサ、磁器基体に焼付けた
抵抗膜より成る電気抵抗等における電極及びその
製造方法に関する。 (従来技術) 従来絶縁物および半導体磁器等に電極を形成す
るには、低融点ガラス粉末いわゆるフリツトを銀
塗料に分散させてペースト状とし、印刷塗布して
焼付けを行つていた。しかし、フリツトが多いと
電極と基体との間の接着力は大きいが電極に対し
て半田が容易に付着せず、またフリツトが少ない
と半田の付着は容易になるとしても半田が銀を合
金化してしまうことにより磁器から電極が剥離し
やすく、強度の弱いものになつた。 上記の対策として、本出願人は特公昭46−
21528号及び特公昭50−4058号において、上記フ
リツト接着型の銀電極の表面に電着法によりニツ
ケルまたは銅を被覆する方法を提案した。磁器コ
ンデンサの電極は誘電体の表面に部分的に形成さ
れるに過ぎないから、電流路の接続または確保が
難しく、特に小型の磁器コンデンサに対しては電
着法の適用は困難視されていたが、上記特許公報
に記載の方法は多数の磁器素子を回転バレルに収
容して回転することにより、電極同志の接触を
刻々に万遍なく生じさせて電流路を確保し、これ
により多数の小形素子の銀電極の各々に電着ニツ
ケルまたは銅を容易に被覆することにより成功
し、大量生産を可能にした。このように被覆され
たニツケル等の金属は銀電極に強く接着する一方
で半田に対して容易に接着するから、フラツクス
を使用しないでも半田付けを可能にし、さらに、
得られた半田付部分の機械的強度が大きくなつ
た。 一方、積層チツプコンデンサーの場合には数枚
ないし数十枚以上の正電極と負電極を誘電体磁器
層を介在して交互に重畳させた電極(内部電極)
を使用するが、この場合には内部電極を磁器基質
と共に1000℃以上(例1300℃)に焼成一体化する
必要があるから960℃程度で蒸発する銀は使用で
きず、白金、パラジウム、パラジウム―銀合金、
パラジウム―金合金、パラジウム―白金―銀合
金、パラジウム―金―銀合金等の耐熱性金属を使
用する必要がある。従つて、積層チツプコンデン
サの両端面に露出される正負内部電極を外部の回
路に接続する外部電極としては電気接続性を考慮
して上記金属と親和性の高い金属例えば上記金属
と同一または類似の金属で先ず下地を形成する必
要がある。例えばパラジウムまたはパラジウム―
銀合金、銀等が使用される。 (従来技術の問題点) ところが、先きに述べた銀電極及び前段に述べ
たパラジウム等の電極は、前記特許公報の方法に
よつてニツケルを付着しても半田付温度に対して
必要な耐熱強度は得られず、ほぼ270℃、10秒間
(電極厚み約20μとして)が限界であつた。勿論
電極の厚みを増大させれば半田耐熱強度は大きく
なるが、これは直接コストアツプの要因となる。
このように、いずれの場合にも半田耐熱性が弱い
という事が共通の欠点であつた。 最近とくに各種電子機器のプリント回路基板の
半田付状況として半田槽に1回のみではなくて2
回通す方式が多くなりつつあり、この様な状況で
はコンデンサの電極の耐熱性向上が必然的に要望
されて来た。 (発明の概要) 本発明者はこれについて種々研究した結果、磁
器基質に設けたパラジウムその他の金属下地にニ
ツケルを直接電着する代りに、先ず銅を電着し、
次にニツケルを電着し、さらに錫または錫合金を
電着することによりすぐれた接着力及び耐熱強度
を有する磁器コンデンサを提供し得た。銅は下地
用の金属と電着金属のイオン化傾向に対して丁度
よいイオン化傾向を有するため接着強度を向上さ
せる。これは後で実施例に示す通りである。また
ニツケルに続いて錫を電着すると半田付着性の向
上が著しい。若しニツケル層のみを用いると、空
気により容易に酸化され強酸性フラツクスの使用
が必要となり、ひいてコンデンサの特性を低下さ
せるのみならず、それを取付けるプリント基板の
酸化等機器の信頼性を低下させる。なお磁器コン
デンサは一例であつて下地金属として上記した耐
熱性合金または金属を使用する磁器素子例えば薄
膜抵抗体を付着した磁器基板の電極において本発
明を具体化することもできる。 さらに本発明は上記した電着方法の改良法をも
提供するもので、磁器基体の下地金属ヘの電着能
率を改善するために電解メツキバレル内に多数の
金属小球またはガラス球などの非金属小球に金属
被覆を施した小球を収容して助材として使用す
る。さらに、不活性ガス気泡を電解メツキバレル
内に吹込むことにより作業能率を上げる改良方法
を提供することも本発明の目的の1つである。 (実施例) 以下本発明を図面に関連して説明する。 第1図は本発明に従つて製造される積層チツプ
コンデンサを拡大し且つ誇張して示した断面図で
あり、チタン酸バリウム等の誘電体ないし磁器1
と両端面の外部電極で接続されている正負の内部
電極2(数枚ないし百数十枚)及びこれら内部電
極の各組に接続されている外部電極7より成る。
各電極7は内部から順に下地金属層3、銅層4、
ニツケル層5及び錫または錫合金層6より構成さ
れる。下地用金属層3は上記した諸合属のいずれ
でもよいが、特にパラジウム及びその合金が好適
である。下地金属は在来法に従つてフリツト混入
ペーストとして第1図の多層チツプコンデンサ一
両端面に印刷塗布される。 銅層4、ニツケル層5及び錫または錫合金層6
は前記特許公報の方法に従つて、または本発明の
改良方法に従つて順次下地金属の上に電着され
る。 今、典型的な電極の1例を示すと、下地金属層
3の厚みは約15―40μ、電解めつき金属のうち銅
層4は4―6μ、ニツケル層5は1―4μ及び錫
または錫合金層6は4―6μである。 第2図は上記の電着層4,5,6を形成するた
めに使用される回転バレル形電解めつき槽であ
る。ただし見易くするため槽ケース及び電解液は
除いて示した。実際には第3図のように電解槽2
2、電極23等の必要な手段を有するものとす
る。回転バレル14は電解液の流通がよいように
穴17によりかご形になつている。回転バレル1
4の軸方向からリング状電極15,16が突出
し、さらに回転バレルの周囲には回転力を与える
ためのギヤー18及びシヤフト19を形成し、さ
らにブラシ20により電源に接続される。この回
転バレル中に挿入した磁器コンデンサー素体21
は、電解液中で駆動ギヤー25により回転するこ
とにより下地金属層3の上に電着され、或いは先
行する異種電着層に電着される。 第2図には、さらに金属小球または金属被覆を
例えば無電解めつきで施したガラス球27を装入
した例が示されている。 第3図にはさらに不活性ガスの気泡を送入する
手段を付加した電解めつき槽が示されている。同
図の例では窒素等の不活性ガス供給タンク31か
らポンプによりパイプ28を経て穴29から不活
性ガスを電解槽22内へ放出することにより、気
泡30をバレル14の穴17からバレル内へ吹き
上げる。これによりコンデンサ素体21はバレル
の壁から引離されて流動化し、電極7同志の新た
な接触を次々に作り出して行くから、電着効率が
上がる。また電解液も流動化してさらに電着効率
が上がる。空気の吹込みとはちがつて電極7の表
面は酸化されるおそれがなく、順々に異種電着層
をを形成して行く場合(各段の電着操作は同種
の、しかし別の槽で実施される)に良好な電着が
達成できる。 次に本発明に従つて下地金属の上に順次銅、ニ
ツケル及び錫または錫合金を形成して成る電極の
例を挙げ、その耐熱強度及び引張り強度を示す。
(Technical Field) The present invention relates to an electrode in a ceramic capacitor, an electrical resistance film made of a resistive film baked on a ceramic substrate, and a method for manufacturing the same. (Prior Art) Conventionally, in order to form electrodes on insulators, semiconductor ceramics, etc., low melting point glass powder, so-called frit, was dispersed in silver paint to form a paste, which was then applied by printing and baking. However, if there are many frits, the adhesive strength between the electrode and the substrate is strong, but the solder does not adhere to the electrode easily, and if there are few frits, although the solder adheres easily, the solder may alloy the silver. As a result, the electrodes easily peeled off from the porcelain, resulting in weaker strength. As a measure against the above, the applicant has
No. 21528 and Japanese Patent Publication No. 50-4058 proposed a method of coating the surface of the frit adhesive type silver electrode with nickel or copper by electrodeposition. Since the electrodes of ceramic capacitors are only partially formed on the surface of the dielectric material, it is difficult to connect or secure a current path, and it has been considered difficult to apply the electrodeposition method to small-sized ceramic capacitors in particular. However, in the method described in the above patent publication, a large number of ceramic elements are housed in a rotating barrel and rotated, thereby making contact between electrodes evenly and uniformly every moment to ensure a current path. Success was achieved by easily coating each of the device's silver electrodes with electrodeposited nickel or copper, making mass production possible. Metals such as nickel coated in this way adhere strongly to silver electrodes and easily adhere to solder, making it possible to solder without using flux.
The mechanical strength of the resulting soldered part was increased. On the other hand, in the case of a multilayer chip capacitor, several to several dozen or more positive electrodes and negative electrodes are stacked alternately with dielectric ceramic layers interposed (internal electrodes).
However, in this case, it is necessary to bake the internal electrode together with the porcelain substrate at a temperature of 1000°C or higher (for example, 1300°C), so silver, which evaporates at about 960°C, cannot be used; platinum, palladium, palladium- silver alloy,
It is necessary to use a heat-resistant metal such as palladium-gold alloy, palladium-platinum-silver alloy, palladium-gold-silver alloy. Therefore, for the external electrodes that connect the positive and negative internal electrodes exposed on both end faces of the multilayer chip capacitor to the external circuit, metals that have a high affinity with the above metals, such as the same or similar metals, are used in consideration of electrical connectivity. First, it is necessary to form a base with metal. For example palladium or palladium-
Silver alloy, silver, etc. are used. (Problems with the prior art) However, the silver electrode mentioned above and the palladium electrode mentioned in the previous section do not have the necessary heat resistance against the soldering temperature even if nickel is attached by the method disclosed in the patent publication. No strength was obtained, and the limit was approximately 270°C for 10 seconds (assuming an electrode thickness of approximately 20μ). Of course, increasing the thickness of the electrode increases the solder heat resistance, but this directly causes an increase in costs.
In this way, a common drawback in all cases was that the soldering heat resistance was weak. Recently, especially when soldering the printed circuit boards of various electronic devices, the soldering process is not just once, but twice.
The use of recirculating circuits is becoming more common, and under these circumstances, it has become necessary to improve the heat resistance of capacitor electrodes. (Summary of the Invention) As a result of various studies on this subject, the present inventor first electrodeposited copper instead of directly electrodepositing nickel on a palladium or other metal base provided on a porcelain substrate.
Next, by electrodepositing nickel and further electrodepositing tin or a tin alloy, a porcelain capacitor having excellent adhesive strength and heat resistance strength could be provided. Copper has an ionization tendency that is just right for the ionization tendency of the base metal and the electrodeposited metal, so it improves the adhesive strength. This will be shown later in Examples. Furthermore, when tin is electrodeposited after nickel, the solder adhesion is significantly improved. If only the nickel layer is used, it will be easily oxidized by air, requiring the use of strongly acidic flux, which will not only deteriorate the characteristics of the capacitor, but also reduce the reliability of the equipment, such as oxidation of the printed circuit board on which it is attached. let Note that the ceramic capacitor is one example, and the present invention can also be embodied in a ceramic element using the above-mentioned heat-resistant alloy or metal as the base metal, such as an electrode of a ceramic substrate to which a thin film resistor is attached. Furthermore, the present invention also provides an improved method of the electrodeposition method described above, in which a large number of non-metallic beads such as small metal balls or glass balls are placed in the electrolytic plating barrel in order to improve the efficiency of electrodeposition onto the underlying metal of the porcelain substrate. Small balls with metal coating are housed and used as an auxiliary material. It is a further object of the present invention to provide an improved method of increasing operating efficiency by blowing inert gas bubbles into an electrolytically plated barrel. (Example) The present invention will be described below with reference to the drawings. FIG. 1 is an enlarged and exaggerated sectional view of a multilayer chip capacitor manufactured according to the present invention, and shows a dielectric material such as barium titanate or a ceramic material.
It consists of positive and negative internal electrodes 2 (several to over 100 pieces) connected by external electrodes on both end faces, and external electrodes 7 connected to each set of these internal electrodes.
Each electrode 7 has a base metal layer 3, a copper layer 4,
It is composed of a nickel layer 5 and a tin or tin alloy layer 6. The base metal layer 3 may be made of any of the above-mentioned metals, but palladium and its alloys are particularly preferred. The base metal is printed as a fritted paste on one and both end faces of the multilayer chip capacitor of FIG. 1 according to conventional methods. Copper layer 4, nickel layer 5 and tin or tin alloy layer 6
are sequentially electrodeposited onto the base metal according to the method of the above-mentioned patent publication or according to the improved method of the present invention. Now, to show one example of a typical electrode, the thickness of the base metal layer 3 is about 15-40μ, the copper layer 4 of the electrolytically plated metal is 4-6μ, the nickel layer 5 is 1-4μ and tin or tin. The alloy layer 6 has a thickness of 4-6μ. FIG. 2 shows a rotating barrel type electrolytic plating bath used to form the electrodeposited layers 4, 5, and 6 described above. However, the tank case and electrolyte are excluded for clarity. Actually, as shown in Figure 3, the electrolytic tank 2
2. It shall have necessary means such as an electrode 23. The rotating barrel 14 is cage-shaped with holes 17 for good electrolyte flow. rotating barrel 1
Ring-shaped electrodes 15 and 16 protrude from the axial direction of the rotating barrel, and a gear 18 and a shaft 19 for applying rotational force are formed around the rotating barrel, and the rotating barrel is further connected to a power source by a brush 20. Porcelain capacitor body 21 inserted into this rotating barrel
is electrodeposited on the base metal layer 3 by being rotated by the drive gear 25 in an electrolytic solution, or on a previous electrodeposited layer of a different type. FIG. 2 also shows an example in which small metal balls or glass balls 27 coated with metal, for example by electroless plating, are inserted. FIG. 3 further shows an electrolytic plating bath with additional means for introducing bubbles of inert gas. In the example shown in the figure, air bubbles 30 are introduced into the barrel from the hole 17 of the barrel 14 by discharging inert gas from the inert gas supply tank 31 such as nitrogen into the electrolytic cell 22 through the pipe 28 and the hole 29 using a pump. Blow up. As a result, the capacitor body 21 is separated from the wall of the barrel and becomes fluidized, and new contacts between the electrodes 7 are successively created, thereby increasing the electrodeposition efficiency. Furthermore, the electrolytic solution is also fluidized, further increasing the electrodeposition efficiency. Unlike air blowing, there is no risk of oxidation of the surface of the electrode 7, and when different types of electrodeposited layers are successively formed (electrodeposition operations at each stage are performed in the same type but in different tanks) good electrodeposition can be achieved. Next, an example of an electrode formed by sequentially forming copper, nickel, and tin or a tin alloy on a base metal according to the present invention will be given, and its heat resistance strength and tensile strength will be shown.

【表】 この場合に、下地金属とガラスフリツトは在来
法に従つてペースト状混合物とし、直径1.6mm、
長さ3mm、下地金属の側部への回り込み長さ0.3
〜0.9mとして積層チツプコンデンサ用磁器素体
へ印刷焼付けしたものを用いた。耐熱強度は仕上
つた積層チツプコンデンサにフラツクス(ロジン
JIS K5902)を浸し、次でH63A半田(JIS
Z3238)中に浸漬したとき、外部電極総面積の75
%以下の電極が半田に喰われた点を耐熱温度の限
界点とした。さらに、引張り強度は1mmφのリー
ドを上記積層チツプコンデンサの両端の電極に半
田付けし、これをシヨツパー試験器で引張り剥離
する点を引張り強度とした。 表から分ることは、先ずフリツトが3%のよう
に少ないときは引張り強度が低いので或る量以上
の割合を要することである。しかし、フリツトが
7%の場合でも下地金属にニツケルを直接電着す
ると引張強度が弱いことが分る。さらに最外表面
に錫または錫合金が存在すると半田が付き易く、
半田の強度に寄与することが分つた(表には現わ
れていないが)。さらに耐熱強度はいずれも350℃
10秒間以上であり満足なものであつた。なお、引
張り強度の良否の判断は、引張り強度、1.5以上
が安定して得られることを基準にした。従つて、
上表中例1、4は本発明より除かれる。 以上のように、本発明によると引張り強度及び
耐熱強度のいずれもが充分に大きい積層チツプコ
ンデンサが得られることが分る。 また本発明の方法によると能率的な電極形成が
達成されることが分る。 上記の電極及びその電着方法は磁器材料を基体
とする抵抗器の製造においてそのまま適用できる
ことは明らかである。第4図はその例を示す。第
1図と共通な部分は同一の参照番号を用いた。
2′は皮膜型抵抗体である。図から明らかなよう
に、第1図に関する説明がそつくり成立つのでこ
こでは説明を省略する。
[Table] In this case, the base metal and glass frit are made into a paste mixture according to the conventional method, and the diameter is 1.6 mm.
Length 3mm, length of wraparound to the side of base metal 0.3
~0.9m was used by printing and baking on a porcelain body for a multilayer chip capacitor. The heat resistance strength is determined by adding flux (rosin) to the finished multilayer chip capacitor.
Soak H63A solder (JIS K5902) and then apply H63A solder (JIS K5902).
75 of the total external electrode area when immersed in Z3238)
The point where less than % of the electrode was eaten by the solder was defined as the limit point of the heat resistance temperature. Further, the tensile strength was determined by soldering leads of 1 mm diameter to the electrodes at both ends of the multilayer chip capacitor and peeling them off using a Schopper tester. What can be seen from the table is that when the amount of frit is as low as 3%, the tensile strength is low, so a certain amount or more is required. However, even when the frit is 7%, the tensile strength is low when nickel is directly electrodeposited on the base metal. Furthermore, if tin or tin alloy is present on the outermost surface, solder will easily adhere to it.
It was found that it contributes to the strength of solder (although it is not shown in the table). Furthermore, the heat resistance strength is 350℃
The duration was more than 10 seconds, which was satisfactory. The quality of the tensile strength was judged based on the fact that a tensile strength of 1.5 or more was stably obtained. Therefore,
Examples 1 and 4 in the above table are excluded from the present invention. As described above, it can be seen that according to the present invention, a multilayer chip capacitor having sufficiently high tensile strength and heat resistance strength can be obtained. It can also be seen that efficient electrode formation can be achieved by the method of the present invention. It is clear that the electrodes and electrodeposition methods described above can be directly applied to the manufacture of resistors based on porcelain materials. FIG. 4 shows an example. The same reference numerals have been used for parts common to FIG. 1.
2' is a film type resistor. As is clear from the figure, the explanation regarding FIG. 1 is self-explanatory, so the explanation will be omitted here.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による積層チツプコンデンサの
図式的な断面図、第2図は本発明の方法の実施装
置の一部破断断面図、第3図は他の実施装置の一
部破断断面図、及び第4図は本発明の抵抗器の図
式的な断面図である。 図中主要な部材は次の通りである。1:誘電体
または磁器、2:内部電極、3:下地金属層、
4:銅層、5:ニツケル層、6:錫または錫合金
層、8:電極、14:回転バレル、15,16:
リング状電極、17:穴、18:ギヤー、19:
シヤフト、20:ブラシ、21:磁器コンデンサ
素体、22:電解層、23:電極、28:パイ
プ、29:穴、30:気泡。
FIG. 1 is a schematic sectional view of a multilayer chip capacitor according to the present invention, FIG. 2 is a partially cutaway sectional view of an apparatus for implementing the method of the present invention, and FIG. 3 is a partially cutaway sectional view of another apparatus for implementing the method. and FIG. 4 are schematic cross-sectional views of the resistor of the present invention. The main members in the figure are as follows. 1: dielectric or ceramic, 2: internal electrode, 3: base metal layer,
4: Copper layer, 5: Nickel layer, 6: Tin or tin alloy layer, 8: Electrode, 14: Rotating barrel, 15, 16:
Ring-shaped electrode, 17: hole, 18: gear, 19:
shaft, 20: brush, 21: ceramic capacitor body, 22: electrolytic layer, 23: electrode, 28: pipe, 29: hole, 30: bubble.

Claims (1)

【特許請求の範囲】 1 磁器基体にパラジウム、白金、金、銀または
これらの合金から選ばれた金属及び該金属を基準
にして3%より多いフリツトを焼付けた下地金属
に、銅、ニツケル及び錫または錫合金をこの順に
電着して成る電極構造。 2 磁器基体にパラジウム、白金、金、銀または
これらの合金から選ばれた金属及びフリツトを焼
付けて下地金属とした磁器素体を、金属小球また
は非金属小球に金属被覆を行つた金属被覆小球と
共に銅、ニツケル及び錫または錫合金電着用の回
転バレル式各電解めつき槽内に順次浸漬し、前記
下地金属上に順次金属層の電着を行うことを特徴
とする電極構造の製造方法。 3 第2項の方法において、不活性ガスの泡を回
転バレルに吹込むことを特徴とする電極構造の製
造方法。
[Scope of Claims] 1 A metal selected from palladium, platinum, gold, silver, or an alloy thereof is baked onto a porcelain substrate, and a base metal with a frit of more than 3% based on the metal is baked with copper, nickel, and tin. Or an electrode structure made by electrodepositing tin alloys in this order. 2. Metal coating in which a metal or non-metal ball is coated with a metal or non-metal ball by using a porcelain body as a base metal by baking a metal selected from palladium, platinum, gold, silver, or an alloy thereof and frit on a porcelain base. Manufacture of an electrode structure characterized by sequentially immersing small balls together with a rotating barrel type electrolytic plating tank for electrodeposition of copper, nickel, tin or tin alloys, and sequentially electrodepositing metal layers on the base metal. Method. 3. A method for manufacturing an electrode structure according to item 2, characterized in that inert gas bubbles are blown into a rotating barrel.
JP6568178A 1978-06-02 1978-06-02 Electrode structure and the manufacturing method Granted JPS54157296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6568178A JPS54157296A (en) 1978-06-02 1978-06-02 Electrode structure and the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6568178A JPS54157296A (en) 1978-06-02 1978-06-02 Electrode structure and the manufacturing method

Publications (2)

Publication Number Publication Date
JPS54157296A JPS54157296A (en) 1979-12-12
JPS6258125B2 true JPS6258125B2 (en) 1987-12-04

Family

ID=13293981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6568178A Granted JPS54157296A (en) 1978-06-02 1978-06-02 Electrode structure and the manufacturing method

Country Status (1)

Country Link
JP (1) JPS54157296A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771116A (en) * 1980-10-21 1982-05-01 Nichicon Capacitor Ltd Laminated condenser
JPS57121212A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Method of forming electrode for porcelain capacitor
JPS57187925A (en) * 1981-05-14 1982-11-18 Murata Manufacturing Co Ceramic condenser
JPH0729625Y2 (en) * 1982-09-14 1995-07-05 ティーディーケイ株式会社 Multilayer LC composite parts
JPS5944002U (en) * 1982-09-14 1984-03-23 ティーディーケイ株式会社 laminated transformer
JPS5944064U (en) * 1982-09-14 1984-03-23 ティーディーケイ株式会社 hybrid integrated circuit
JPS5944031U (en) * 1982-09-14 1984-03-23 ティーディーケイ株式会社 Multilayer capacitor network
JPS5944006U (en) * 1982-09-14 1984-03-23 ティーディーケイ株式会社 laminated inductor
JPS61102702A (en) * 1984-10-26 1986-05-21 興亜電工株式会社 Chip-shaped electronic component
JPH01241809A (en) * 1988-03-23 1989-09-26 Nec Corp Laminated ceramic chip parts
JPH0727622Y2 (en) * 1989-03-07 1995-06-21 太陽誘電株式会社 Chip-shaped ceramic electronic components
JPH0749785Y2 (en) * 1989-06-22 1995-11-13 日本電気株式会社 Monolithic ceramic capacitors
WO2001019149A1 (en) 1999-09-02 2001-03-15 Ibiden Co., Ltd. Printed wiring board and method of producing the same and capacitor to be contained in printed wiring board
US6724638B1 (en) * 1999-09-02 2004-04-20 Ibiden Co., Ltd. Printed wiring board and method of producing the same
JP7003889B2 (en) * 2018-10-10 2022-01-21 株式会社村田製作所 Multilayer ceramic electronic components and their mounting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504058A (en) * 1972-01-20 1975-01-16
JPS5030046A (en) * 1973-07-17 1975-03-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504058A (en) * 1972-01-20 1975-01-16
JPS5030046A (en) * 1973-07-17 1975-03-26

Also Published As

Publication number Publication date
JPS54157296A (en) 1979-12-12

Similar Documents

Publication Publication Date Title
JPS6258125B2 (en)
US8163331B2 (en) Multilayer ceramic capacitor with terminal formed by electroless plating
JP2001307947A (en) Laminated chip component and its manufacturing method
KR100279861B1 (en) Molded electronic component having pre-plated lead terminals and manufacturing process thereof
JP4083971B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
CN100337302C (en) Low-pressure discharge lamp and method for manufacturing same
JPS6342879B2 (en)
JPS5846161B2 (en) Conductive terminals on heat-resistant insulator substrates
JP2001155955A (en) Electronic component equipped having external terminal electrode and mounting electronic article thereof
JPS5879837A (en) Electrically conductive paste composition
JPH08203769A (en) Ceramic electronic component
JPS6132808B2 (en)
JP4556337B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JPH06224538A (en) Manufacture of ceramic circuit board
JPH08316399A (en) Board for electronic component and manufacture thereof
JP2001196266A (en) Method of manufacturing chip-like electronic component
JPS6132807B2 (en)
JPH04329616A (en) Laminated type electronic component
JPH0620883A (en) Manufacture of chip-type solid-state electrolytic capacitor
JPS61121389A (en) Ceramic wiring board
JP2537182B2 (en) Method for manufacturing chip-type solid electrolytic capacitor
JPH0888138A (en) Ceramic electronic part
JP2787743B2 (en) Feed-through porcelain capacitor
JPH04307797A (en) Manufacture of multilayer ceramic circuit board