JPS62541A - Aqueous dispersion composition - Google Patents

Aqueous dispersion composition

Info

Publication number
JPS62541A
JPS62541A JP14137785A JP14137785A JPS62541A JP S62541 A JPS62541 A JP S62541A JP 14137785 A JP14137785 A JP 14137785A JP 14137785 A JP14137785 A JP 14137785A JP S62541 A JPS62541 A JP S62541A
Authority
JP
Japan
Prior art keywords
copolymer
coating
particle size
latex
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14137785A
Other languages
Japanese (ja)
Other versions
JPH0125506B2 (en
Inventor
Tetsuo Shimizu
哲男 清水
Masabumi Akamatsu
赤松 正文
Kazutaka Hosokawa
和孝 細川
Seisuke Suzue
鈴江 晴介
Takeshi Suzuki
武 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP14137785A priority Critical patent/JPS62541A/en
Priority to EP19860103004 priority patent/EP0193963B1/en
Priority to DE8686103004T priority patent/DE3682086D1/en
Publication of JPS62541A publication Critical patent/JPS62541A/en
Publication of JPH0125506B2 publication Critical patent/JPH0125506B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable thick coating to be carried out and to smooth the surface of coating film, by using an aq. dispersion compsn. having specified physical properties comprising a copolymer of tetrafluoroethylene with a specified fluorovinyl ether. CONSTITUTION:A copolymer of tetrafluoroethylene with a fluorovinyl ether of the formula (wherein X is H, F; n is 0-7; m is 0-3), which has a fluorovinyl ether content of 1-10wt% is used. The title aq. dispersion compsn. contains said colloided copolymer particles having an average particle size of 0.3-1mum and a specified melt viscosity of 0.3-10.0X10<4> P as main component and is stabilized by an anionic or noninic surfactant. Pref. the copolymer is used in a quantity of 20-65% by weight based on that of the compsn.

Description

【発明の詳細な説明】 本発明は、水性分散液組成物に関し、更に詳しくはテト
ラフルオルエチレン/フルオルビニルエーテル共重合体
水性分散液組成物、特に基材にコーティングすることで
非粘着性を付与するのに適した組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aqueous dispersion composition, and more particularly to an aqueous dispersion composition of a tetrafluoroethylene/fluorovinyl ether copolymer, in particular a method for coating a substrate with a non-stick property. Compositions suitable for application.

種々の用途のために、金属、セラミックス、耐熱性ゴム
などの表面にフルオルカーボン重合体をコーティングす
ることは公知であり、ポリテトラフルオルエチレン(P
 T F E)やテトラフルオルエチレン/ヘキサフル
オルプロペン共重合体(FEP)、テトラフルオルエチ
レン/パーフルオルアルキルビニルエーテル共重合体(
P F A)などが、非粘着性、耐熱性、耐薬品性、低
摩擦係数などの特性を利用して使われている。
It is known to coat the surfaces of metals, ceramics, heat-resistant rubber, etc. with fluorocarbon polymers for various applications, and polytetrafluoroethylene (P
T F E), tetrafluoroethylene/hexafluoropropene copolymer (FEP), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (
PFA) etc. are used to take advantage of their properties such as non-adhesiveness, heat resistance, chemical resistance, and low coefficient of friction.

PTFEやFEPは、水性分散液組成物として市販され
ており、噴霧または浸漬含浸によってコーティング塗装
される。また、FEPやPFAは静電粉体塗装に用いる
ため、5〜150μmの粉末として市販されている。
PTFE and FEP are commercially available as aqueous dispersion compositions, and are coated by spraying or dipping. Moreover, FEP and PFA are used in electrostatic powder coating, and are therefore commercially available as powders of 5 to 150 μm.

静電粉体塗装の実施態様としては、たとえば特開昭55
−31494号、特開昭58−24174号にみられる
ように、複写機などのロールに塗装されたものがある。
Examples of implementations of electrostatic powder coating include, for example, JP-A-55
As shown in No. 31494 and Japanese Patent Laid-open No. 58-24174, rolls of copying machines and the like are coated.

他方、PTFESFEPSPFAのいずれも水性分散体
としての調製が可能であって、PTPE水性分散体にF
EPまたはPFAの水性分散体を混合して塗装用に用い
る例も知られている。(たとえば特公昭52−2153
1号、米国特許第4゜252.859号参照)。ところ
がPFA水性分散体を単独で塗装用途に使った例はほと
んど知られていない。
On the other hand, any of the PTFESFEPSPFAs can be prepared as an aqueous dispersion;
Examples of mixing an aqueous dispersion of EP or PFA and using it for coating are also known. (For example, Tokuko Sho 52-2153
No. 1, U.S. Pat. No. 4,252,859). However, there are almost no known examples of using a PFA aqueous dispersion alone for coating purposes.

PFA水性分散体は、たとえば特公昭48−20788
号にような方法によって調製される。この特許の方法に
従って調製された水性分散体は、通常、ポリマーを分離
してペレットや粉末の形にしたのち、溶融加工に供され
るが、後記の比較例1〜3で示すように、これを水性分
散液組成物にして塗装加工を行った場合、極めて薄い膜
厚にしか塗装できず、厚く塗るといわゆるマッドクラッ
クが生じる。また、塗膜の表面も粗い。
PFA aqueous dispersion is disclosed in Japanese Patent Publication No. 48-20788, for example.
It is prepared by the method described in No. The aqueous dispersion prepared according to the method of this patent is usually subjected to melt processing after separating the polymer into pellets or powder, but as shown in Comparative Examples 1 to 3 below, When coating is performed using an aqueous dispersion composition, it is possible to coat only an extremely thin film, and if the film is coated thickly, so-called mud cracks occur. Moreover, the surface of the coating film is also rough.

本発明は、この上うなPFA水性分散体の持つ欠点を改
良しようとするもので、その要旨は一般式: %式% (式中、XはHまたはF、nはO〜7の数、mは0〜3
の数である。) で表わされるフルオルビニルエーテルとテトラフルオル
エチレンとの共重合体であって、フルオルビニルエーテ
ル含量が1−10重量%であり、比溶融粘度が0.3x
lO’〜10.Ox I O’ボイズ、平均粒径が0.
3〜1μmのコロイド状共重合体粒子を主成分として含
み、アニオン性またはノニオン性界面活性剤で安定化さ
れた共重合体樹脂水性分散液組成物に存する。
The present invention aims to improve the above drawbacks of the PFA aqueous dispersion, and its gist is the general formula: % formula % (wherein, X is H or F, n is the number of O to 7, m is 0-3
is the number of ) A copolymer of fluorovinyl ether and tetrafluoroethylene represented by
lO'~10. Ox I O' voids, average particle size 0.
An aqueous copolymer resin dispersion composition containing colloidal copolymer particles of 3 to 1 μm as a main component and stabilized with an anionic or nonionic surfactant.

本発明の組成物は、コロイド状のテトラフルオルエチレ
ン/フルオルビニルエーテル共重合体水性分散体から成
り、厚塗りの塗装加工が可能で、塗膜表面が滑らかなも
のが得られる。用途は特に非粘着を目的とした加工に適
している。たとえば、複写機の定着ロール、食品加工用
のロール、トレー、調理器具などがある。
The composition of the present invention is composed of a colloidal aqueous dispersion of tetrafluoroethylene/fluorovinyl ether copolymer, and can be applied in thick coatings, resulting in a smooth coating surface. It is especially suitable for non-adhesive processing. Examples include fuser rolls for copying machines, rolls for food processing, trays, and cooking utensils.

本発明の要件であるコロイド状共重合体粒子は、その平
均粒径が0.3〜1μmであり、かつ比溶融粘度(MV
)が0.3〜10.0X10’ボイズの特性を有する。
The colloidal copolymer particles, which are a requirement of the present invention, have an average particle size of 0.3 to 1 μm and a specific melt viscosity (MV
) has a characteristic of 0.3 to 10.0×10′ voids.

これらの特性によってのみ本発明の目的が達せられる。Only with these characteristics can the objectives of the invention be achieved.

本発明の組成物は、厚塗り加工性および塗膜の平滑性に
特徴を有するが、本発明の共重合体粒子もPFAとして
は、従来になく大きいもので、これが特定のMVを有す
ることによって、より優れた厚塗り加工性と塗膜平滑性
が実現される。
The composition of the present invention is characterized by thick coating processability and smoothness of the coating film, but the copolymer particles of the present invention are also larger than ever before as PFA, and this has a specific MV. , better thick coating processability and coating film smoothness are achieved.

本発明の組成物による塗装では、1回の塗装で少くとも
25μm以上(通常、35μm以上)の厚さの塗膜が形
成可能である。また、表面粗度も0.5μm以下と小さ
い。通常、市販されているPTFEやFEPの水性分散
液組成物ではlO〜20μm程度の塗膜しか得られない
のが実状である。この上うな膜厚では、たとえば複写機
の定着ロールへの加工の場合、必要な膜厚と塗装後の表
面研摩分を合わせた厚みまで塗装する必要があるが、通
常、25μm以上必要とされる膜厚には不充分なもので
しかない。他方、FEPやPFAの粉体を用いた静電塗
装では100μmを超える厚さに塗装される。しかし、
これでは、逆に厚すぎるため、削り分(原料のロスとな
る)が多くなり、不経済かつ工数を多く要する。
When coating with the composition of the present invention, a coating film with a thickness of at least 25 μm or more (usually 35 μm or more) can be formed in one coating. Furthermore, the surface roughness is as small as 0.5 μm or less. The reality is that commercially available aqueous dispersion compositions of PTFE and FEP can only provide a coating film with a thickness of about 10 to 20 μm. With such a film thickness, for example, when processing a fuser roll for a copying machine, it is necessary to coat the film to a thickness that is the sum of the necessary film thickness and the amount of surface polishing after painting, but usually 25 μm or more is required. The film thickness is just insufficient. On the other hand, electrostatic coating using FEP or PFA powder results in a coating thickness exceeding 100 μm. but,
On the contrary, this is too thick, resulting in a large amount of cutting (resulting in loss of raw materials), which is uneconomical and requires a large number of man-hours.

本発明の組成物による塗膜のように表面粗度が小さいと
、しばしば表面研摩なしで実用に供することが可能であ
る。本発明者は粒径とMVの両物性を詳細に検討した結
果、MVについて0.3〜10、OX I O’ボイズ
(好ましくは0.4〜5.0xto’ボイズ)、平均粒
径が0.3〜1μm(好ましくは05〜0.8μm)が
上記目的に最も好適であることを見い出し、本発明を完
成するに至った。
When the surface roughness of the coating film formed by the composition of the present invention is small, it is often possible to put it into practical use without surface polishing. As a result of a detailed study of the physical properties of both particle size and MV, the inventor found that the MV is 0.3 to 10, OX I O' voids (preferably 0.4 to 5.0 xto' voids), and the average particle diameter is 0. The present inventors have found that a thickness of 0.3 to 1 μm (preferably 05 to 0.8 μm) is most suitable for the above purpose, and have completed the present invention.

MVについては、上記範囲より高すぎると、粒径が大き
くても表面粗度が大きく、また、マッドクラックが入り
やすい。この場合も、結局、多く削り取らなければなら
ず、不経済性が問題となり、また、必要膜厚さえも得ら
れなくなる。勿論、上記範囲より低すぎては機械的強度
が小さくなり脆くなる。本発明のコロイド状分散粒子は
通常知られるものよりかなり大きいため、組成物の粘度
を高めて沈降しにくくする必要がある。また、一旦沈降
しても再分散しやすい性質を与えなければならない。そ
のため、組成物にはアニオン性またはノニオン性界面活
性剤またはその混合物が加えられる。
Regarding MV, if it is too high than the above range, the surface roughness will be large even if the particle size is large, and mud cracks will be likely to occur. In this case as well, a large amount of the film must be removed, resulting in uneconomical problems, and the required film thickness cannot be obtained. Of course, if it is too low than the above range, the mechanical strength will be low and it will become brittle. Since the colloidally dispersed particles of the present invention are much larger than those commonly known, it is necessary to increase the viscosity of the composition to make it difficult to settle. Furthermore, it must have the property of being easy to redisperse even if it settles once. Therefore, anionic or nonionic surfactants or mixtures thereof are added to the composition.

ノニオン性界面活性剤の種類としては、典型的には、親
水性部分となるエチレンオキシドと、疎水性部分として
のプロピレンオキシド、飽和および不飽和脂肪族アルコ
ール類、アルキルフェノール類のような化合物との反応
生成物である。たとえば、次式のようなオキシエチレン
、オキノブロビレンブロソク共重合体、 1−10(CtH40)a−(C3t(80)b−(C
2I−1,0)CH(分子fftlooo 〜4000
. l 8≦a+b+c≦85)や、4〜20)などが
好適である。アニオン性界面活性剤としては、ジアルキ
ルスルホコハク酸塩、ドデシルベンゼンスルポン酸塩、
脂肪酸石けんなどが使用可能である。この他、組成物の
粘度を高めるためにアルギン酸ソーダのような水溶性高
分子や無機塩を加えてもよい。また、造膜性をさらに向
上させるために、水不溶の有機溶剤、たとえばベンゼン
、トルエン、キシレンなどを分散乳化させることも可能
である。
Nonionic surfactants are typically produced by the reaction between ethylene oxide as a hydrophilic part and compounds such as propylene oxide, saturated and unsaturated aliphatic alcohols, and alkylphenols as hydrophobic parts. It is a thing. For example, oxyethylene, oxinobrobylene broth copolymer, 1-10(CtH40)a-(C3t(80)b-(C
2I-1,0)CH(moleculefftloooo ~4000
.. l8≦a+b+c≦85), 4 to 20), etc. are suitable. Examples of anionic surfactants include dialkyl sulfosuccinate, dodecylbenzenesulfonate,
Fatty acid soap etc. can be used. In addition, a water-soluble polymer such as sodium alginate or an inorganic salt may be added to increase the viscosity of the composition. Furthermore, in order to further improve film-forming properties, it is also possible to disperse and emulsify a water-insoluble organic solvent such as benzene, toluene, xylene, etc.

安定剤として用いられるノニオン性またはアニオン性界
面活性剤は、樹脂重量を基準にして3〜20重量%、好
ましくは4〜10重量%が適当である。多すぎる安定剤
は焼結時に揮発しにくく塗膜性能が低下する。また、多
すぎる安定剤と過剰な増粘剤は塗装加工そのものが困難
になる。通常、本発明の組成物の粘度は、25°Cにお
いて50〜1000センチボイズ、好ましぐは100〜
400センチボイズに調整されるのが好ましい。
The amount of nonionic or anionic surfactant used as a stabilizer is suitably 3 to 20% by weight, preferably 4 to 10% by weight, based on the weight of the resin. If there is too much stabilizer, it will be difficult to volatilize during sintering and the coating performance will deteriorate. Furthermore, too much stabilizer and excessive thickener will make the painting process itself difficult. Typically, the viscosity of the compositions of the present invention will be between 50 and 1000 centivoise at 25°C, preferably between 100 and 1000 centivoise.
Preferably, it is adjusted to 400 centivoise.

また、組成物中の共重合体樹脂金型は、組成物の全重量
を基準にして20〜65%が好適である。
Further, the amount of the copolymer resin mold in the composition is preferably 20 to 65% based on the total weight of the composition.

本発明の組成物は、まず、水性媒体中でテトラフルオル
エチレンと XCF2(CF、)n(OCRCF、1oOF=cF*
CF3 (式中、nおよびmは前記と同意義。)とを共存させ、
乳化重合を行い、ついで得られたラテックスを濃縮し、
所定の界面活性剤を加えて安定化し、場合によってはさ
らに増粘剤を加えて製造することができる。
The composition of the present invention is first prepared by combining tetrafluoroethylene and XCF2(CF,)n(OCRCF, 1oOF=cF*
CF3 (in the formula, n and m have the same meanings as above),
Perform emulsion polymerization, then concentrate the obtained latex,
It is stabilized by adding a predetermined surfactant, and can be manufactured by further adding a thickener depending on the case.

本発明における乳化共重合では、いわゆる種型合法が採
用され、種の量をかえることによって最終粒径を制御す
るのが特徴である。また、MVは連鎖移動剤の量や開始
剤量、反応温度などによって制御しうる。連鎖移動剤は
水素を含み、反応条件下で実質上液状で存在する有機化
合物、たとえばメタノール、エタノール、ノクロロメタ
ン、トリクロロメタン、テトラクロロメタンが使用可能
であり、開始剤は水溶性打機過酸化物や過硫酸塩が好適
である。
In the emulsion copolymerization of the present invention, a so-called seed type method is adopted, and the final particle size is controlled by changing the amount of seeds. Moreover, MV can be controlled by the amount of chain transfer agent, the amount of initiator, reaction temperature, etc. The chain transfer agent can be an organic compound containing hydrogen and present in a substantially liquid state under the reaction conditions, such as methanol, ethanol, nochloromethane, trichloromethane, tetrachloromethane, and the initiator can be a water-soluble peroxide. and persulfates are preferred.

以下、実施例によって本発明の具体的態様を示す。Hereinafter, specific embodiments of the present invention will be illustrated by Examples.

実施例1 まず、種重合に使用する種ラテツクスを(1)の方法で
合成する(これは別に比較例1として組成物の塗装評価
を行う)。 そのあと、(2)の方法により種重合を行
う。
Example 1 First, a seed latex to be used for seed polymerization was synthesized by the method (1) (separately, a coating evaluation of the composition was performed as Comparative Example 1). Thereafter, seed polymerization is performed by the method (2).

(1)温調ジャケットとアンカー買付き撹拌機を備えた
内容積6Qのステンレス製オートクレーブに脱イオン水
2.9Qと分散安定剤としてのl・リクロルトリフルオ
ルエタン400g、パーフルオルオクタン酸アンモニウ
ム9 、0 g、連鎖移動剤として試薬特級メタノール
を2mgを仕込み、脱酸素のための槽内を窒素ガスで2
回、TFEガスで2回置換し、続けてパーフルオル(プ
ロピルビニルエーテルXPPVE)を70g仕込む。撹
拌しながら65℃まで昇温し、TFEガスで槽内の圧力
が9 、2 kgf/cm”になるまで圧入する。そし
て、過硫酸アンモニウム(A’PS)4.2gを含む水
溶液100mgを添加し反応を開始する。反応中は槽内
の圧力が9 、2 kgf/ cm”を保つようにTF
Eガスを送りつづけ、反応温度は65±l℃に保たれる
(1) In a stainless steel autoclave with an internal volume of 6Q equipped with a temperature control jacket and an anchor stirrer, 2.9Q of deionized water, 400g of l-lichlorotrifluoroethane as a dispersion stabilizer, and ammonium perfluorooctanoate. 9,0 g, 2 mg of reagent grade methanol as a chain transfer agent, and the inside of the tank for deoxidation was flushed with nitrogen gas for 2 hours.
The tank was replaced twice with TFE gas, and then 70 g of perfluor (propyl vinyl ether XPPVE) was charged. The temperature was raised to 65°C while stirring, and TFE gas was injected until the pressure inside the tank reached 9.2 kgf/cm. Then, 100 mg of an aqueous solution containing 4.2 g of ammonium persulfate (A'PS) was added. Start the reaction.During the reaction, keep the pressure in the tank at 9.2 kgf/cm.
The reaction temperature is maintained at 65±1° C. by continuing to feed E gas.

4.7時間後撹拌を止め、オートクレーブを室温まで冷
却し、ガスを放出して大気圧まで戻す。
After 4.7 hours, stirring is stopped and the autoclave is cooled to room temperature and vented to atmospheric pressure.

得られたラテックス中の共重合体濃度は20.6重量%
、共重合体平均粒子径は0.18μm、共重合体中のP
PVE含量は3.2重量%、共重合体のMVは1.0X
lO’ボイズであった。
The copolymer concentration in the obtained latex was 20.6% by weight.
, copolymer average particle diameter is 0.18 μm, P in copolymer
PVE content is 3.2% by weight, MV of copolymer is 1.0X
It was lO'boys.

(2)  (1)と同じオートクレーブに同量の脱イオ
ン水、トリクロルトリフルオルエタン、パーフルオルオ
クタン酸アンモニウムを仕込んだ後、第1表記載量(l
1mg)の試薬特級メタノールと、(夏)で合成したラ
テックスを第1表記載量(250g)仕込み、脱酸素の
あと、PPVEを70g仕込む。
(2) After charging the same amount of deionized water, trichlorotrifluoroethane, and ammonium perfluorooctanoate into the same autoclave as in (1), add the amounts listed in Table 1 (l).
1 mg) of reagent grade methanol and the amount (250 g) of the latex synthesized in (Summer) as listed in Table 1 are charged, and after deoxidation, 70 g of PPVE is charged.

その後、(1)と全く同様にAPSを4,2g添加し反
応を行う。反応温度、反応圧力も同じである。
Thereafter, 4.2 g of APS is added and the reaction is carried out in exactly the same manner as in (1). The reaction temperature and reaction pressure are also the same.

反応時間、ラテックスの性質などは第1表記載の通りで
ある。
The reaction time, latex properties, etc. are as shown in Table 1.

次に、(2)で得られた生のラテックスは反応終了後、
有機相(トリクロルトリフルオルエタンと未反応のPP
VE)を分離して別容器に移し、ポリオキシエチレンオ
クチルフェノールエーテル(日本油脂(株)製ノニオン
H8−208)を20重量%含む非イオン性界面活性剤
水溶液を生うテックスlQ当り30g混合する。混合液
は30±l℃に保ち静置する。約20時間静置後、濃縮
ラテックス層と上澄層に分離した混合液の上澄み層を除
去し、共重合体濃度60%以上のラテックスを得る。こ
の濃縮ラテックスをさらに安定化させるため、水とノニ
オンH9208を追加し、共重合体濃度50重量%、非
イオン性界面活性剤5重量%(ポリマー重量に対して)
になるように調整する。
Next, after the reaction, the raw latex obtained in (2) is
Organic phase (trichlorotrifluoroethane and unreacted PP)
VE) is separated and transferred to a separate container, and 30 g of a nonionic surfactant aqueous solution containing 20% by weight of polyoxyethylene octylphenol ether (Nonion H8-208, manufactured by NOF Corporation) is mixed per 1Q of Tex produced. The mixture is kept at 30±1°C and allowed to stand still. After standing still for about 20 hours, the supernatant layer of the mixed liquid separated into a concentrated latex layer and a supernatant layer is removed to obtain a latex with a copolymer concentration of 60% or more. To further stabilize this concentrated latex, water and nonionic H9208 were added, copolymer concentration 50% by weight, nonionic surfactant 5% by weight (based on polymer weight).
Adjust so that

調整した組成物は、後述の塗装と塗膜の評価を行う。ま
た、重合終了直後のラテックスの一部は蒸発乾固して、
アセトン洗浄し、乾燥して粉末にする。この粉末でMV
を測定し、また、350℃で15分間ヒートプレスして
厚み約0.05mmのフィルムを作成し、赤外分光法に
より共重合体中のパーフルオル(プロピルビニルエーテ
ル)含量を定量する。
The prepared composition is subjected to coating and coating evaluation as described below. In addition, a portion of the latex immediately after polymerization is evaporated to dryness,
Wash with acetone, dry and powder. MV with this powder
A film with a thickness of about 0.05 mm is prepared by heat pressing at 350° C. for 15 minutes, and the perfluor(propyl vinyl ether) content in the copolymer is determined by infrared spectroscopy.

本実施例のクラック限界厚みは26〜30μmであり、
表面粗度は0.40μmであった。これに対し比較例1
では限界厚みも小さく、表面粗度も粗い(大きい)もの
であった。粒径の効果が顕著である。
The crack limit thickness of this example is 26 to 30 μm,
The surface roughness was 0.40 μm. On the other hand, comparative example 1
The critical thickness was small and the surface roughness was rough (large). The effect of particle size is significant.

実施例2〜5 実施例2では、実施例1で使用したのと同じ種ラテツク
スを使って種重合を行った。実施例3〜5は実施例1で
得られた生のラテックスの一部を種として種重合を行っ
た(従って、結果として種重合を2回行ったことになる
)。使用したメタノール量、過硫酸アンモニウムの量は
第1表記載のとおりであり、第1表記載以外の条件は、
すべて実施例1と同様である。第2表記載のとおりいず
れも優れた塗膜物性を有していた。
Examples 2-5 In Example 2, the same seed latex used in Example 1 was used to carry out seed polymerization. In Examples 3 to 5, seed polymerization was performed using part of the raw latex obtained in Example 1 as a seed (therefore, as a result, seed polymerization was performed twice). The amount of methanol and ammonium persulfate used are as listed in Table 1, and conditions other than those listed in Table 1 are as follows.
Everything is the same as in Example 1. As shown in Table 2, all had excellent coating film properties.

実施例6 実施例1の工程(1)で生成したラテックスを種として
用い、PPVEの仕込み量を150gとする以外は実施
例1の工程(2)と同様に反応を行った。反応時間5.
1時間でポリマー濃度19.0重量%のラテックスが得
られた。得られた共重合体の平均粒径、MV、およびP
PVE含量、ならびに塗膜物性はそれぞれ表1および表
2に記載の通りである。
Example 6 A reaction was carried out in the same manner as in step (2) of Example 1, except that the latex produced in step (1) of Example 1 was used as a seed and the amount of PPVE charged was 150 g. Reaction time 5.
A latex with a polymer concentration of 19.0% by weight was obtained in 1 hour. Average particle size, MV, and P of the obtained copolymer
The PVE content and physical properties of the coating film are as shown in Table 1 and Table 2, respectively.

実施例7 実施例!の工程(1)の方法において、脱イオン水、ト
リクロルトリフルオルエタン、パーフルオルオクタン酸
アンモニウム、PPVEは同量で使用し、連鎖移動剤と
してはメタノールのがわりに試薬特級ジクロルメタン6
6gを使用した。重合温度は35℃とし、反応は過硫酸
アンモニウム4゜2gを含む水溶液50m12を添加し
た後、続いて亜硫酸ソーダ2.3gを含む水溶液50m
12を添加して開始させた。反応中は、槽内圧力を常に
9 、2 kgf/cm’に保つようにテトラフルオル
エチレンを供給し、重合温度は35±l ’Cに保った
Example 7 Example! In the method of step (1), deionized water, trichlorotrifluoroethane, ammonium perfluorooctanoate, and PPVE are used in the same amounts, and as a chain transfer agent, reagent grade dichloromethane 6 is used instead of methanol.
6g was used. The polymerization temperature was 35°C, and the reaction was carried out by adding 50 ml of an aqueous solution containing 4.2 g of ammonium persulfate, followed by 50 ml of an aqueous solution containing 2.3 g of sodium sulfite.
12 was added to start. During the reaction, tetrafluoroethylene was supplied so as to keep the internal pressure at 9.2 kgf/cm', and the polymerization temperature was maintained at 35±1'C.

9.6時間後、実施例1の工程(1)と同様に反応を終
了させると、ポリマー濃度19.0重量%、平均粒径0
.18μmのラテックスが得られ、その共重合体のMV
は3.3X10’ボイズ、PPVE含量は2.7%であ
った。
After 9.6 hours, the reaction was terminated in the same manner as in step (1) of Example 1, and the polymer concentration was 19.0% by weight and the average particle size was 0.
.. A latex of 18 μm was obtained, and the MV of the copolymer was
had 3.3×10′ voids and PPVE content of 2.7%.

さらにこのラテックス250gを種として、上記と同量
の脱イオン水、トリクロルトリフルオルエタン、バーフ
ルオルオクタン酸アンモニウム、PPVEと共に6Qオ
ートクレーブに仕込み、次いでジクロルメタン90gを
連鎖移動剤として添加し、上記と同量の過硫酸アンモニ
ムおよび亜硫酸ソーダを添加して種重合を行った。反応
圧力、反応温度とも種ラテツクスの合成と同じであった
Further, 250 g of this latex was used as a seed and charged into a 6Q autoclave with the same amount of deionized water, trichlorotrifluoroethane, ammonium barfluorooctanoate, and PPVE, and then 90 g of dichloromethane was added as a chain transfer agent, and the same amount as above was added. Seed polymerization was carried out by adding amounts of ammonium persulfate and sodium sulfite. Both the reaction pressure and reaction temperature were the same as in the synthesis of the seed latex.

14時間後、反応終了後のラテックスのポリマー濃度は
18.7%、平均粒径は0.35μmであった。共重合
体のMVは2.lX10’ボイズ、PPVE含量は3.
0重量%であった。
After 14 hours, the polymer concentration of the latex after completion of the reaction was 18.7%, and the average particle size was 0.35 μm. The MV of the copolymer is 2. lX10'bois, PPVE content is 3.
It was 0% by weight.

こうして得られた生ラテックスについて実施例1と同様
に有機層分離・濃縮・安定化・調整を行ない、塗装と塗
膜の評価を行った。クラック限界厚みは30〜35μm
、表面粗度は0.50μmであった。
The raw latex thus obtained was subjected to organic layer separation, concentration, stabilization, and adjustment in the same manner as in Example 1, and the coating and coating film were evaluated. Crack limit thickness is 30-35μm
, the surface roughness was 0.50 μm.

比較例1〜5 比較例1は実施例Iの種ラテツクスの合成物そのもので
あり、比較例2〜3は種重合を行わず、実施例1の種ラ
テツクスの製法においてメタノール量をかえてMVを変
化させたものである。
Comparative Examples 1 to 5 Comparative Example 1 is a composite of the seed latex of Example I, and Comparative Examples 2 to 3 are the same as the seed latex composition of Example I, and Comparative Examples 2 to 3 are obtained by not performing seed polymerization but by changing the amount of methanol in the method for producing the seed latex of Example 1. It has been changed.

比較例4は比較例2の生ラテックスを、比較例5は比較
例■の生ラテックスを使って第1表記載の条件で実施例
1に準じて種重合を行った。
In Comparative Example 4, the raw latex of Comparative Example 2 was used, and in Comparative Example 5, the raw latex of Comparative Example (2) was used to carry out seed polymerization under the conditions listed in Table 1 according to Example 1.

塗膜物性は第2表のとおりであるが、比較例4では粒径
が大きくてもMVが高すぎるため表面粗度が大きい。そ
して比較例5ては、クラック限界膜厚、表面粗度共に良
好であるが、この場合、MVが小さすぎるせいであると
思われるが、塗膜強度が小さく、はとんど実用性がない
The physical properties of the coating film are shown in Table 2. In Comparative Example 4, even though the particle size was large, the MV was too high and the surface roughness was large. In Comparative Example 5, the crack limit film thickness and surface roughness are both good, but in this case, the film strength is low, probably due to the MV being too small, making it almost impractical. .

比較例6 実施例7で使用した種ラテツクス(平均粒径0.18、
czm、MV3.3xlO’ポイズ、PPVE含量2.
7重量%)を実施例1と同様に有機層分離・濃縮・安定
化・調整し、塗装と塗膜評価を行った。
Comparative Example 6 The seed latex used in Example 7 (average particle size 0.18,
czm, MV3.3xlO'poise, PPVE content 2.
7% by weight) was separated, concentrated, stabilized, and adjusted in the same manner as in Example 1, and then painted and evaluated the coating film.

クラック限界厚みは20〜25μm1表面粗度は0,8
0μmであった。
Crack limit thickness is 20-25μm1 Surface roughness is 0.8
It was 0 μm.

なお、実施例2〜6および比較例1〜5は、いずれも実
施例1で述べたとおりの有機層分離・濃縮・安定化・調
整を行い、同じ条件で塗装と塗膜評価を行った。
In addition, in Examples 2 to 6 and Comparative Examples 1 to 5, the organic layer separation, concentration, stabilization, and adjustment were performed as described in Example 1, and the coating and coating film evaluation were performed under the same conditions.

く比溶融粘度〉 島津製作所製高化式フローテスターを用い、共重合体粉
末2.0gを内径11.3mmのシリンダーに装填し、
温度380°Cで5分間保った後、7kgのピストン荷
重下に内径2 、1 mm、長さ8mmのオリフィスを
通して押し出し、この時の押出速度(87分)で531
50を割った値を比溶融粘度(ポイズ)として求めた。
Specific melt viscosity〉 Using a Koka type flow tester manufactured by Shimadzu Corporation, 2.0 g of copolymer powder was loaded into a cylinder with an inner diameter of 11.3 mm.
After keeping the temperature at 380°C for 5 minutes, it was extruded through an orifice with an inner diameter of 2.1 mm and a length of 8 mm under a piston load of 7 kg, and at an extrusion speed of 87 minutes (87 minutes).
The value divided by 50 was determined as the specific melt viscosity (poise).

く平均粒径〉 濃縮前の重合終了直後のラテックスについて、透過型電
子顕微鏡で写真をとり、約100〜400個の粒子の定
方向長さ径を測定し、長さ平均径〈共重合体中のフルオ
ルビニルエーテル含量〉共重合体中のパーフルオル(プ
ロピルビニルエーテル)については、前述のフィルムを
赤外分光法によって、2360cm−’の吸光度に対す
る995cm−’の吸光度の比に0.95を乗すること
で定 −量した(特開昭56−92943号参照)。
Average particle size〉 The latex immediately after completion of polymerization before concentration was photographed using a transmission electron microscope, and the directional length diameter of approximately 100 to 400 particles was measured. Fluorovinyl ether content> For perfluorinated (propyl vinyl ether) in the copolymer, the above film was analyzed by infrared spectroscopy to determine the ratio of the absorbance at 995 cm to the absorbance at 2360 cm, multiplied by 0.95. (Refer to JP-A-56-92943).

〈塗装試験〉 調整した水性分散液組成物を幅5 cm、長さ40cm
、厚み1mmのアルミニラ1、板(前もってアセトンで
表面洗浄し、脱油したしの)にスプレー塗装を行う。ス
プレーガンのノズル口径は08〜1゜1 mm、空気圧
力は約3kg/cm”である。この時、焼成後の厚みが
10〜50μmになるように、アルミニウム板の各部分
で組成物の吹き付は量を適当に変化させる。吹き付は後
、赤外線乾燥炉(約100℃)で10分間予備乾燥を行
い、続いて、400℃にコントロールされた電気炉の中
に入れ20分間焼成する。焼成後は直ちに炉から取り出
し、室温まで放冷する。
<Painting test> The prepared aqueous dispersion composition was applied to a width of 5 cm and a length of 40 cm.
, Spray coating on an aluminum laminated board (previously surface cleaned with acetone and deoiled) with a thickness of 1 mm. The nozzle diameter of the spray gun is 08~1゜1 mm, and the air pressure is about 3 kg/cm. At this time, the composition is sprayed onto each part of the aluminum plate so that the thickness after firing is 10~50 μm. The amount of spraying is changed appropriately.After spraying, preliminary drying is performed for 10 minutes in an infrared drying oven (approximately 100°C), followed by baking in an electric furnace controlled at 400°C for 20 minutes. Immediately after firing, remove from the furnace and allow to cool to room temperature.

〈塗膜の評価〉 塗膜厚みを表面膜厚計で測定する。膜厚が大きくなると
マッドクラックが観察されるが、マッドクラックの入ら
ない最大の膜厚をクラック限界厚みとする。
<Evaluation of paint film> Measure the thickness of the paint film using a surface film thickness meter. Mud cracks are observed as the film thickness increases, but the maximum film thickness without mud cracks is defined as the crack limit thickness.

表面粗度を万能表面形状測定器(小板研究所(株)製5
E−3C)で測定する。表面粗度は膜厚によってかわる
ので約20μmの膜厚のもので比較する。
Surface roughness was measured using a universal surface profile measuring instrument (manufactured by Koita Research Institute Co., Ltd. 5).
E-3C). Since the surface roughness varies depending on the film thickness, the comparison will be made using a film with a film thickness of about 20 μm.

手続補正書(、え) 昭和61年 5月24日Procedural amendment (,e) May 24, 1986

Claims (1)

【特許請求の範囲】 1、一般式: ▲数式、化学式、表等があります▼ (式中、XはHまたはF、nは0〜7の整数、mは0〜
3の整数である。) で表わされるフルオルビニルエーテルとテトラフルオル
エチレンとの共重合体であって、フルオルビニルエーテ
ル含量が1〜10重量%であり、比溶融粘度が0.3×
10^4〜10.0×10^4ポイズ、平均粒径が0.
3〜1μmのコロイド状共重合体粒子を主成分として含
み、アニオン性またはノニオン性界面活性剤で安定化さ
れた共重合体樹脂水性分散液組成物。 2、フルオルビニルエーテルがC_3F_7OCF=C
F_2である特許請求の範囲第1項記載の組成物。 3、平均粒径が0.5μmより大きく、比溶融粘度が0
.4〜5.0×10^4ポイズである特許請求の範囲第
1項記載の組成物。 4、平均粒径が0.6〜0.8μmである特許請求の範
囲第1項記載の組成物。 5、非粘着塗装用の特許請求の範囲第1項記載の組成物
[Claims] 1. General formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, X is H or F, n is an integer from 0 to 7, and m is from 0 to
It is an integer of 3. ) A copolymer of fluorovinyl ether and tetrafluoroethylene represented by
10^4 to 10.0 x 10^4 poise, average particle size 0.
An aqueous copolymer resin dispersion composition containing colloidal copolymer particles of 3 to 1 μm as a main component and stabilized with an anionic or nonionic surfactant. 2. Fluorovinyl ether is C_3F_7OCF=C
The composition according to claim 1, which is F_2. 3. Average particle size is larger than 0.5 μm and specific melt viscosity is 0.
.. The composition according to claim 1, which has a molecular weight of 4 to 5.0 x 10^4 poise. 4. The composition according to claim 1, having an average particle size of 0.6 to 0.8 μm. 5. The composition according to claim 1 for non-adhesive coating.
JP14137785A 1985-03-06 1985-06-26 Aqueous dispersion composition Granted JPS62541A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14137785A JPS62541A (en) 1985-06-26 1985-06-26 Aqueous dispersion composition
EP19860103004 EP0193963B1 (en) 1985-03-06 1986-03-06 Aqueous dispersion comprising fluorine-containing copolymer and article coated therewith
DE8686103004T DE3682086D1 (en) 1985-03-06 1986-03-06 AQUEOUS DISPERSION OF A FLUORINE COPOLYMER AND ITEM COATED WITH IT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14137785A JPS62541A (en) 1985-06-26 1985-06-26 Aqueous dispersion composition

Publications (2)

Publication Number Publication Date
JPS62541A true JPS62541A (en) 1987-01-06
JPH0125506B2 JPH0125506B2 (en) 1989-05-18

Family

ID=15290580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14137785A Granted JPS62541A (en) 1985-03-06 1985-06-26 Aqueous dispersion composition

Country Status (1)

Country Link
JP (1) JPS62541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158002A (en) * 1987-12-15 1989-06-21 Daikin Ind Ltd Method for emulsion polymerization
WO1996004343A1 (en) * 1994-08-04 1996-02-15 Daikin Industries, Ltd. Aqueous fluoropolymer dispersion
WO1996013555A1 (en) * 1994-11-01 1996-05-09 Daikin Industries, Ltd. Fluoropolymer coating composition and coated article
WO1999043750A1 (en) * 1998-02-24 1999-09-02 Asahi Glass Fluoropolymers Co. Ltd. Aqueous polytetrafluoroethylene dispersion composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614941B1 (en) * 1992-08-28 1998-03-11 Daikin Industries, Limited Water-base molten fluororesin dispersion composition
KR20200103641A (en) * 2017-12-27 2020-09-02 에이지씨 가부시키가이샤 Dispersion, method of manufacturing metal laminates and printed boards

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770144A (en) * 1980-10-17 1982-04-30 Asahi Glass Co Ltd Organic solution of fluorinated copolymer containing carboxyl group
JPS57163524A (en) * 1981-04-02 1982-10-07 Du Pont Mitsui Fluorochem Co Ltd Welding pretreating agent for polytetrafluoroethylene molded object and method for welding same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770144A (en) * 1980-10-17 1982-04-30 Asahi Glass Co Ltd Organic solution of fluorinated copolymer containing carboxyl group
JPS57163524A (en) * 1981-04-02 1982-10-07 Du Pont Mitsui Fluorochem Co Ltd Welding pretreating agent for polytetrafluoroethylene molded object and method for welding same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158002A (en) * 1987-12-15 1989-06-21 Daikin Ind Ltd Method for emulsion polymerization
WO1996004343A1 (en) * 1994-08-04 1996-02-15 Daikin Industries, Ltd. Aqueous fluoropolymer dispersion
US5750606A (en) * 1994-08-04 1998-05-12 Daikin Industries, Ltd. Aqueous fluorine-containing polymer dispersion
WO1996013555A1 (en) * 1994-11-01 1996-05-09 Daikin Industries, Ltd. Fluoropolymer coating composition and coated article
WO1999043750A1 (en) * 1998-02-24 1999-09-02 Asahi Glass Fluoropolymers Co. Ltd. Aqueous polytetrafluoroethylene dispersion composition
US6498207B1 (en) 1998-02-24 2002-12-24 Asahi Glass Fluoropolymers Co. Ltd. Aqueous polytetrafluoroethylene dispersion composition

Also Published As

Publication number Publication date
JPH0125506B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US5576381A (en) Aqueous dispersion of fluoropolymers, its preparation and use for coatings
US6645555B1 (en) Material for fluorine-containing coating composition and method for coating by using same
EP1470171B1 (en) Core-shell fluoropolymer dispersions
EP0561987B1 (en) Non-stick coating system with ptfe of different melt viscosities for concentration gradient
US5922468A (en) Tetrafluoroethylene polymer dispersion composition
JP4959588B2 (en) Low crystallinity vinyl fluoride interpolymer
US7361708B2 (en) Fluorinated resin water dispersion composition and fluorinated water base coating composition
US7619039B2 (en) High build dispersions
JP2001064466A (en) Fluoropolymer dispersion mixture
JP4162261B2 (en) Tetrafluoroethylene copolymer composition for coating
US5160791A (en) Non-stick coating system with two perfluorocarbon resins in topcoat for concentration gradient
EP0193963B1 (en) Aqueous dispersion comprising fluorine-containing copolymer and article coated therewith
JPH0543832A (en) Fluororesin coating composition for flow coating
JPS62541A (en) Aqueous dispersion composition
WO2022191273A1 (en) Coating composition, coating film, layered product, and coated article
JPH0116855B2 (en)
TWI719113B (en) Aqueous dispersion, its manufacturing method, water-based paint and coated articles
WO2021090831A1 (en) Dispersant for fluororesins, dispersion liquid, and article
JP3975690B2 (en) Fluorine-containing paint material and coating method using the same
JPS5829973B2 (en) wear resistant paint
WO2023171777A1 (en) Coating composition, coating film, layered coating film, and coated article
JP2016044231A (en) Fluorine-containing copolymer, powder composed of fluorine-containing copolymer, fluorine-containing copolymer composition and coated article containing powder
JPWO2003029370A1 (en) Coating composition and coated article
KR20010046935A (en) Composition for anti-corrosive coating primer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term