JPS6254565A - Production of nickel-titanium alloy wire - Google Patents

Production of nickel-titanium alloy wire

Info

Publication number
JPS6254565A
JPS6254565A JP19288285A JP19288285A JPS6254565A JP S6254565 A JPS6254565 A JP S6254565A JP 19288285 A JP19288285 A JP 19288285A JP 19288285 A JP19288285 A JP 19288285A JP S6254565 A JPS6254565 A JP S6254565A
Authority
JP
Japan
Prior art keywords
ingot
nickel
alloy wire
electron beam
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19288285A
Other languages
Japanese (ja)
Inventor
Kazumi Shimotori
霜鳥 一三
Hideo Ishihara
石原 秀夫
Takashi Ishigami
隆 石上
Kozo Yasuda
安田 興造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19288285A priority Critical patent/JPS6254565A/en
Publication of JPS6254565A publication Critical patent/JPS6254565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Ni-Ti alloy wire having a uniform compsn. by forming a molten metal subjected to electron beam melting or electron beam plasma melting to a long-sized ingot by a water cooled mold pulling down method then subjecting the ingot to hot drawing. CONSTITUTION:The raw material of the Ni-Ti alloy having >=45 deg.C transformation initiation temp. to be used as a shape memory alloy is subjected to the electron beam melting or electron beam plasma melting and thereafter the long-sized ingot having >=4 aspect ratio is formed by the water-cooled mold pulling up method. The ingot is subjected to the conditioning of the casting surface as necessary in the stage for hot drawing and direct rolling is repeated immediately thereafter, by which the ingot is subjected to hot swaging and drawing. The working includes a stage for butt joining. The Ni-Ti alloy wire having the uniform compsn. is thus produced.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は形状記憶合金線材として用いられるニッケル−
チタン系合金線材の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a nickel-based material used as a shape memory alloy wire.
The present invention relates to a method for manufacturing titanium-based alloy wire.

[発明の技術的背景とその問題点1 形状記憶合金は工業用、歯科用および医療用に大いに応
用が期待されるものとして近年開発が進められており、
その代表的なものにニッケル−チタン系合金がある。
[Technical background of the invention and its problems 1 Shape memory alloys have been developed in recent years as they are expected to have great applications in industrial, dental, and medical applications.
A typical example is a nickel-titanium alloy.

従来このニッケル−チタン系合金の線材は高周波誘導溶
解(VIM>または真空アーク再溶解(MAR)によっ
て溶解させた溶融金属を鋳造し、鍛造および熱間圧延し
た後、熱間スェージング加工を行ない、次いで冷間引ぎ
扱さ加工と焼鈍を繰返すことによって製造していた。
Conventionally, this nickel-titanium alloy wire rod is produced by casting molten metal by high-frequency induction melting (VIM) or vacuum arc remelting (MAR), forging and hot rolling, and then hot swaging. It was manufactured by repeating cold drawing, processing and annealing.

しかしながら原材料のニッケルおよびチタンはその比重
および融点が互いに大きく異なっているので、上記のよ
うな従来の方法では溶融金属が鋳型の中で均一に混合し
たインゴットを形成させるためには種々の制約があった
。すなわち、加工の経済性を高めるためにインゴットの
単位型f+1を大きくしようとすると各金属成分の組成
の均一性がnわれ、またインゴットのアスペクト比も2
.5〜3.3が限界で、それ以上になるとインゴットの
端部付近で金属成分の組成が不均一になるという問題が
あった。
However, since the specific gravity and melting point of the raw materials nickel and titanium are significantly different from each other, the conventional methods described above have various restrictions in order to form an ingot in which the molten metal is uniformly mixed in the mold. Ta. In other words, if we try to increase the unit size f+1 of the ingot in order to improve the economic efficiency of processing, the uniformity of the composition of each metal component will decrease, and the aspect ratio of the ingot will also decrease to 2.
.. 5 to 3.3 is the limit, and if it exceeds that, there is a problem that the composition of the metal component becomes non-uniform near the ends of the ingot.

特に変態開始温度(Ms点〉が45℃以下となるような
ニッケル成分が全体の55.5%以上を占めるニッケル
−チタン系合金の場合は鍛造が困難なため加工に手間ど
り、そのために製造コストが高くつく結果となっていた
In particular, in the case of nickel-titanium alloys that have a transformation start temperature (Ms point) of 45°C or lower and in which the nickel component accounts for 55.5% or more of the total, forging is difficult and processing is time-consuming, resulting in manufacturing costs. This resulted in high costs.

[発明の目的1 本発明は以上のような従来の問題点を解決するためにな
されたもので製造工程が簡略化され、しかも組成が均一
なニッケル−チタン系合金線材の製造方法を提供するこ
とを目的とする。
[Objective of the Invention 1] The present invention was made in order to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a method for manufacturing a nickel-titanium alloy wire rod that simplifies the manufacturing process and has a uniform composition. With the goal.

(発明の概要] すなわち本発明のニッケル−チタン系合金線材の製造方
法は、電子ビーム溶解または電子ビーム−プラズマ溶解
した溶融金属を水冷モールド引下げ法によって長尺のイ
ンゴットとし、次いで熱間伸線加工を施こすことを特徴
とする。
(Summary of the Invention) That is, the method for producing a nickel-titanium alloy wire rod of the present invention involves forming a molten metal by electron beam melting or electron beam plasma melting into a long ingot by a water-cooled mold drawing method, and then hot wire drawing. It is characterized by applying.

本発明方法によれば金属原料を電子ビーム溶解または電
子ビーム−プラズマ溶解させ、これを水冷モールド引下
げ法でインゴットを形成させるのでアスペクト比(イン
ゴットの長さ/インゴットの直径の比)が4以上、通常
4〜15のものが得られ、インゴット径も80mm以下
、通常30〜80mmのちのが19られる。
According to the method of the present invention, the metal raw material is melted with an electron beam or electron beam-plasma, and an ingot is formed using a water-cooled mold drawing method, so that the aspect ratio (ratio of ingot length/ingot diameter) is 4 or more. Usually 4 to 15 ingots are obtained, and the ingot diameter is 80 mm or less, usually 30 to 80 mm, and 19 ingots are obtained.

また熱間伸線加工は、インボッ1−を必要に応じて鋳肌
修正した後、ただちに直接圧延を繰返し、熱間スェージ
ング加工及び引き抜き加工を施こす。
In addition, in the hot wire drawing process, after the casting surface of the ingot 1- is corrected as necessary, direct rolling is repeated, and hot swaging and drawing are performed.

引き扱き加工においては最終仕上り寸法の数十%加工前
までは熱〜温間引き抜きを行ない、必要に応じ最終的に
冷間引き抜ぎで直径がたとえば0.3m1lIの線材と
する。
In the handling process, hot to warm drawing is performed until several tens of percent of the final finished size is processed, and if necessary, the wire is finally cold drawn to form a wire having a diameter of, for example, 0.3 ml.

さらに熱間伸線加工の途中、望ましくは直径3〜8mm
の線材の段階で突合せ溶接し、溶融金属を除去(パリ取
り)すれば長尺加工ができるので取扱いが容易になると
共に紅済性にも優れているので好ましい。
Furthermore, during the hot wire drawing process, preferably a diameter of 3 to 8 mm.
It is preferable to butt weld the wire at the wire stage and remove the molten metal (deburring) so that it can be processed into a long length, making it easier to handle and having excellent redness.

[発明の実施例] 次に本発明を実施例によって説明する。[Embodiments of the invention] Next, the present invention will be explained by examples.

実施例 N i 55.5wt%、Ti 44.5wt%よりな
る金属原料を電子ビーム溶解及び水冷モールド引下げ法
によって直径50mm、長さ650mmのインゴットと
した。
Example A metal raw material consisting of 55.5 wt% Ni and 44.5 wt% Ti was made into an ingot with a diameter of 50 mm and a length of 650 mm by electron beam melting and water-cooled mold pulling method.

次いで!!1111を若干修正後、ただちに 700〜
800℃で直接圧延して直径8+nmの線材とし、次い
で700〜750℃で熱間スェージング加工を施した。
Next! ! After slightly modifying 1111, it immediately became 700~
It was directly rolled at 800°C to obtain a wire rod with a diameter of 8+ nm, and then hot swaged at 700-750°C.

途中、直径6mmの時にこの線材を3本つなげて、それ
ぞれの接点を1000△/ w+iの条件で突合せ接合
した後、パリ取りを行なった。さらに直径z1mmとな
るまで熱間スェージング加工をした後、400〜500
℃で温間引き抜きをして直径1mmとし、最終的に冷間
引き抜きを行なって直径0.3mmの線材とした。上記
工程中の減面率は熱間スェージング加工では約25%、
温間引き抜き加工では約20〜30%であった。
In the middle, three of these wires were connected when the diameter was 6 mm, and the respective contacts were butt-joined under the condition of 1000Δ/w+i, and then deburred. After further hot swaging processing until the diameter becomes 1 mm, 400 to 500
Warm drawing was performed at 0.degree. C. to obtain a wire rod with a diameter of 1 mm, and finally cold drawing was performed to obtain a wire rod with a diameter of 0.3 mm. The area reduction rate during the above process is approximately 25% in hot swaging processing.
In warm drawing, it was about 20-30%.

一方、比較例として下記のような従来の方法を用いてニ
ッケル−チタン系合金線材を製造した。
On the other hand, as a comparative example, a nickel-titanium alloy wire was manufactured using the following conventional method.

実施例と同様の金属原料を高周波誘導溶解し、鋳型に流
し込んで直径100mm、良さ330mmのインゴット
とした。このインゴットを皮むき加工(表面酸化物除去
)した後、熱間鍛造して直径80mmの丸棒とし、次い
で熱間圧延および熱間スェージング加工して直径4mm
の線材とした。次いで冷間引き扱き加工および焼鈍を繰
り返して最終的に直径0.5mmの線材とした。なおこ
の冷間引き抜き加工における減面率は約20%であった
The same metal raw material as in the example was melted by high frequency induction and poured into a mold to form an ingot with a diameter of 100 mm and a thickness of 330 mm. After peeling this ingot (removing surface oxides), it was hot forged into a round bar with a diameter of 80 mm, and then hot rolled and hot swaged to a diameter of 4 mm.
It was made into a wire rod. Next, cold drawing and annealing were repeated to finally obtain a wire rod with a diameter of 0.5 mm. Note that the area reduction rate in this cold drawing process was about 20%.

以上の方払で得られるニッケル−チタン系合金の線材の
製造用ft1jを基準として本発明方法による場合を比
較すると、従来法が100に対し、本発明方法では38
に低減した。
Comparing the method of the present invention based on the ft1j for manufacturing nickel-titanium alloy wire obtained by the above method, it is found that the conventional method has 100, while the method of the present invention has ft1j of 38.
It was reduced to

[発明の効果] 以上説明したように本発明方法によれば組成が均一でし
かもアスペクト比が大きなインゴットを得ることができ
るので以後の伸線加工が容易となる。また鋳肌も良好な
ので切削加工もほとんど必要としない。更に熱間加工途
中で突合せ接合することにより長尺加工できるので取扱
いが容易となると共に、引き抜き加工工程に35いては
従来の方法に比べて加工回数が低減する。以上のような
種々の利点を有するため、従来よりも廉価で優れたニツ
ケルーヂタン系合金線材を製造することが可能である。
[Effects of the Invention] As explained above, according to the method of the present invention, an ingot having a uniform composition and a large aspect ratio can be obtained, thereby facilitating the subsequent wire drawing process. Also, since the casting surface is good, there is almost no need for cutting. Furthermore, by butt-joining during hot processing, long lengths can be processed, making handling easier and reducing the number of drawing steps compared to conventional methods. Because of the various advantages described above, it is possible to produce a nickel-roditane alloy wire rod that is cheaper and more excellent than conventional ones.

Claims (4)

【特許請求の範囲】[Claims] (1)電子ビーム溶解または電子ビーム−プラズマ溶解
した溶融金属を水冷モールド引下げ法によつて長尺のイ
ンゴットとし、次いで熱間伸線加工を施こすことを特徴
とするニッケル−チタン系合金線材の製造方法。
(1) Electron beam melting or electron beam-plasma melted molten metal is made into a long ingot by a water-cooled mold drawing method, and then hot wire drawing is performed to produce a nickel-titanium alloy wire rod. Production method.
(2)インゴットのアスペクト比が4以上である特許請
求の範囲第1項記載のニッケル−チタン系合金線材の製
造方法。
(2) The method for producing a nickel-titanium alloy wire according to claim 1, wherein the ingot has an aspect ratio of 4 or more.
(3)ニッケル−チタン系合金線材は変態開始温度が4
5℃以下である特許請求の範囲第1項記載のニッケル−
チタン系合金線材の製造方法。
(3) Nickel-titanium alloy wire has a transformation start temperature of 4
The nickel according to claim 1, which has a temperature of 5°C or less.
A method for manufacturing titanium alloy wire.
(4)熱間伸線加工は突合せ接合の工程を含む特許請求
の範囲第1項記載のニッケル−チタン系合金線材の製造
方法。
(4) The method for manufacturing a nickel-titanium alloy wire according to claim 1, wherein the hot wire drawing process includes a step of butt joining.
JP19288285A 1985-08-31 1985-08-31 Production of nickel-titanium alloy wire Pending JPS6254565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19288285A JPS6254565A (en) 1985-08-31 1985-08-31 Production of nickel-titanium alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19288285A JPS6254565A (en) 1985-08-31 1985-08-31 Production of nickel-titanium alloy wire

Publications (1)

Publication Number Publication Date
JPS6254565A true JPS6254565A (en) 1987-03-10

Family

ID=16298545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19288285A Pending JPS6254565A (en) 1985-08-31 1985-08-31 Production of nickel-titanium alloy wire

Country Status (1)

Country Link
JP (1) JPS6254565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502823C1 (en) * 2012-04-12 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Manufacturing method of thin titanium nickelide wire
CN111346942A (en) * 2020-03-12 2020-06-30 西安华创新材料有限公司 Method for processing nickel-titanium shape memory alloy high-strength wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502823C1 (en) * 2012-04-12 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Manufacturing method of thin titanium nickelide wire
CN111346942A (en) * 2020-03-12 2020-06-30 西安华创新材料有限公司 Method for processing nickel-titanium shape memory alloy high-strength wire

Similar Documents

Publication Publication Date Title
RU2729569C2 (en) Materials with a body-centered cubic arrangement based on titanium, aluminum, vanadium and iron and articles made therefrom
US4844746A (en) Method of producing a tantalum stock material of high ductility
JP2015054332A (en) FORGING METHOD OF Ni-BASED HEAT RESISTANT ALLOY
CN117102491A (en) Processing method for improving plasticity of large-size GH4099 parts
JPS6254565A (en) Production of nickel-titanium alloy wire
JPS6333563A (en) Production of pt-ni alloy for sputtering
JPH06103809A (en) Manufacture of cu-ag alloy wire
JP2012525497A (en) Manufacturing method of titanium extension parts
JPH0135068B2 (en)
JP2010275629A (en) alpha+beta TYPE TITANIUM ALLOY, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING TITANIUM ALLOY MATERIAL
JPH06248402A (en) Production of member made of magnesium alloy
JPH04235261A (en) Manufacture of co-base alloy stock
CN113290178B (en) Cogging forging method for high-Nb-content Ti-Nb alloy ingot
JP2000144273A (en) Consumable electrode type re-melting method for super heat resistant alloy
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF >=3 mm
RU2694098C1 (en) Method of producing semi-finished products from high-strength nickel alloys
CN116765678A (en) Short-process processing method of high-performance titanium alloy welding wire
JPS59183906A (en) Method for rolling ti-base alloy
JPS59185766A (en) Manufacture of superelastic ni-ti alloy
JPH03229844A (en) Manufacture of ni-ti series shape memory alloy stock
JP2593877B2 (en) Carbide precipitation hardening type Co-based alloy welding wire and method for producing the same
JPS6362854A (en) Production of processed product of corrosion and oxidation resistant ni-al-si-b alloy
JPH0693398A (en) Production of cu-ag alloy wire
CN117845081A (en) Method for reducing W, mo reinforced high-temperature alloy end forging cracking
JPH05345965A (en) Method for hydrogen treatment of titanium alloy