JPS6246633A - Manufacture of rotor tube - Google Patents

Manufacture of rotor tube

Info

Publication number
JPS6246633A
JPS6246633A JP61184103A JP18410386A JPS6246633A JP S6246633 A JPS6246633 A JP S6246633A JP 61184103 A JP61184103 A JP 61184103A JP 18410386 A JP18410386 A JP 18410386A JP S6246633 A JPS6246633 A JP S6246633A
Authority
JP
Japan
Prior art keywords
fibers
manufacturing
matrix material
fiber
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61184103A
Other languages
Japanese (ja)
Inventor
ハンス ザイリンガー
ロルフ デスカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT Aerospace AG
Original Assignee
MT Aerospace AG
MAN Technologie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MT Aerospace AG, MAN Technologie AG filed Critical MT Aerospace AG
Publication of JPS6246633A publication Critical patent/JPS6246633A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • B29C53/824Mandrels especially adapted for winding and joining collapsible, e.g. elastic or inflatable; with removable parts, e.g. for regular shaped, straight tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/84Heating or cooling
    • B29C53/845Heating or cooling especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ocean & Marine Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半径方向に膨張される心棒の周囲にまかれた繊
維を半径方向に延伸しつつマ[〜リツクス材料で硬化し
てなる71〜リツク材料に埋めこまれた繊維から製)侍
される回転子艙の製造方法に閉覆る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to a 71- A method of manufacturing a rotor shed (made from fibers embedded in a rigid material) is used.

〔従来技術〕[Prior art]

従来、繊維強化複合材料からつくられる回転子管は一般
にはエンドレス遷移または繊維マットとしてmNを心棒
の周囲に巻き付け、異なる配向を持った繊維層から成っ
ている。同転子の運転中、回転子は特に引張り応力のも
とにその周囲方向に荷重がかかる。個々の繊IIi層に
はこの荷重が繊維配向に相当して異なる作用を及ぼす。
Traditionally, rotor tubes made from fiber-reinforced composite materials are typically wound around a mandrel as an endless transition or mat of fibers, consisting of layers of fibers with different orientations. During operation of the rotor, the rotor is loaded in particular under tensile stress in its circumferential direction. This load exerts different effects on the individual fiber IIi layers, corresponding to the fiber orientation.

繊維方向に重j′]な引張り強さは71〜リツクスによ
って決定され、この強さは相対的に低いので、荷重のか
かつている複合構成物の弱点は主筒巾方向に対して横の
層にあることは確認されている。亀裂がそれにより繊維
領域の中に生じ、亀裂は横方向に拡大する。
The tensile strength in the fiber direction is determined by It has been confirmed that there is. A crack is thereby formed in the fiber region, which propagates laterally.

これに対して救済策が講じられ、その解決策として繊維
に予め張力をかけておきマトリックス材料により硬化さ
せることにより一種の予備伸張能力を構成するところの
残留圧縮応力を樹脂のなかに生ずる。そのため繊維の横
方向に許容の伸張領域が増加する。
Remedies have been taken to address this by pre-tensioning the fibers and curing them with a matrix material, thereby creating a residual compressive stress in the resin which constitutes a kind of pre-stretching capacity. This increases the permissible stretching area in the transverse direction of the fibers.

この方法はよく知られているようにガラス繊維複合体に
応用されている。(ツアイトシュリフト(Z eits
chrift)  rプラスティクスJ ” K un
ststone” 74巻、1984年、9号、520
−526頁)このときに展性のマトリックス材料が運転
中その高い延伸によりガラス繊維の伸張に耐えるので使
用される。この解決策は一般的に温度負荷が無いような
応用にのみ適している。
This method is well known and has been applied to glass fiber composites. (Zeits)
chrift) r plastics J”Kun
ststone” Volume 74, 1984, No. 9, 520
(page 526) A malleable matrix material is used here, since it withstands the stretching of the glass fibers during operation due to its high stretching. This solution is generally only suitable for applications where there are no temperature loads.

本発明には、高温耐性の繊維複合物を製造でさ・る方法
を改良するという課題がある。
The object of the present invention is to improve the method for producing high temperature resistant fiber composites.

本発明によればその課題は特許請求の範囲第1項記載の
特徴部により解決される。その方法はマトリックス材料
に埋めこまれた繊維から製造される管の製造方法におい
て、繊維は半径方向に膨張する心棒の上に巻かれ、JI
Mを引き伸ばした状態に保持しつつ、マトリックス材料
により硬化することからなり、繊維として高強度及び高
弾性率の繊維を使用することを特徴とする回転子管の製
造方法である。
According to the invention, this problem is solved by the features recited in claim 1. The method includes the manufacture of tubes made from fibers embedded in a matrix material, in which the fibers are wound onto a radially expanding mandrel and JI
This method of manufacturing a rotor tube consists of curing M with a matrix material while maintaining it in a stretched state, and is characterized by using fibers with high strength and high elastic modulus as the fibers.

本発明は、マトリックスU l”11の延伸に関する要
件が弾性変動による繊維の選択により変更できるという
知見に曇づいている。もしも繊維がより高い弾性率を有
するならば、伸張が小さいのでさらに成形しにくい、よ
り堅いマトリックス材料を使用することができる。伸張
は温度安定性に反比例するのでそのような材料はより高
い熱安定性を持っている。
The invention is based on the finding that the requirements regarding the stretching of the matrix U l"11 can be modified by the selection of fibers due to their elasticity variations. If the fibers have a higher modulus, the stretching is smaller and they can be further shaped. Harder, stiffer matrix materials can be used; such materials have higher thermal stability since elongation is inversely proportional to temperature stability.

本発明の解決策により、有効な繊維複合物の強度を増1
ことができ、しかも複合物がざらされる運転温度には無
関係である方法が提供される。
The solution of the invention increases the strength of effective fiber composites.
A method is provided that can be used and is independent of the operating temperature at which the composite is exposed.

本発明の方法によれば繊維複合物の製造の際、高弾性率
の繊維により比較的高い残留圧縮応力が僅少の伸びにに
リマトリックス材料に導入できるという利点を持ってい
る。
The method according to the invention has the advantage that during the production of fiber composites, relatively high residual compressive stresses can be introduced into the rematrix material with only a small elongation due to the high modulus of the fibers.

炭素繊維の中級([M)また4、1高張力型(ト(ST
〉のものは伸びが5%かまたはそれ以下(純粋樹脂成形
材料)をイーfするマトリックス材料の使用を可能とす
ることが見出されている。この程度の強さの材料はすく
なくとも100℃までは熱安定性を持っている。さらに
特別に、高弾性率(HM)型の繊維は前述の繊維に対し
てより高い強度もしくは伸びを有し適している。
Carbon fiber intermediate grade ([M) or 4, 1 high tensile strength type (ST)
It has been found that a matrix material having an elongation of 5% or less (pure resin molding material) can be used. Materials with this level of strength have thermal stability up to at least 100°C. More particularly, high modulus (HM) type fibers are suitable as they have higher strength or elongation than the aforementioned fibers.

次に図面を参照して本発明の実°施例を詳しく説明する
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は回転子管の拡大図で他の部分をさらに詳しく一
部横断面をもって示した断面図であり、第2図は繊維が
お互いに相対的に配置された角度を示1繊維の拡大図で
あり、第3図は繊維の引張り応力σと伸びεとの関係を
示す図である。
Figure 1 is an enlarged view of the rotor tube and a cross-sectional view showing other parts in more detail with a partial cross-section, and Figure 2 is an enlarged view of one fiber showing the angles at which the fibers are arranged relative to each other. FIG. 3 is a diagram showing the relationship between the tensile stress σ and the elongation ε of the fiber.

回転子管または圧力管の製造はたとえば繊維層11から
14が半径方向に膨張できる心棒10にエンドレス繊維
の巻き付けまたは11Mマットの適用のいずれかによっ
て作り出される。心棒10はたとえば水圧力または機械
的作用により膨張され、71−リックス材料が硬化する
までマトリックスの硬化温度に保たれる。
The manufacture of rotor tubes or pressure tubes is produced, for example, by either endless fiber wrapping or by application of a 11M mat onto a mandrel 10 in which the fiber layers 11 to 14 are radially expandable. The mandrel 10 is expanded, for example by hydraulic pressure or mechanical action, and held at the curing temperature of the matrix until the 71-rix material is cured.

この方法において、負荷方向に拡げられている繊維はと
くに層14の周囲方向の繊維は弾性的にバイアスを受け
ている。
In this way, the fibers which are spread out in the direction of the load, especially those in the circumferential direction of the layer 14, are elastically biased.

半径方向の力15が弛められ複合管16が冷却されると
引張られた繊維は最初の状態に戻ろうどするであろう。
When the radial force 15 is relaxed and the composite tube 16 cools, the stretched fibers will tend to return to their initial state.

この収縮はしかしながら硬化マトリックス材料17によ
りさまたげられる。この残留用縮応力は管16が膨張覆
るときのマトリックス材料17のなかに応力の発生を使
用するあいだ、引張りの程度が低いときには圧縮応力の
緩和が最初に生じ、非常に応力が大きくなって71−リ
ックス材料のなかに引張り応力が生ずるという効果を持
っている。
This shrinkage, however, is prevented by the hardened matrix material 17. This residual compressive stress is caused by the generation of stress in the matrix material 17 when the tube 16 expands, while the relaxation of the compressive stress occurs first when the degree of tension is low, and when the stress becomes very large 71 - has the effect of creating tensile stresses within the lix material.

71〜リツクス材料17及び繊維18と19に作用づる
引張り応力σは第2図に示づように、引張り強さが最大
である引張応力に平行な繊維層14の場合には繊維それ
自身によって抵抗されるであろう。長さ方向の繊維20
の層11において、その場合には引張り応力σ篭が繊維
方向を横切って働くので異なっている。この層における
長さ方向の応力に抵抗する寄与はマトリックス材料17
によって与えられる。いわゆる横の引張り強さは最低で
ある。
The tensile stress σ acting on the fibers 18 and 19 and the fibers 18 and 19 is resisted by the fibers themselves in the case of the fiber layer 14 parallel to the tensile stress where the tensile strength is maximum, as shown in FIG. will be done. Lengthwise fiber 20
is different in the layer 11 since in that case the tensile stress σ acts transversely to the fiber direction. The contribution to resisting longitudinal stress in this layer is the matrix material 17
given by. The so-called transverse tensile strength is the lowest.

しし、公知方法で使用されるガラス繊維の例と同じく弾
性率の低い繊維から@造林1Gが構成されるならばσ8
の引張り応力は第3図に、43りる曲線「2のように比
較的太き4に伸びを生じるであろう。この伸びは71−
リックス材料の伸びを十分に超すことができ、予備の伸
びにも拘らず繊維の間の亀裂22を生じるであろう。
However, if @silviculture 1G is composed of fibers with a low modulus of elasticity, as in the case of glass fibers used in known methods, then σ8
The tensile stress of will cause an elongation in the relatively thick curve 4 as shown in Figure 3, curve 2.This elongation is 71-
The elongation of the lix material can be exceeded sufficiently to cause cracks 22 between the fibers despite the preliminary elongation.

しかしながら、もしも繊維18から20が第3図の曲線
[lの例のように高い弾性率と^引張り強さを持つ繊維
が使用されるならば、同じ引張り応力σ8が複合構H物
に加えられ伸びまたは引き伸ばしの小さいε1を生じる
であろう。この観魚において、特別に満足される繊維は
弾性率295GPa及び引張り強さ510ON/ゴまで
を右する中級の炭M繊維である。さらに、高張力(HS
T)または高弾性率(HM )型の炭素繊維も使用する
ことができる。
However, if fibers 18 to 20 are used with high modulus and tensile strength, as in the example of curve [l] in Figure 3, then the same tensile stress σ8 will be applied to the composite structure. This will result in a small elongation or stretch ε1. In this case, a particularly satisfactory fiber is a medium-grade charcoal M fiber with a modulus of elasticity of 295 GPa and a tensile strength of up to 510 ON/G. Furthermore, high tension (HS)
T) or high modulus (HM) type carbon fibers can also be used.

(ブラスヂックス技術(K unststofftee
hnik)VD1出版所167−169頁) これらの繊維と関連して、樹脂としてジグリシジルエー
テル−ビス71ノールへと硬化剤としてジアミノジフェ
ニルスルフォンを基礎にした7トリツクス拐料が使用で
きる。そのような71ヘリツクス材料は100°CJ:
″c熱安定性を有している。
(Brass Dicks Technology)
hnik) VD1 Publishing House, pages 167-169) In conjunction with these fibers, 7-tricks binders based on diglycidyl ether-bis71-nol as resin and diaminodiphenylsulfone as curing agent can be used. Such a 71 helix material is 100°CJ:
″c has thermal stability.

5%以下ののびを有するさらに適しているマトリックス
材料はジグリシジルニーデル−ビスフェノールAにメヂ
ルデ1−ラピドロー無水フタール酸を加えた樹脂または
必要ならば稀釈剤どしてN−メヂルイミダソールを加え
た樹脂である。
A further suitable matrix material with a stretch of less than 5% is a resin of diglycidyl needle-bisphenol A plus methylde-1-rapidorophthalic anhydride or N-medylimidasol with diluent if necessary. This is the added resin.

繊維との関連において例えば容1i’i 60%では有
効伸びは71−リックス@君だけの伸びの約10%であ
り、すなわち、上記材料の有効伸びは約0.5%減少し
ている。そのよう>、r材料の場合に予備伸張のllI
備は右意義であり、もし0繊軒1が高弾性率を充分に持
つならば有効な目的に役立つものである。炭′Ifi繊
維は重連のJ、うづ′ぐれた熱安定性が要求されるよう
な高張力化構造物には優秀な組み合せを与える。
In the context of fibers, for example, at a volume of 1i'i 60%, the effective elongation is about 10% of the elongation of 71-Rix@Kun alone, ie the effective elongation of the material is reduced by about 0.5%. such >, r of the pre-stretching in the case of material
The property is of the right meaning, and if the material has a sufficiently high modulus of elasticity, it will serve a useful purpose. Charcoal Ifi fibers provide an excellent combination for heavy-duty, high-strength structures where exceptional thermal stability is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回転子複合管の構成を説明づる各繊維層の一部
断面で示した断面図、第2図は互いに相対的に配置する
繊維の角度を示づ一各I!l1Ilt層の拡大図、第3
図tよ繊維の引張り応力σど伸びεとの関係を示す図で
ある。 10・・・・・・心棒、 11.12,13.14・・・・・・円周方向の繊維層
、15・・・・・・半径方向の圧力、 1G・・・・・・複合管、 17・・・・・・(σ!化7トリツクス材料、18.1
9.20・・・・・・長さ方向の繊維、22・・・・・
・繊維間の亀裂、 σ・・・・・・引張り応力、 ε・・・・・・伸び。
Fig. 1 is a partial cross-sectional view of each fiber layer to explain the structure of the rotor composite tube, and Fig. 2 shows the angles of the fibers arranged relative to each other. Enlarged view of l1Ilt layer, 3rd
Figure t is a diagram showing the relationship between tensile stress σ and elongation ε of the fiber. 10... Mandrel, 11.12, 13.14... Circumferential fiber layer, 15... Radial pressure, 1G... Composite pipe , 17... (σ! conversion 7 trix material, 18.1
9.20...Fibers in the length direction, 22...
- Cracks between fibers, σ...Tensile stress, ε...Elongation.

Claims (6)

【特許請求の範囲】[Claims] (1)マトリックス材料に埋めこまれた繊維から製造さ
れる管の製造方法において前記繊維は半径方向に膨張す
る心棒の上に巻かれ、前記繊維を引き伸ばした状態に保
持しつつマトリックス材料により硬化することからなり
、前記繊維(18、19、20)に高強度及び高弾性率
の繊維を使用することを特徴とする回転子管の製造方法
(1) A method of manufacturing a tube made from fibers embedded in a matrix material, in which the fibers are wound onto a radially expanding mandrel and stiffened by the matrix material while holding the fibers in an elongated state. A method for manufacturing a rotor tube, characterized in that the fibers (18, 19, 20) are fibers with high strength and high elastic modulus.
(2)前記マトリックス材料として湿度安定性マトリッ
クス材料(17)が用いられることを特徴とする特許請
求の範囲第1項記載による製造方法。
(2) A manufacturing method according to claim 1, characterized in that a humidity-stable matrix material (17) is used as the matrix material.
(3)前記繊維として炭素繊維が使用されることを特徴
とする特許請求の範囲第1項及び第2項記載のいずれか
1つによる製造方法。
(3) A manufacturing method according to any one of claims 1 and 2, characterized in that carbon fiber is used as the fiber.
(4)前記炭素繊維として中級(IM)または高張力(
HST)型の炭素繊維が使用されることを特徴とする特
許請求の範囲第1項記載による製造方法。
(4) The carbon fiber has intermediate grade (IM) or high tensile strength (
A manufacturing method according to claim 1, characterized in that carbon fibers of the HST type are used.
(5)前記マトリックス材料としてビスフェノールAの
ジグリシジルエーテル及び硬化剤としてジアミノジフェ
ニルスルホンまたはメチルテトラヒドロ無水フタール酸
及び必要とあれば稀釈剤としてN−メチルイミダゾール
からなるエポキシ樹脂系をもって前記炭素繊維を結合す
るのに使用することを特徴とする特許請求の範囲第4項
記載による製造方法。
(5) Bonding the carbon fibers with an epoxy resin system consisting of diglycidyl ether of bisphenol A as the matrix material, diaminodiphenylsulfone or methyltetrahydrophthalic anhydride as the curing agent, and N-methylimidazole as the diluent if necessary. A manufacturing method according to claim 4, characterized in that it is used for.
(6)前記繊維として高弾性率型(HM)の繊維が使用
されることを特徴とする特許請求の範囲第1項から第5
項記載による製造方法。
(6) Claims 1 to 5 characterized in that the fibers are high modulus (HM) fibers.
Manufacturing method as described in section.
JP61184103A 1985-08-09 1986-08-05 Manufacture of rotor tube Pending JPS6246633A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853528629 DE3528629A1 (en) 1985-08-09 1985-08-09 METHOD FOR PRODUCING A ROTOR TUBE
DE3528629.6 1985-08-09

Publications (1)

Publication Number Publication Date
JPS6246633A true JPS6246633A (en) 1987-02-28

Family

ID=6278131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184103A Pending JPS6246633A (en) 1985-08-09 1986-08-05 Manufacture of rotor tube

Country Status (4)

Country Link
JP (1) JPS6246633A (en)
DE (1) DE3528629A1 (en)
GB (1) GB2178820B (en)
NL (1) NL8601871A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261991A (en) * 1986-04-30 1993-11-16 Dana Corporation Composite tubular elements and methods of fabrication
IT1205783B (en) * 1986-04-30 1989-03-31 Dana Corp COMPOSITE TUBULAR ELEMENTS FOR MOTOR SHAFT OF VEHICLES AND METHODS FOR MANUFACTURE
NO175550C (en) * 1991-05-31 1997-05-02 Compipe As Method of preparing laminate tubes
US5755266A (en) * 1991-05-31 1998-05-26 Compipe A/S Laminated pipe for offshore oil production, including sequential layers of reinforcing fibers and fiber mat in cured matrix of plastic resin, on thermoplastic liner tube
FR2718802B1 (en) * 1994-04-18 1996-06-14 Aerospatiale Rod made of composite material and process for its manufacture.
CA2194788A1 (en) * 1996-01-30 1997-07-31 Exxon Research Engineering Co High Weeping Strength Polymer Fiber Glass Composite Laminates for Fluid Containment
DE19613857C2 (en) * 1996-04-06 1999-05-27 Daimler Chrysler Ag PTO shaft with reinforced plastic tube and with an articulated connecting body connected in a rotationally fixed manner at the end
US7044458B2 (en) * 2001-04-30 2006-05-16 Maclean-Fogg Company Stabilizer bar
EP1593904A4 (en) * 2003-02-03 2011-05-04 Univ Kyushu Nat Univ Corp Pressure shell, high-pressure tank with the pressure shell, and method and apparatus for manufacturing the high-pressure tank
DE10330919A1 (en) * 2003-07-03 2005-01-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for producing a fiber composite component
DE102006006337A1 (en) 2006-02-11 2007-08-16 Kümpers GmbH & Co. KG Spatial textile component structure on high-strength threads, as well as methods for their production
DE102013210034A1 (en) * 2013-05-29 2014-12-04 Siemens Aktiengesellschaft Fiber composite body and method of making such a fiber composite body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794481A (en) * 1955-02-04 1957-06-04 Smith Corp A O Method and apparatus for making fiber reinforced resin tubing
GB938288A (en) * 1961-05-18 1963-10-02 Studebaker Packard Corp Prestressed resin-impregnated fibrous tubular articles and methods of and machines for forming them
US4272971A (en) * 1979-02-26 1981-06-16 Rockwell International Corporation Reinforced tubular structure
IT1138798B (en) * 1981-06-22 1986-09-17 Pier Luigi Nava PROCEDURE AND RELATED DEVICE FOR MAKING CABLES IN ARMORED RESIN AND IN PARTICULAR PROTECTIVE HELMETS
AT383319B (en) * 1982-09-07 1987-06-25 Fischer Gmbh TUBULAR HOLLOW BODY MADE OF FIBER REINFORCED PLASTIC, IN PARTICULAR STRUCTURAL COMPONENT FOR A VEHICLE, FOR TRANSMITTING PRESSURE, TENSION, BENDING AND TORSIONAL FORCES
DE3405472A1 (en) * 1984-02-16 1985-08-22 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München METHOD FOR PRODUCING A ROTOR TUBE

Also Published As

Publication number Publication date
GB2178820A (en) 1987-02-18
GB2178820B (en) 1989-12-28
NL8601871A (en) 1987-03-02
DE3528629A1 (en) 1987-02-12
GB8618364D0 (en) 1986-09-03

Similar Documents

Publication Publication Date Title
JPS6246633A (en) Manufacture of rotor tube
Grace et al. Strengthening of concrete beams using innovative ductile fiber-reinforced polymer fabric
Choo et al. Strength of rectangular concrete columns reinforced with fiber-reinforced polymer bars
US3002534A (en) Reinforced thermoplastics
US3446385A (en) Filament wound reinforced pressure vessel
EA200401415A1 (en) CABLE WITH ALUMINUM CONDUCTOR, REINFORCED BY A COMPOSITE HEART, AND METHOD OF ITS MANUFACTURE
US4622086A (en) Method of fabricating a hollow body
Park et al. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets
De Lorenzis et al. Influence of specimen size and resin type on the behaviour of FRP-confined concrete cylinders
US6325108B1 (en) Prestressed composite cryogenic piping
Hou et al. Design and fabrication of CFRP interstage attach fitting for launch vehicles
JP2005009307A (en) Reinforcing material for hybrid fiber reinforced polymer
EP0577409A1 (en) Pipe-like fiber-reinforced plastic structural material and method of manufacturing the same
KR100473073B1 (en) Fiber reinforced polymer bar enhanced adhesion for reinforcing concrete structure
JP2554821B2 (en) Carbon fiber reinforced resin composite material and method for producing the same
JPH09323364A (en) Frp cylindrical form and its manufacture
CA2191241A1 (en) Fibre reinforced resin composite reinforcing material and method for producing the same
Yu et al. Hybrid FRP-concrete-steel double-skin tubular columns: Cyclic axial compression tests
JPH0780948A (en) Production of fiber reinforced composite beam having square cross section
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft
Toutanji Design equations for concrete columns confined with hybrid composite materials
JP2004130564A (en) Tubular body made of fiber reinforced resin and golf club shaft comprising tubular body
Guruprasad et al. Influence on mechanical properties of epoxy polymer matrix composites reinforced with surface treated woven strand mat E-glass fibers
Zhu et al. Seismic performance of FRPs reinforced concrete filled steel tube
JP3412918B2 (en) Continuous fiber reinforced plastic tube