JPS6254983A - Transducer - Google Patents

Transducer

Info

Publication number
JPS6254983A
JPS6254983A JP60196350A JP19635085A JPS6254983A JP S6254983 A JPS6254983 A JP S6254983A JP 60196350 A JP60196350 A JP 60196350A JP 19635085 A JP19635085 A JP 19635085A JP S6254983 A JPS6254983 A JP S6254983A
Authority
JP
Japan
Prior art keywords
voltage
current
terminals
generated
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60196350A
Other languages
Japanese (ja)
Other versions
JPH0257350B2 (en
Inventor
Yoshio Adachi
義雄 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EE U II KENKYUSHO KK
Fuji Ceramics Corp
Original Assignee
EE U II KENKYUSHO KK
Fuji Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EE U II KENKYUSHO KK, Fuji Ceramics Corp filed Critical EE U II KENKYUSHO KK
Priority to JP60196350A priority Critical patent/JPS6254983A/en
Publication of JPS6254983A publication Critical patent/JPS6254983A/en
Publication of JPH0257350B2 publication Critical patent/JPH0257350B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To convert between a current and a voltage by obtaining a voltage in response to a deformation from a pair of surfaces of the second beam, driving the second beam by a voltage applied to the pair of surfaces to deform the both beams, and obtaining a current in response to the deformation by an outer magnetic circuit. CONSTITUTION:When a current is converted to a voltage, an exciting current is supplied from terminals 8, 9, while when the voltage is reversely converted to the current, an electromotive force is generated between the terminals 8 and 9 due to the vibration of a magnetic material 1. When a magnetic flux phi generated by the current (i) supplied from a signal source S repels from the material 1 of a beam, the beam is deflected downward, and the voltage of the polarity in response to the direction of the deformation is generated between the terminals 5 and 6. The magnetic flux phi generated by the current (i) supplied from the signal source S is attracted to the material 1 of the beam, the beam is deflected upward, and the voltage of reverse polarity is generated between the terminals 5 and 6. This is repeated to obtain a voltage proportional to the current of the source S from the terminals 5, 6. Thus, a conversion between the current and the voltage can be readily performed to expect various applications.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電流から電圧、あるい、は電圧から電デューサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a current to voltage or voltage to current duducer.

発明の概要) 本発明は磁性材料と圧電材料とを2FJ構造もしくは多
層構造にしてビームを形成し、永久磁石により、あるい
はコイルに電流を流して外部から磁界を与えることによ
り磁性材料を駆動して圧電材料に振動を与え、圧電材料
から電圧を発生せしめ、また逆に、圧電材料に電圧を印
加して圧電材料を駆動し、その振動により磁性材料を介
して外部の磁気回路に電流を発生するようにした、電流
→電圧間のトランスデユーサである。
Summary of the invention) The present invention forms a beam using a magnetic material and a piezoelectric material in a 2FJ structure or a multilayer structure, and drives the magnetic material by applying a magnetic field from the outside by a permanent magnet or by passing a current through a coil. Vibration is applied to the piezoelectric material to generate voltage from the piezoelectric material, and conversely, a voltage is applied to the piezoelectric material to drive the piezoelectric material, and the vibration generates a current in an external magnetic circuit via the magnetic material. This is a current-to-voltage transducer.

背景技術) 第7図(イ)は圧電材料を用いな従来のトランスデユー
サの一例を示す構成図であり、21.22は圧電材料、
23.24.25は蒸着もしくは導電塗料等により形成
された電極、28.27は端子である。また、圧電材料
の電圧の発生する向きの組み合わせによりいくつかの態
様があり、第7図る。シリーズ仕様とする場合には同一
方向のストレスが加わった際に発生する電圧の向きを互
いに逆方向となるように接続すればよい。なお、その場
合、両圧電材料間の電極(24)は不要となる。
Background Art) FIG. 7(a) is a block diagram showing an example of a conventional transducer that does not use piezoelectric material, and 21 and 22 are piezoelectric materials,
23, 24, 25 are electrodes formed by vapor deposition or conductive paint, and 28, 27 are terminals. Furthermore, there are several aspects depending on the combination of directions in which voltage is generated in the piezoelectric material, as shown in Figure 7. In the case of series specifications, the connections may be made so that the voltages generated when stress is applied in the same direction are in opposite directions. Note that in that case, the electrode (24) between both piezoelectric materials becomes unnecessary.

しかして、第7図(イ)の矢印の如く発生する電圧の向
き(横方向から圧縮を受けた場合に発生する電圧の向き
)を選ぶものとすると、(ロ)の如く外部から機械的な
変形を加えて圧電材料21.22から形成されるビーム
を上に凸となるようにたわませると、中立軸を境に上側
が引張、下側が圧縮となり、圧電材料21.22の分極
作用により、図示の極性で電圧が発生し、端子26.2
7間に電圧信号が取り出される。一方、(ハ)の如く逆
方向にたわませると端子26.27に発生する電圧の極
性が反転する。
Therefore, if we choose the direction of the voltage generated as shown by the arrow in Figure 7 (a) (the direction of the voltage generated when compression is applied from the lateral direction), we can When the beam formed from the piezoelectric material 21, 22 is deformed so as to be convex upward, the upper side becomes tensile and the lower side becomes compressive, with the neutral axis as the boundary, and due to the polarization effect of the piezoelectric material 21, 22. , a voltage is generated with the polarity shown and terminal 26.2
A voltage signal is taken out between 7 and 7. On the other hand, when it is bent in the opposite direction as shown in (c), the polarity of the voltage generated at the terminals 26 and 27 is reversed.

また、上記の動作は機械的な変形を電圧に変換する場合
であるが、逆に端子26.27に信号電圧を加えること
により、ビームを機械的に変形させることも可能である
Further, although the above operation is a case where mechanical deformation is converted into voltage, it is also possible to mechanically deform the beam by applying a signal voltage to the terminals 26 and 27.

なお、第7図のように圧電材料を2層構造にしてビーム
を形成するのは、1層では内部で発生する電圧が打ち消
し合い、電圧が取り出せないからである。すなわち、第
8図(イ)は1層でビームを構成した場合を示している
が、(ロ)。
The reason why the beam is formed by using a two-layer structure of piezoelectric material as shown in FIG. 7 is that the voltages generated inside the piezoelectric material cancel each other out in one layer, so that no voltage can be extracted. That is, although FIG. 8(a) shows the case where the beam is composed of one layer, (b).

(ハ)の如くたわませた場合、中立軸4を境に互いに逆
極性の電圧が内部で発生することになるため、1@極2
9.30の両端から見た場合、電圧は互いに打ち消し合
い、端子31.32から取り出すことばできない。
If it is bent as shown in (c), voltages of opposite polarity will be generated internally with the neutral axis 4 as the boundary, so 1@pole 2
When viewed from both ends of 9.30, the voltages cancel each other out and cannot be taken out from terminals 31.32.

ところで、従来のトランスデユーサは上記の如く動作す
るものであったが、その変換機能は機械的変位伸電圧の
相互間のみであり、デバイスとしての応用性に欠けるも
のであった。
By the way, although the conventional transducer operates as described above, its conversion function is only between mechanical displacement and expansion voltage, and it lacks applicability as a device.

(発明の目的) 本発明は上記の点に鑑み提案されたものであり、その目
的とするところは、圧電材料を用いて電流節電圧の相互
間の変換を可能にしたトランスデユーサを提供すること
にある。
(Object of the Invention) The present invention has been proposed in view of the above points, and its object is to provide a transducer that enables mutual conversion of current and voltage using piezoelectric materials. There is a particular thing.

(発明の構成) 以下、実施例を示す図面に沿って本発明を詳述する。(Structure of the invention) Hereinafter, the present invention will be described in detail with reference to the drawings showing examples.

第1図は本発明のトランスデユーサの一実施例を示す構
成図であり、(イ)は外観斜視図、(ロ)は長手方向で
切って見た断面図である。図において構成を説明すると
、1は第1のビームを形成する磁性材料であり、セラミ
ック・マグネットもしくは通常のマグネット等が使用可
能である。
FIG. 1 is a configuration diagram showing an embodiment of the transducer of the present invention, in which (A) is an external perspective view and (B) is a sectional view taken in the longitudinal direction. To explain the configuration in the figure, numeral 1 is a magnetic material forming the first beam, and a ceramic magnet or a normal magnet can be used.

また、2は第2のビームを形成する圧電材料であり、そ
の両面には蒸着もしくは導電塗料等により電極3,4が
形成され、電極3を介して磁性材料1よりなる第1のビ
ームと接合され、全体として2層構造のビームを構成し
ている。なお、電極3,4は圧電材料2の両端に発生し
た電圧を端子5,6に取り出す、あるいは圧電材料2の
両端に電圧を印加するためのものであるので、磁性材料
1に導電性のあるものを使用した場合には第2図に示す
如く電極3を省略し、磁性材料1に直接端子5を接続す
るようにしてもよい。
Further, 2 is a piezoelectric material that forms the second beam, and electrodes 3 and 4 are formed on both sides of the piezoelectric material by vapor deposition or conductive paint, and it is connected to the first beam made of magnetic material 1 via the electrode 3. The beam has a two-layer structure as a whole. Note that the electrodes 3 and 4 are for extracting the voltage generated across the piezoelectric material 2 to the terminals 5 and 6, or for applying a voltage to both ends of the piezoelectric material 2, so if the magnetic material 1 is conductive. If a magnetic material is used, the electrode 3 may be omitted and the terminal 5 may be directly connected to the magnetic material 1, as shown in FIG.

第1図に戻り構成を説明すると、磁性材料1゜圧電材料
2.電極3,4で構成されるビームは固定壁10に一端
部が固定されるようになっており、いわゆる片持構造と
なっている。なお、片持構造に限られるものでなく、第
3図に示すように固定壁10.11によ外画側で固定す
る構造をとってもよい。− 一方、第1図において、7はコイルであり、電流から電
圧へ変換を行う場合には端子8,9から励磁電流が供給
され、逆に電圧から電流へ変換を行う場合は磁性材料1
の振動による起電力が端子8,9間に発生する。
Returning to FIG. 1 and explaining the configuration, magnetic material 1° piezoelectric material 2. The beam composed of the electrodes 3 and 4 has one end fixed to the fixed wall 10, and has a so-called cantilevered structure. Note that the structure is not limited to a cantilevered structure, and a structure in which the outside image side is fixed to a fixed wall 10, 11 as shown in FIG. 3 may be adopted. - On the other hand, in Fig. 1, 7 is a coil, and when converting current to voltage, exciting current is supplied from terminals 8 and 9, and conversely, when converting voltage to current, magnetic material 1
An electromotive force is generated between terminals 8 and 9 due to the vibration.

しかして、第4図は第1図のトランスデユーサを電流か
ら電圧への変換に使用した場合の動作を示しており、コ
イル7の端子8,9には信号源Sが接続されている。動
作にあっては、信号源Sから供給される電流iによって
生じる磁束φがビームの磁性材料1と反発する場合には
(イ)の如くビームは下方へたわみ、その変形の方向に
応じた極性の電圧が端子5,6に発生する。また、信号
源Sから供給される電流iによって生じる磁束φがビー
ムの磁性材料1と吸引し合う場合には(ロ)の如くビー
ムは上方へたわみ、端子5,6には上記とは逆極性の電
圧が発生する。そして、これらの繰り返しによって信号
源Sの電流に比例した電圧が端子5,6から得られる。
4 shows the operation when the transducer of FIG. 1 is used for converting current to voltage, and a signal source S is connected to the terminals 8 and 9 of the coil 7. In operation, when the magnetic flux φ generated by the current i supplied from the signal source S is repelled by the magnetic material 1 of the beam, the beam is deflected downward as shown in (a), and the polarity changes depending on the direction of the deformation. voltage is generated at terminals 5 and 6. In addition, when the magnetic flux φ generated by the current i supplied from the signal source S attracts the magnetic material 1 of the beam, the beam is deflected upward as shown in (b), and the terminals 5 and 6 have polarity opposite to that described above. voltage is generated. By repeating these steps, a voltage proportional to the current of the signal source S is obtained from the terminals 5 and 6.

なお、本発明では圧電材料2は1層となっているが、磁
性材料1の存在により中立軸が圧電材料2の中心部から
ズレるので、圧電材料2の内部で電圧が打ち消し合うこ
とはなく、変形に応じた電圧が取り出せるものである。
Although the piezoelectric material 2 is one layer in the present invention, the neutral axis is shifted from the center of the piezoelectric material 2 due to the presence of the magnetic material 1, so the voltages do not cancel each other out inside the piezoelectric material 2. A voltage corresponding to the deformation can be extracted.

また、電圧から電流へ変換を行う場合には、端子5,6
に信号電圧を印加することにより、圧電材料2、ひいて
は磁性材料1が振動し、この振動により外部に設けたコ
イル7に電流を誘起させる。
In addition, when converting voltage to current, terminals 5 and 6
By applying a signal voltage to the piezoelectric material 2, the magnetic material 1 vibrates, and this vibration induces a current in the externally provided coil 7.

このように、本発明のトランスデユーサでは、特に電流
から電圧へ変換を行う場合、ビームと非接触の状態で外
部から磁界を与えることにより、電圧を発生させること
ができるので、従来にない様々な応用が考えられる。例
えば、生態組織内に本発明のトランスデユーサを埋め込
み、発生する電圧を神経系に与えるようにすれば、外部
から非接触の状態にして神経系への刺激を制御すること
も可能となり、医学の分野への応用が図れる。また、電
子部品の分野においては、マイクロリレー等の可動接点
に適用することにより、接点の変位を電流もしくは電圧
のバイアスを加えて制御する等の応用が可能である。
In this way, the transducer of the present invention can generate voltage by applying a magnetic field from outside without contacting the beam, especially when converting current to voltage. There are many possible applications. For example, if the transducer of the present invention is implanted within biological tissue and the generated voltage is applied to the nervous system, it will be possible to control stimulation of the nervous system without contacting it from the outside. It can be applied to the following fields. Furthermore, in the field of electronic components, by applying the present invention to movable contacts such as micro relays, it is possible to control the displacement of the contacts by applying current or voltage bias.

次に、第5図は本発明の他の実施例を示したものであり
、磁性材料1.圧電材料2.電極3゜4等から構成され
るビームの一端を固定することなく、一端に錘12を設
けることにより、外部から磁界が作用した際にビームの
変形が起こるようにしたものである。すなわち、生態組
織内等においては安定な固定方法がないが、このように
重量的なアンバランスを与えておくことにより、磁界が
作用した場合に錘12側は動きにくくなら、よって片持
構造と略同様の動作となる。
Next, FIG. 5 shows another embodiment of the present invention, in which magnetic material 1. Piezoelectric material 2. One end of the beam made up of electrodes 3, 4, etc. is not fixed, but a weight 12 is provided at one end, so that the beam is deformed when a magnetic field is applied from the outside. In other words, although there is no stable fixing method within the biological tissue, if the weight 12 side is difficult to move when a magnetic field is applied by providing a weight imbalance in this way, then a cantilevered structure is possible. The operation is almost the same.

次に第6図も同様な視点から考えられたものであり、第
1のビームの半分を非磁性材料13で形成し、ビームの
半分は磁界が働いても力が作用しないようにして、ビー
ム全体が変形するようにしたものである。なお、同様な
考えを適用して更に別の構成を得ることも可能である。
Next, Fig. 6 was considered from a similar point of view, and half of the first beam is made of non-magnetic material 13, and half of the beam is made so that no force acts even when a magnetic field is applied. The whole thing is deformed. Note that it is also possible to obtain still another configuration by applying the same idea.

(発明の効果) 以上のように、本発明にあっては、磁性材料と圧電材料
とを2層構造もしくは多層構造にしてビームを形成し、
永久磁石により、あるいはコイルに電流を流して外部か
ら磁界を与えることにより磁性材料を駆動して圧電材料
に振動を与え、圧電材料から電圧を発生せしめ、また逆
に、圧電材料に電圧を印加して圧電材料を駆動し、その
振動により磁性材料を介して外部の磁気回路に電流を発
生させるようにしたので、電流峠電圧間の変換が容易に
行え、様々な応用が期待できるものである。
(Effects of the Invention) As described above, in the present invention, a beam is formed using a two-layer structure or a multi-layer structure of a magnetic material and a piezoelectric material,
A magnetic material is driven by a permanent magnet or by applying a magnetic field from the outside by passing a current through a coil to give vibration to the piezoelectric material, causing the piezoelectric material to generate a voltage, and conversely, applying a voltage to the piezoelectric material. The piezoelectric material is driven by the piezoelectric material, and the vibration generates a current in an external magnetic circuit via the magnetic material, so conversion between current and voltage can be easily performed, and a variety of applications can be expected.

【図面の簡単な説明】 第1図は本発明のトランスデユーサの一実施例を示す構
成図であり、(イ)は外観斜視図、(ロ)は長手方向の
断面図、第2図および第3図は他の実施例を示す構成図
、第4図は第1図の実施例に係る動作説明図、第5図お
よび第6図は他の実施例を示す構成図、第7図および第
8図は従来における圧電材料を用いたトランスデユーサ
の説明図である。 1・・・・・・磁性材料、2・・・・・圧電材料、3,
4・・・・・・電極、5,6,8,9・・・・・・端子
、7・・・・・コイル、10.11・・・・・・固定壁
、12・・・・・・錘、13・・・・・非磁性材料、S
・・・・・・信号源
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a configuration diagram showing an embodiment of the transducer of the present invention, in which (A) is an external perspective view, (B) is a longitudinal cross-sectional view, and FIGS. FIG. 3 is a block diagram showing another embodiment, FIG. 4 is an explanatory diagram of the operation of the embodiment shown in FIG. 1, FIGS. 5 and 6 are block diagrams showing other embodiments, and FIGS. FIG. 8 is an explanatory diagram of a conventional transducer using a piezoelectric material. 1...Magnetic material, 2...Piezoelectric material, 3,
4... Electrode, 5, 6, 8, 9... Terminal, 7... Coil, 10.11... Fixed wall, 12...・Weight, 13...Nonmagnetic material, S
・・・・・・Signal source

Claims (1)

【特許請求の範囲】[Claims]  磁性材料により形成された第1のビームと、圧電材料
により形成された第2のビームとを接合して2層構造も
しくは多層構造とし、コイルに電流を流して得た磁界も
しくは永久磁石により得た磁界を外部から与えることに
より前記第1のビームを駆動して両ビームを変形せしめ
、前記第2のビームの一対の面より変形に応じた電圧を
得ると共に、前記第2のビームの一対の面に加えた電圧
により前記第2のビームを駆動して両ビームを変形せし
め、外部の磁気回路より変形に応じた電流を得ることを
特徴としたトランスデューサ。
A first beam formed of a magnetic material and a second beam formed of a piezoelectric material are joined to form a two-layer structure or a multilayer structure, and a magnetic field obtained by passing a current through a coil or a permanent magnet is obtained. By applying a magnetic field from the outside, the first beam is driven to deform both beams, a voltage corresponding to the deformation is obtained from the pair of surfaces of the second beam, and a voltage corresponding to the deformation is obtained from the pair of surfaces of the second beam. A transducer characterized in that the second beam is driven by a voltage applied to the second beam to deform both beams, and a current corresponding to the deformation is obtained from an external magnetic circuit.
JP60196350A 1985-09-03 1985-09-03 Transducer Granted JPS6254983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196350A JPS6254983A (en) 1985-09-03 1985-09-03 Transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196350A JPS6254983A (en) 1985-09-03 1985-09-03 Transducer

Publications (2)

Publication Number Publication Date
JPS6254983A true JPS6254983A (en) 1987-03-10
JPH0257350B2 JPH0257350B2 (en) 1990-12-04

Family

ID=16356377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196350A Granted JPS6254983A (en) 1985-09-03 1985-09-03 Transducer

Country Status (1)

Country Link
JP (1) JPS6254983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581143A (en) * 1993-09-21 1996-12-03 Yamaichi Electronics Co., Ltd. Twist vibrator
CN103682079A (en) * 2012-09-26 2014-03-26 西门子公司 Piezoelectric element, power supply device and electronic system
DE102004055625B4 (en) * 2004-11-11 2015-04-02 Baumer Hübner GmbH Voltage generator with a piezoelectric transducer element
DE102018126909A1 (en) * 2018-10-29 2020-04-30 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Energy collector for the generation of electrical energy in the case of time-varying magnetic fields

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581143A (en) * 1993-09-21 1996-12-03 Yamaichi Electronics Co., Ltd. Twist vibrator
DE102004055625B4 (en) * 2004-11-11 2015-04-02 Baumer Hübner GmbH Voltage generator with a piezoelectric transducer element
CN103682079A (en) * 2012-09-26 2014-03-26 西门子公司 Piezoelectric element, power supply device and electronic system
DE102018126909A1 (en) * 2018-10-29 2020-04-30 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Energy collector for the generation of electrical energy in the case of time-varying magnetic fields
DE102018126909B4 (en) 2018-10-29 2023-07-27 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Energy collector for obtaining electrical energy from magnetic fields that change over time

Also Published As

Publication number Publication date
JPH0257350B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
JP4746291B2 (en) Capacitive ultrasonic transducer and manufacturing method thereof
JP2501096Y2 (en) A force transducer for a compound vibration beam that is electrostatically excited.
JPH04210786A (en) Oscillator
JP2004304887A (en) Oscillatory drive unit
WO2012127859A1 (en) Vibration power generator
GB2168568A (en) Improvements in magnetrostrictive transducers
JPS61180109A (en) Displacement sensor
US5632074A (en) Vibration wave driven motor
JP2003133880A (en) Microelectro-mechanical component
JPS6254983A (en) Transducer
JP2006515463A (en) Electroactive transducers that generate / sense out-of-plane transducer motion using radial electric fields
JP3088499B2 (en) Piezoelectric transformer
JPS62152379A (en) Bidirectional microdisplacement device
JP2559729B2 (en) Vibration generator
JPS6412111B2 (en)
JP3470920B2 (en) converter
JP4262056B2 (en) Vibration wave drive
JPS59175777A (en) Method for driving bimorph vibrator
JPH03253267A (en) Ultrasonic motor
JPH0284076A (en) Vibrator type actuator
JP6673479B2 (en) Piezoelectric transformer
JPH029561Y2 (en)
JPS59146298A (en) Sticked type piezoelectric oscillator
JPS63292017A (en) Detector of angular velocity
JPH0532995B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees