JPS6249598B2 - - Google Patents

Info

Publication number
JPS6249598B2
JPS6249598B2 JP57198858A JP19885882A JPS6249598B2 JP S6249598 B2 JPS6249598 B2 JP S6249598B2 JP 57198858 A JP57198858 A JP 57198858A JP 19885882 A JP19885882 A JP 19885882A JP S6249598 B2 JPS6249598 B2 JP S6249598B2
Authority
JP
Japan
Prior art keywords
resistor
conductive member
shunt resistor
discharge bypass
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57198858A
Other languages
Japanese (ja)
Other versions
JPS5988682A (en
Inventor
Masao Kasai
Masao Yamada
Kazuo Odajima
Akio Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP57198858A priority Critical patent/JPS5988682A/en
Publication of JPS5988682A publication Critical patent/JPS5988682A/en
Publication of JPS6249598B2 publication Critical patent/JPS6249598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Plasma Technology (AREA)

Description

【発明の詳細な説明】 本発明は核融合装置においてトロイダル方向に
分割された機器の各分割部を互いに接続する放電
バイパス構造体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge bypass structure that connects toroidally divided parts of a device in a nuclear fusion device.

従来、例えばトカマク型核融合装置において
は、ポロイダルコイルを除いて、トロイダル方向
に一周を成している機器は、プラズマ電流を効率
良く立ち上げるため、トロイダル方向に十分大き
な一周抵抗を有する必要がある。一般にこの一周
抵抗値は0.1mΩ以上が必要とされている。これ
を得るための1つの方法として、機器をトロイダ
ル方向に関し幾つかに分割し、その分割部を電気
的に絶縁する方法が考えられる(以下絶縁した部
分を絶縁部という)。この方法を適用した例が第
1〜3図に示されている。
Conventionally, for example, in a tokamak-type nuclear fusion device, devices that make one circuit in the toroidal direction, except for the poloidal coil, need to have a sufficiently large one-circuit resistance in the toroidal direction in order to efficiently raise the plasma current. Generally, this one-round resistance value is required to be 0.1 mΩ or more. One possible method for achieving this is to divide the device into several parts in the toroidal direction and electrically insulate the divided parts (hereinafter the insulated parts will be referred to as insulating parts). Examples of applying this method are shown in FIGS. 1-3.

第1図において、符号1はプラズマ電流を発生
するための変流器鉄心であり、その中央部1aの
回りには環状のトロイダル磁場を発生させるため
のトロイダル磁場コイル2が配設されている。ト
ロイダル磁場コイル2内には環状の真空容器3が
配設されている。第2図は第1図の真空容器3の
平面断面図である。この図に示されているよう
に、環状の真空容器3は複数(図では2つ)に分
割されており、分割された各部3a,3bは図の
円内に示された絶縁部4により互いに接続されて
いる。第3図にはこの絶縁部4の拡大断面が示さ
れている。真空容器3の分割部3a,3bの端部
には該真空容器の内部5に向かつて突出したフラ
ンジ6a,6bが設けられており、各フランジ6
a,6bの間には電気絶縁を行なう絶縁体7が挿
入されている。両フランジ6a,6bはポロイダ
ル方向に隔置された連結穴19を有しておりこの
穴に両フランジと接触する電気絶縁管18を有す
るボルトの軸部13がはめ込まれる。そしてワツ
シヤ8、絶縁リング9、ワツシヤ10を介して、
ボルト頭(固定部)11及びナツト(固定部)1
2の協働により両フランジ6a,6bが連結され
る。尚、両フランジを固定できれば、固定部とし
てボルト・ナツト以外の部材が用いられてもよ
い。
In FIG. 1, reference numeral 1 denotes a current transformer iron core for generating a plasma current, and a toroidal magnetic field coil 2 for generating an annular toroidal magnetic field is arranged around the central portion 1a. An annular vacuum vessel 3 is disposed within the toroidal magnetic field coil 2. FIG. 2 is a sectional plan view of the vacuum vessel 3 of FIG. 1. As shown in this figure, the annular vacuum vessel 3 is divided into a plurality of parts (two in the figure), and the divided parts 3a and 3b are mutually connected to each other by an insulating part 4 shown in a circle in the figure. It is connected. FIG. 3 shows an enlarged cross section of this insulating portion 4. As shown in FIG. The ends of the divided parts 3a and 3b of the vacuum container 3 are provided with flanges 6a and 6b that protrude toward the interior 5 of the vacuum container.
An insulator 7 for electrical insulation is inserted between a and 6b. Both flanges 6a, 6b have connection holes 19 spaced apart in the poloidal direction, into which the bolt shaft 13 having an electrically insulating tube 18 in contact with both flanges is fitted. Then, through the washer 8, insulating ring 9, and washer 10,
Bolt head (fixed part) 11 and nut (fixed part) 1
Both flanges 6a and 6b are connected by cooperation between the two flanges 6a and 6b. Note that members other than bolts and nuts may be used as the fixing part as long as both flanges can be fixed.

トロイダル方向に一周している機器は真空容器
の内部5で発生するプラズマ電流と相互作用し、
デイスラプシヨン(プラズマ崩壊)時等のように
プラズマ電流が急激に変化するときには、前記分
割部3a,3b間に高電圧が発生する。このため
絶縁部4の近傍でアークが飛び機器を損傷するこ
とがある。こうした高電圧発生に伴なう放電によ
る機器の損傷を防ぐために、放電ギヤツプやシヤ
ント抵抗体を用いて放電バイパス回路を設ける方
法が考えられている。このようなバイパス回路で
は、一周抵抗値として10〜0.1mΩが適切と言わ
れている。
The equipment circulating in the toroidal direction interacts with the plasma current generated inside the vacuum container 5,
When the plasma current changes rapidly, such as during disruption (plasma collapse), a high voltage is generated between the divided portions 3a and 3b. Therefore, an arc may fly near the insulating section 4 and damage the equipment. In order to prevent damage to equipment due to discharge accompanying the generation of such high voltages, methods have been considered in which a discharge bypass circuit is provided using a discharge gap or a shunt resistor. In such a bypass circuit, it is said that a one-round resistance value of 10 to 0.1 mΩ is appropriate.

従来のシヤント抵抗体を用いた場合、以下のよ
うな欠点がある。
When using a conventional shunt resistor, there are the following drawbacks.

(a) テーラ放電クリーニング(連続放電洗浄)の
とき このときには抵抗体に流れる電流値自身は小
さいが、放電によつて発生するパルス間隔が短
かく且つパルス発生頻度が多いため、これに伴
なつて抵抗体内にジユール熱が蓄積し該抵抗体
が長時間高温にさらされる (b) デイスラプシヨンのようにプラズマ電流が急
激に変化したとき このときには抵抗体に瞬時的に大電流が流
れ、これに伴なうジユール発熱により低抗体は
急激に断熱的に温度上昇する。ここでジユール
熱の発生を抑えるためには、抵抗体の抵抗値が
小さい程良い。しかしこの抵抗値は前述したよ
うに、トロイダル方向の一周抵抗値の下限によ
り制限されており、抵抗値をあまり小さくでき
ない。また抵抗体の体積が大きい程その抵抗が
小さくなるのであるが、上述のような述来の抵
抗体ではその体積を十分大きくできなくなる。
このため抵抗体の温度がジユール熱によりきわ
めて高くなる。
(a) At the time of Taylor discharge cleaning (continuous discharge cleaning) At this time, although the current flowing through the resistor itself is small, the pulse interval generated by discharge is short and the pulse generation frequency is high. Joule heat accumulates in the resistor and the resistor is exposed to high temperatures for a long time (b) When the plasma current changes suddenly, such as during disruption.At this time, a large current flows instantaneously through the resistor, and as a result The temperature of low antibodies rapidly rises adiabatically due to the fever. In order to suppress the generation of Joule heat, the smaller the resistance value of the resistor, the better. However, as described above, this resistance value is limited by the lower limit of the one-round resistance value in the toroidal direction, and the resistance value cannot be made very small. Furthermore, the larger the volume of the resistor, the lower its resistance, but with the conventional resistor described above, the volume cannot be made sufficiently large.
Therefore, the temperature of the resistor becomes extremely high due to Joule heat.

また瞬間的に抵抗体に流れる大電流と磁場と
の相互作用により、該抵抗体に強い電磁力が働
く。ここで抵抗体内に流れる電流を抑えるた
め、金属の固有抵抗値(比抵抗)の大きなもの
を選択してもインコネル625の0.00013Ωcmが考
えられる最大値である。従つて抵抗体の抵抗値
の制約により、抵抗体は細長い形状のものに限
定せさるを得ない場合が多い。その1例が第
2,3図に示されており、そこでは抵抗体14
が細長い針金状又は短冊状の金属板で構成され
ている。このような抵抗体を用いた場合、強い
電磁力により抵抗体が切れてしまう恐れがあ
る。
Furthermore, due to the interaction between the large current instantaneously flowing through the resistor and the magnetic field, a strong electromagnetic force acts on the resistor. Even if a metal with a large specific resistance value (specific resistance) is selected to suppress the current flowing inside the resistor, the maximum possible value is 0.00013 Ωcm for Inconel 625. Therefore, due to restrictions on the resistance value of the resistor, it is often necessary to limit the resistor to an elongated shape. An example is shown in FIGS. 2 and 3, where resistor 14
It is made up of a thin wire-like or strip-like metal plate. When such a resistor is used, there is a risk that the resistor may break due to strong electromagnetic force.

一方機器の損傷防止のために、シヤント抵抗体
を容易にこれを交換できない部分に設ける場合が
ある。例えば、真空容器を保護するためには、シ
ヤント抵抗体をプラズマに近い側に設ける方が望
ましい。しかし従来のシヤント抵抗体では、抵抗
体に対する信頼性が乏しくこれを使用できない。
On the other hand, in order to prevent damage to equipment, shunt resistors are sometimes installed in parts that cannot be easily replaced. For example, in order to protect the vacuum vessel, it is desirable to provide the shunt resistor on the side closer to the plasma. However, conventional shunt resistors cannot be used because of their poor reliability.

本発明は上述の欠点を解消するためになされた
ものであつて、分割された機器間に瞬間的に高電
圧が発生しても機器の損傷を防止できる核融合装
置における放電バイパス構造体を提供することを
主な目的としている。
The present invention was made in order to eliminate the above-mentioned drawbacks, and provides a discharge bypass structure in a nuclear fusion device that can prevent damage to equipment even if high voltage is instantaneously generated between divided equipment. The main purpose is to.

この目的を達成すべく、本発明は、トロイダル
方向に複数に分割された機器の分割端部にある隣
接した両フランジにポロイダル方向に隔置して設
けられた連結穴に挿入され、外周全体に電気絶縁
管を有する軸部と、該軸部の両端部に配設され協
働して、前記両フランジを電気絶縁体を介して互
いに固定する固定部とを備える、核融合装置にお
ける放電バイパス構造体において、前記固定部と
前記両フランジとの間にはそれぞれ導電部材が挿
入され、少なくとも一方の前記導電部材とこの導
電部材に関連した固定部との間には0.001Ωcm以
上の固有抵抗値を有するシヤント抵抗体が配設さ
れ、一方のフランジから、一方の導電部材、前記
シヤント抵抗体、一方の固定部、前記軸部及び他
方の導電部材を通つて、他方のフランジへ向かう
放電バイパス回路を形成したことを特徴とするも
のである。
In order to achieve this object, the present invention is designed to be inserted into connecting holes provided at intervals in the poloidal direction in both adjacent flanges at the divided ends of a device divided into a plurality of parts in the toroidal direction. A discharge bypass structure in a nuclear fusion device, comprising: a shaft portion having an electrically insulating tube; and fixing portions disposed at both ends of the shaft portion and working together to fix both flanges to each other via an electrical insulator. In the body, a conductive member is inserted between the fixed part and both flanges, and a specific resistance value of 0.001 Ωcm or more is provided between at least one of the conductive members and the fixed part associated with the conductive member. A shunt resistor is disposed, and a discharge bypass circuit runs from one flange to the other flange through one conductive member, the shunt resistor, one fixed part, the shaft part, and the other conductive member. It is characterized by the fact that it has been formed.

次に本発明の放電バイパス構造体を図面に従つ
て詳細に説明する。
Next, the discharge bypass structure of the present invention will be explained in detail with reference to the drawings.

第4図及び第5図は本発明の放電バイパス構造
体をトカマク型核融合装置の真空容器絶縁部に適
用した例であり、第1〜3図と同じ構成要素には
同じ符号が付けられている。符号15はシヤント
抵抗体であり、導電性の良い導電部材16とワツ
シヤ10との間に挿入されている。このシヤント
抵抗体15は耐熱特性及び耐強度特性が優れてお
り且つ導電性の良い部材(例えば炭化ケイ素
SiC)から構成されるのが好適である。シヤント
抵抗体15、ワツシヤ10、導電部材16は絶縁
管18上にはめ込まれており、一方ワツシヤ(導
電部材)8はナツト12とフランジ6bとに接触
している。導電部材16はシヤント抵抗体15内
で発生したジユール熱をポロイダル方向に逃がす
ことを主目的に配設されており、第5図に示され
ているようにポロイダル方向に長い環状の板(例
えば銅板)から構成されており、符号17はこの
環状板の唯1つの継目である。放電バイパス構造
体はポロイダル方向に隔置されている。
Figures 4 and 5 show examples in which the discharge bypass structure of the present invention is applied to the vacuum vessel insulation part of a tokamak-type nuclear fusion device, and the same components as in Figures 1 to 3 are given the same reference numerals. There is. Reference numeral 15 denotes a shunt resistor, which is inserted between a conductive member 16 having good conductivity and the washer 10. This shunt resistor 15 has excellent heat resistance and strength resistance, and is made of a material with good conductivity (for example, silicon carbide).
It is preferable to be composed of SiC). The shunt resistor 15, the washer 10, and the conductive member 16 are fitted onto the insulating tube 18, while the washer (conductive member) 8 is in contact with the nut 12 and the flange 6b. The conductive member 16 is disposed with the main purpose of dissipating the Joule heat generated within the shunt resistor 15 in the poloidal direction, and as shown in FIG. ), and reference numeral 17 is the only joint of this annular plate. The discharge bypass structures are poloidally spaced apart.

第4図においてはプラズマ電流は左から右に向
かつて流れており、外部から加えられるトロイダ
ル磁場もこの方向に向いている。このため真空容
器の絶縁部4には、第4図に矢印で示されている
ように、左側のフランジ6a、導電部材16、シ
ヤント抵抗体15、ワツシヤ10、ボルト頭1
1、軸部13、ワツシヤ8を通つて右側のフラン
ジ6bに向かう放電バイパス回路を通つて電流が
流れる。従つて真空容器3に例えばデイスラプシ
ヨン時のように瞬間的に高電圧が発生しても、真
空容器の分割部3a,3bがシヤント抵抗体15
を介して電気的に接続されているため、このシヤ
ント抵抗体15を通して電流が流れ前記分割部3
a及び3bの間に過大電圧がかかることが防止さ
れる。またシヤント抵抗体15は導電部材として
働き、該抵抗体内にジユール熱が発生しても導電
部材16を介して逃げていきジユール熱の蓄積が
防止される。
In FIG. 4, the plasma current flows from left to right, and the toroidal magnetic field applied from the outside is also directed in this direction. Therefore, the insulating part 4 of the vacuum container includes a left flange 6a, a conductive member 16, a shunt resistor 15, a washer 10, a bolt head 1, as shown by the arrow in FIG.
1, the current flows through the discharge bypass circuit passing through the shaft portion 13 and the washer 8 toward the right flange 6b. Therefore, even if a high voltage is instantaneously generated in the vacuum vessel 3, such as during disruption, the divided portions 3a and 3b of the vacuum vessel are connected to the shunt resistor 15.
Since the shunt resistor 15 is electrically connected to the divided portion 3 through the shunt resistor 15, a current flows through the shunt resistor 15.
This prevents excessive voltage from being applied between a and 3b. Further, the shunt resistor 15 functions as a conductive member, and even if Joule heat is generated within the resistor, it escapes through the conductive member 16, thereby preventing accumulation of Joule heat.

第4図及び第5図の実施例では、シヤント抵抗
体15はフランジ6aの左側のみに配設されてい
るが、これをフランジ6bの右側に設けることも
可能である。また本実施例では放電バイパス構造
体は真空容器3の絶縁部4に配設されたが、瞬間
的に高電圧が発生しそれが原因で損傷を受ける恐
れのある核融合装置の他の機器の部分に配設され
てもよい。
In the embodiments shown in FIGS. 4 and 5, the shunt resistor 15 is provided only on the left side of the flange 6a, but it can also be provided on the right side of the flange 6b. Furthermore, in this embodiment, the discharge bypass structure was disposed in the insulating part 4 of the vacuum vessel 3, but other equipment of the fusion device could be damaged due to instantaneous high voltage generation. It may be arranged in a part.

上述の実施例においては、シヤント抵抗体はそ
の固有抵抗値が所定値(0.001Ωcm)以上のもの
であり且つ本発明の放電バイパス構造体において
は従来のシヤント抵抗体のように細長いものとす
る必要がないため、例えばブロツク状の構造とす
ることができる。従つて、抵抗体の材料として、
例えば、パイロテイツクグラフアイト、グラフア
イト、グラフアイトに導電性の悪い材料を添加し
て固めたもの、アルミ等の絶縁物に導電性材料を
添加して固めたもの等が考えられる。また印加電
圧が高くなると急激に抵抗値が下がるバリスタ材
は、構造的強度が十分大きければ、通常運転時や
放電クリーニング時等のように印加電圧の低い時
は高抵抗体として働き、デイスラプシヨン時等の
ように高電圧が発生する時は導電体となるので分
割部間の高電圧発生を防止することになり、本発
明のシヤント抵抗体の材料として非常に適してい
る。
In the above-described embodiment, the shunt resistor has a specific resistance value equal to or higher than a predetermined value (0.001 Ωcm), and in the discharge bypass structure of the present invention, it is necessary to make it elongated like a conventional shunt resistor. Since there are no holes, it is possible to have a block-like structure, for example. Therefore, as a material for a resistor,
For example, pyrotechnic graphite, graphite, graphite made by adding a material with poor conductivity and hardened, and something made by adding a conductive material to an insulating material such as aluminum and hardened, etc. can be considered. In addition, varistor materials, whose resistance value rapidly decreases as the applied voltage increases, will act as a high-resistance element when the applied voltage is low, such as during normal operation or discharge cleaning, if the structural strength is large enough, and during disruption, etc. When a high voltage is generated, as shown in FIG.

最近の炭化ケイ素の焼結品はその耐熱特性、耐
強度特性が優れており、その中でケイ素を焼結媒
体とした導電性のあるものも開発されている。そ
の比抵抗は特殊鋼等の金属に比べて約50倍大きく
またはその熱伝導率は特殊鋼の約10倍大きいもの
もある。また炭化ケイ素そのものにバリスタ材の
ような特性があり、焼結媒体材料を適当に選択す
ればバリスタの特性を有する抵抗体とすることが
できる。
Recent sintered silicon carbide products have excellent heat resistance and strength properties, and among them, electrically conductive products using silicon as a sintering medium have also been developed. Its specific resistance is about 50 times greater than that of metals such as special steel, and its thermal conductivity is about 10 times greater than that of special steel. Furthermore, silicon carbide itself has properties similar to those of a varistor material, and if the sintering medium material is appropriately selected, a resistor having the properties of a varistor can be obtained.

以上のように本発明の核融合装置における放電
バイパス構造体においては、軸部の回りにある少
なくとも1つの、固定部と導電部材との間には、
導電性の良いシヤント抵抗体が配設され、これに
より一方のフランジから一方の導電部材、シヤン
ト抵抗体、一方の固定部、軸部、他方の導電部材
を通つて他方のフランジへ向かう放電バイパス回
路を形成したので、分割部間に瞬間的に高電圧が
発生しても前記バイパス回路を通して電流が流れ
るので、アーク発生がなくなり機器の損傷を防止
できる。
As described above, in the discharge bypass structure in the fusion device of the present invention, there is a gap between at least one fixed part and the conductive member around the shaft part.
A shunt resistor with good conductivity is disposed, and this creates a discharge bypass circuit from one flange to the other flange through one conductive member, the shunt resistor, one fixed part, the shaft part, and the other conductive member. Therefore, even if a high voltage momentarily occurs between the divided portions, current flows through the bypass circuit, thereby eliminating arcing and preventing damage to equipment.

また本発明の放電バイパス構造体をトカマク型
核融合装置に適用した場合、従来のものに比べて
以下のような利点がある。
Furthermore, when the discharge bypass structure of the present invention is applied to a tokamak type nuclear fusion device, it has the following advantages compared to the conventional structure.

(1) 抵抗体の総体積を大きくできるので、デイス
ラプシヨン時のようにプラズマ電流が急激に変
化したときに、ジユール熱に伴なう抵抗体の温
度上昇を非常に低く抑えられる (2) 特殊鋼等の金属を抵抗体として用いたものに
比べて抵抗体全体の長さを短かくでき且つ抵抗
体の取り付けも簡単である (3) 抵抗体全体の長さを短かくできるので、抵抗
体全体に働く総電磁力が小さくなり、電磁力に
対する抵抗体の支持が行ない易くなる (4) 抵抗体全体の長さを短かくでき且つその熱伝
導率が大きいので抵抗体内で温度差が生じにく
い(特に炭化ケイ素を抵抗体として用いた場
合) (5) 抵抗体の長さを短かくできることにより、連
続放電クリーニング時に発生するジユール熱を
容易に除去できる (6) 従来のものに比べて構造が簡単である。
(1) Since the total volume of the resistor can be increased, the temperature rise of the resistor due to Joule heat can be suppressed to a very low level when the plasma current changes rapidly, such as during disruption. (2) Special steel The overall length of the resistor can be shortened compared to those using metals such as metals as the resistor, and the resistor can be installed easily. The total electromagnetic force acting on the resistor becomes smaller, making it easier to support the resistor against the electromagnetic force (4) Since the overall length of the resistor can be shortened and its thermal conductivity is high, temperature differences within the resistor are less likely to occur ( (Especially when silicon carbide is used as the resistor) (5) By shortening the length of the resistor, the Joule heat generated during continuous discharge cleaning can be easily removed. (6) The structure is simpler than conventional ones. It is.

本発明の放電バイパス構造体は上述のような利
点を備えているので、真空容器の内部等容易にシ
ヤント抵抗体を交換できない箇所にも抵抗体を設
置できる。さらに本発明のバイパス構造体はトカ
マク型以外の核融合装置(例えばステラレータ
型)にも特定条件(例えばジユール加熱のとき)
の下で使用できる。
Since the discharge bypass structure of the present invention has the above-mentioned advantages, a resistor can be installed even in a place where a shunt resistor cannot be easily replaced, such as inside a vacuum container. Furthermore, the bypass structure of the present invention can also be applied to fusion devices other than tokamak type (for example, stellarator type) under specific conditions (for example, during Joule heating).
Can be used under.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトカマク型核融合装置の主要構成要素
の部分断面図、第2図は第1図に示された環状の
真空容器の平面断面図、第3図は第2図における
絶縁部の拡大断面図、第4図は本発明の放電バイ
パス構造体を備えた第3図と同様の絶縁部の拡大
断面図、第5図は本発明の放電バイパス構造体を
2つだけ示した絶縁部の部分破断平面図である。 1……変流器鉄心、2……トロイダル磁場コイ
ル、3……真空容器、4……絶縁部、6a,6b
……フランジ、7……電気絶縁体、8……ワツシ
ヤ(導電部材)、9……絶縁リング、11……ボ
ルト頭(固定部)、12……ナツト(固定部)、1
3……軸部、15……シヤント抵抗体、16……
導電部材、18……電気絶縁管、19……連結
穴。
Figure 1 is a partial cross-sectional view of the main components of a tokamak-type fusion device, Figure 2 is a cross-sectional plan view of the annular vacuum vessel shown in Figure 1, and Figure 3 is an enlarged view of the insulating section in Figure 2. 4 is an enlarged sectional view of an insulating section similar to that in FIG. 3, which is equipped with a discharge bypass structure of the present invention, and FIG. 5 is an enlarged sectional view of an insulating section showing only two discharge bypass structures of the present invention. FIG. 3 is a partially cutaway plan view. 1... Current transformer iron core, 2... Toroidal magnetic field coil, 3... Vacuum container, 4... Insulation section, 6a, 6b
... Flange, 7 ... Electrical insulator, 8 ... Washer (conductive member), 9 ... Insulation ring, 11 ... Bolt head (fixing part), 12 ... Nut (fixing part), 1
3... Shaft portion, 15... Shunt resistor, 16...
Conductive member, 18... electrical insulation tube, 19... connection hole.

Claims (1)

【特許請求の範囲】 1 トロイダル方向に複数に分割された機器の分
割端部にある隣接した両フランジにポロイダル方
向に隔置して設けられた連結穴に挿入され、外周
全体に電気絶縁管を有する軸部と、該軸部の両端
部に配設され協働して、前記両フランジを電気絶
縁体を介して互いに固定する固定部とを備える、
核融合装置における放電バイパス構造体におい
て、前記固定部と前記両フランジとの間にはそれ
ぞれ導電部材が挿入され、少なくとも一方の前記
導電部材とこの導電部材に関連した固定部との間
には0.001Ωcm以上の固有抵抗値を有するシヤン
ト抵抗体が配設され、一方のフランジから、一方
の導電部材、前記シヤント抵抗体、一方の固定
部、前記軸部及び他方の導電部材を通つて、他方
のフランジへ向かう放電バイパス回路を形成した
ことを特徴とする核融合装置における放電バイパ
ス構造体。 2 前記シヤント抵抗体は炭化ケイ素の焼結材か
ら構成されている特許請求の範囲第1項記載の核
融合装置における放電バイパス構造体。
[Claims] 1. An electrical insulating tube is inserted into connecting holes provided at intervals in the poloidal direction in both adjacent flanges at the divided ends of a device divided into a plurality of parts in the toroidal direction, and electrically insulating tubes are provided around the entire outer periphery. and fixing parts disposed at both ends of the shaft part and cooperating to fix both flanges to each other via an electrical insulator,
In the discharge bypass structure in a nuclear fusion device, a conductive member is inserted between the fixed part and both flanges, and a distance of 0.001 between at least one of the conductive members and the fixed part associated with the conductive member is A shunt resistor having a specific resistance value of Ωcm or more is disposed, and the shunt resistor is connected from one flange through one conductive member, the shunt resistor, one fixed part, the shaft part, and the other conductive member. A discharge bypass structure in a nuclear fusion device, characterized in that a discharge bypass circuit directed toward a flange is formed. 2. The discharge bypass structure in a nuclear fusion device according to claim 1, wherein the shunt resistor is made of a sintered silicon carbide material.
JP57198858A 1982-11-15 1982-11-15 Electrical discharge bypass structure in nuclear fusion device Granted JPS5988682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198858A JPS5988682A (en) 1982-11-15 1982-11-15 Electrical discharge bypass structure in nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198858A JPS5988682A (en) 1982-11-15 1982-11-15 Electrical discharge bypass structure in nuclear fusion device

Publications (2)

Publication Number Publication Date
JPS5988682A JPS5988682A (en) 1984-05-22
JPS6249598B2 true JPS6249598B2 (en) 1987-10-20

Family

ID=16398081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198858A Granted JPS5988682A (en) 1982-11-15 1982-11-15 Electrical discharge bypass structure in nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS5988682A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760365A (en) * 1986-12-29 1988-07-26 General Dynamics Corp./Space Systems Division Metallic insulation for superconducting coils
RU2670282C2 (en) * 2016-02-01 2018-10-22 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for electrical connection of intra-chamber components with vacuum housing of thermonuclear reactor

Also Published As

Publication number Publication date
JPS5988682A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
EP0849751B1 (en) Improved axial magnetic field coil for vacuum interrupter
US4764837A (en) Superconductive circuit for controlling quench events
JP7232930B2 (en) Post insulators and DC transmission equipment
US3293480A (en) Pole piece and collector assembly for high frequency electron discharge device with cooling ribs
US1526023A (en) Insulated ventilating connecter
JPS6249598B2 (en)
US5633777A (en) Gas-filled, three-electrode overvoltage surge arrester for large switching capacities
US4638285A (en) Surge suppressing resistor for a disconnect switch
US4338483A (en) Electrical power transmitting installation including a safety device for providing protection against the effects of electric arcs
US3613006A (en) Stable superconducting magnet
US3716685A (en) Magnetic circuit breaker
US2430206A (en) Protective device
US3400356A (en) Screen heater with an outer metallic sheath
US3214295A (en) Thermoelectric nuclear fuel elements
US2453397A (en) Fuse link
JP2977711B2 (en) Electronic collector
US3047769A (en) Spark gap devices
JPH1131424A (en) Superconducting current limiting cable
US4012707A (en) Fusible element for electrical apparatus
JPS6185733A (en) Contactor unit for vacuum breaker
US2287295A (en) Heater for thermal relays
US3259792A (en) High voltage spark gap
US2994808A (en) High flux density apparatus
US3086075A (en) Electrical bushing with spaced conductor with metallic powder for thermally connecting the bushing and conductor
JP2591068B2 (en) Surge arrester