JPS6243983B2 - - Google Patents

Info

Publication number
JPS6243983B2
JPS6243983B2 JP55028620A JP2862080A JPS6243983B2 JP S6243983 B2 JPS6243983 B2 JP S6243983B2 JP 55028620 A JP55028620 A JP 55028620A JP 2862080 A JP2862080 A JP 2862080A JP S6243983 B2 JPS6243983 B2 JP S6243983B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
vca
palladium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55028620A
Other languages
Japanese (ja)
Other versions
JPS56125330A (en
Inventor
Masahiro Fukui
Hiroshi Iwashita
Masaru Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2862080A priority Critical patent/JPS56125330A/en
Publication of JPS56125330A publication Critical patent/JPS56125330A/en
Publication of JPS6243983B2 publication Critical patent/JPS6243983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアセトアルデヒド(以下AAと略す)
とn−ブチルアルデヒド(以下BAと略す)との
アルドール縮合物の脱水生成物の一つであるn−
ヘキセニルアルデヒド(以下HEと略す)の精製
に関するものである。 HEは青葉アルデヒドと呼ばれその青くさ味か
らグリーンノート系の香料として近年注目されて
いる。しかし、同時に副生する2−ビニルクロト
ンアルデヒド(以下2−VCAと略す)がHEと沸
点が接近しているためか、蒸留によつて容易に分
離されず、その刺激臭のためこれが混入すると
HEの香料としての価値を著しく損う。 アルカリ存在下でのAAとBAとの縮合、脱水反
応によつて、主としてそれぞれ4種類のアルドー
ル類、4種類の不飽和アルデヒド類が各々生成さ
れることは知られているが、AA対BAのモル比が
高い程多量に2−VCAが生成することが見出さ
れた。これらの反応式は次式で示される: これらの化合物の生成比率は、AAとBAとのモ
ル比によつても異なるが、通常は分岐アルデヒド
に比べ直鎖アルデヒドの比率が低い。但し、2−
VCAも分岐アルデヒドであるが他のアルデヒド
類に比べその生成率は低い。 これら不飽和アルデヒド混合物は、通常蒸留に
よつてクロトンアルデヒドを分離し次いで精留を
くり返して、2−エチルクロトンアルデヒドと2
−エチルヘキセニルアルデヒドとを分離した後粗
HE(組成を例示すれば、HE:78.1%;2−
VCA:21.4%;2−ECA:0.3%;その他:0.2
%)が得られる。この粗HEは蒸留のみでは事実
上これ以上純度を上げ得ない。 従来、特公昭48−12721、48−12722等において
分岐アルデヒドを単離精製する方法は報告されて
いるが直鎖アルデヒドを選択的に単離する方法は
今だ報告されていない。 そこで本発明者らは、HEを高純度に取得する
ことについて鋭意に研究を重ねた結果、2−
VCAは選択水添によりHE(沸点:146〜147℃)
と沸点差のある2−エチルクロトンアルデヒド
(沸点:132〜134℃)に転換し、蒸留によつて容
易に分離されることを知り本発明に到達したので
ある。 すなわち、本発明はAAとBAとのアルドール縮
合反応生成物を脱水することに由来し、HE及び
2−VCA(以下原料混合物という)を白金族触
媒の存在下水素ガスと接触させ、前記2−VCA
を選択的に水添し、次いで得られた混合物を蒸留
することによりHEを精製する方法を要旨とする
ものである。 前記AAとBAとのアルドール縮合反応生成物を
脱水することに由来する、というのは、AAとBA
とのアルドール縮合物を脱水したままのものも、
またその後何らかの処置をしたもの、例えばクロ
トンアルデヒド、2−エチルクロトンアルデヒ
ド、2−エチルヘキセニルアルデヒドなどを分留
により除いて残つたHEに富んだ留分も含む、と
いう意味である。クロトンアルデヒド、2−エチ
ルクロトンアルデヒド及び2−エチルヘキセニル
アルデヒドは、樹脂の可塑剤などの中間原料とし
て有用なものであり、本発明における水添の間に
一部破壊されるから、予め(本発明実施の前に)
分留等の手段により除いておくのが好ましい。 原料混合物の選択水添の条件として、カルボ
ニル基の水添によるアルコール生成を避け、かつ
2−VCAの末端オレフインのみ選択的に水添
し、その内部オレフイン及びHEの内部オレフイ
ンは残さねばならない。このようにきびしい選択
性が要求されるのであるが、ニツケル、銅−クロ
ム等の非金属系触媒は選択性が低い。 しかし白金族触媒では上記選択水添の条件を満
たし、初めの目的を達することができる。かかる
白金族触媒としてはパラジウム触媒、白金触媒、
ルテニウム触媒、ロジウム触媒のうち少なくとも
一種を挙げることができる。具体的な例を示すな
らば、パラジウム黒、コロイドパラジウム、酸化
パラジウム、但体付き触媒としては、パラジウム
−カーボン、パラジウム−硫酸バリウム、パラジ
ウム−炭酸カルシウム、パラジウム−アルミナ、
パラジウム−シリカゲル、パラジウム−けいそう
土、パラジウム−炭酸バリウム、リンドラ−触媒
等、その他白金黒、酸化白金、コロイド白金、白
金−カーボン、白金−シリカゲル、白金−アルミ
ナ、酸化ルテニウム、ルテニウム−カーボン、酸
化ロジウム、ロジウム−カーボン、ロジウム−ア
ルミナ等を挙げることができる。これらの中でも
パラジウム触媒は他に群を抜いて選択性が良く、
さらに触媒寿命も非常に長いために最も好まし
い。寿命が非常に長いため触媒費は殆んど問題に
ならない。 本発明において用いられる触媒量は、使用する
原料混合物に対し、0.01〜30重量%、さらに好ま
しくは0.1〜1.0重量%の範囲が適当である。 本発明における水添反応は0〜150℃さらに好
ましくは50〜100℃の温度で有利に実施される。
反応温度が150℃を越えると2−VCA及びHEの
内部オレフインが同時に水添され2−VCAのみ
の選択水添が低下する。 また、本発明における水素分圧は、50Kg/cm2
下さらに好ましくは0.5〜10Kg/cm2の範囲が好適
である。かかる範囲より水素分圧が高い場合は2
−VCA及びHE等の内部オレフインが同時に水添
され、2−VCAのみの選択水添が低下する。 また、水素ガスは純水素ガスのみならず、不活
性ガスと水素との混合ガスであつてもよい。 次に、2−VCA、HEの水添速度は以下の式の
ように考えられる。白金族触媒での水添のそれぞ
れの速度定数を次のように定めると、 反応速度は概ねK1>K4>K2≫K3、K5となり、反
応内容物をガスクロマトグラフイーで追跡するこ
とにより目的物が消失した時点で水添を止めるこ
とが可能である。この反応性の差を利用して2−
VCAはHEと沸点差のある2−エチルクロトンア
ルデヒドに転換して反応を停止させる。 以下に実施例を示す。これらにおいて、組成は
すべてガスクロマトグラムの面積%を表わす。ガ
スクロマトグラフイーの条件は、カラム:
PEG6000(25%)、カラム長:2m、温度:140
℃、キヤリヤーガス:N2(0.8Kg/cm2)、検出器:
FIDである。 実施例 1 AA対BAのモル比4で常法に従つて縮合反応を
行い、次いで脱水反応を行わせた。脱水反応は、
前記縮合反応液に酢酸水溶液を加え酸性として蒸
留塔の釜に仕込み、この蒸留塔を用いて蒸留し、
未反応アルデヒドを除きながら行つた。脱水反応
で生成する不飽和アルデヒドは水との共沸蒸留に
より留出させた。留出液から水層を分液すること
により、不飽和アルデヒド混合物(組成:クロト
ンアルデヒド45.3%;2−エチルクロトンアルデ
ヒド37.1%;HE8.2%;2−VCA2.9%;2−エ
チルヘキセニルアルデヒド4.0%;その他2.5%)
が得られた。この不飽和アルデヒド混合物は蒸留
塔を用いてクロトンアルデヒドを分離し、次に減
圧蒸留をくり返して2−エチルクロトンアルデヒ
ドと2−エチルヘキセニルアルデヒドを分離して
粗HE(組成:HE78.1%;2−VCA21.4%;2−
エチルクロトンアルデヒド0.3%;その他0.2%)
が得られた。この粗HE300gと、活性炭にパラジ
ウムを2%但持させたパラジウム−カーボン触媒
(以下パラジウム−カーボン触媒をPd/c触媒と
表わす)(50%含水品)(日本エンゲルハルド社
製)3gを1オートクレーブに仕込み、反応温
度80〜100℃で撹拌しながら、水添圧6±2Kg/
cm2で水素を断続的に圧入して反応を行つた。反応
の途中サンプリングしてガスクロマトグラフイー
による反応追跡を行い2−VCAが完全に消失し
た時点で運転を停止した。次いで反応器に残つた
水素をゲージ圧1Kg/cm2までパージし、反応器を
常温以下まで水冷後、反応液を取出し、触媒を濾
別して反応粗液298gが得られた。この反応粗液
の組成は、HE:75.4%、2−VCA:0.0%、2−
エチルクロトンアルデヒド:21.9%、n−ヘキシ
ルアルデヒド:2.5%、その他:0.2%であつた。
尚2−VCA、HEの反応率は各々100%、3.5%で
あつた。次に反応粗液全量を理論段数3段の充填
塔を用いて分留して、次に示すような純度の高い
HE209.5gが得られた。 組成:HE99.6%;2−VCA痕跡;2−エチル
クロトンアルデヒド0.1%;その他0.3%。 実施例 2 実施例1と同様の反応装置を用い、水添反応に
用いる触媒として2%白金カーボン粉末(以下
Pt/cと略記する)(日本エンゲルハルド社製)
を粗HE仕込量に対して0.1重量%仕込み、反応温
度70〜80℃で、水添圧及びその他の条件は実施例
1と同様にして、反応を行つた。 比較例 1 実施例1と同様の反応装置を用い、水添反応に
用いる触媒として銅−クロム触媒(N−203;日
揮化学製)を粗HE仕込量に対して5重量%仕込
み、反応温度は100〜150℃で、水添圧及びその他
の条件は、実施例1と同様にして反応を行つた。 比較例 2 実施例1と同様の反応装置を用い、水添反応条
件として、触媒に安定化ニツケル(N−103;日
揮化学製)反応温度100〜105℃、水添圧及びその
他の条件は実施例1と同様にして反応を行つた。 比較例 3 実施例1と同様の反応装置を用い、水添反応条
件として、触媒にラネーニツケル(川研フアイン
ケミカル(株)社製)反応温度70〜80℃、その他の条
件は実施例1と同様にして反応を行つた。 次に表1に実施例1、2及び比較例1、2、3
で用いた粗HEの組成及びこれら例で得られた反
応液組成と反応率を示す。
The present invention uses acetaldehyde (hereinafter abbreviated as AA)
n-, which is one of the dehydrated products of aldol condensation of
This paper relates to the purification of hexenyl aldehyde (hereinafter abbreviated as HE). HE is called green leaf aldehyde and has recently attracted attention as a green note fragrance due to its blue flavor. However, at the same time, 2-vinylcrotonaldehyde (hereinafter abbreviated as 2-VCA), which is a by-product, is not easily separated by distillation, perhaps because its boiling point is close to that of HE, and its pungent odor causes it to be mixed in.
Significantly reduces the value of HE as a fragrance. It is known that the condensation and dehydration reactions of AA and BA in the presence of an alkali produce mainly four types of aldols and four types of unsaturated aldehydes, respectively. It has been found that the higher the molar ratio, the more 2-VCA is produced. These reaction equations are shown below: Although the production ratio of these compounds varies depending on the molar ratio of AA and BA, the ratio of linear aldehydes is usually lower than that of branched aldehydes. However, 2-
VCA is also a branched aldehyde, but its production rate is lower than that of other aldehydes. These unsaturated aldehyde mixtures are usually separated by distillation to separate crotonaldehyde and then repeated rectification to produce 2-ethyl crotonaldehyde and 2-ethyl crotonaldehyde.
- After separation from ethylhexenyl aldehyde, the crude
HE (to give an example of the composition, HE: 78.1%; 2-
VCA: 21.4%; 2-ECA: 0.3%; Others: 0.2
%) is obtained. This crude HE cannot be purified any further by distillation alone. Hitherto, methods for isolating and purifying branched aldehydes have been reported in Japanese Patent Publication No. 48-12721, 1972-12722, etc., but a method for selectively isolating linear aldehydes has not yet been reported. Therefore, as a result of intensive research into obtaining high-purity HE, the present inventors found that 2-
VCA is HE (boiling point: 146-147℃) by selective hydrogenation
The present invention was achieved based on the knowledge that it can be converted into 2-ethylcrotonaldehyde (boiling point: 132-134°C), which has a boiling point different from that of 2-ethylcrotonaldehyde, and can be easily separated by distillation. That is, the present invention originates from dehydrating an aldol condensation reaction product of AA and BA, by contacting HE and 2-VCA (hereinafter referred to as raw material mixture) with hydrogen gas in the presence of a platinum group catalyst, and VCA
The gist of this paper is a method for purifying HE by selectively hydrogenating HE and then distilling the resulting mixture. This is derived from dehydrating the aldol condensation reaction product of AA and BA.
The dehydrated aldol condensate with
It also includes HE-rich fractions that remain after some treatment has been performed, such as crotonaldehyde, 2-ethylcrotonaldehyde, 2-ethylhexenylaldehyde, etc., by fractional distillation. Crotonaldehyde, 2-ethylcrotonaldehyde, and 2-ethylhexenylaldehyde are useful as intermediate raw materials such as plasticizers for resins, and are partially destroyed during hydrogenation in the present invention. before implementation)
It is preferable to remove it by means such as fractional distillation. The conditions for selective hydrogenation of the raw material mixture are to avoid alcohol production due to hydrogenation of carbonyl groups, and to selectively hydrogenate only the terminal olefin of 2-VCA, leaving its internal olefin and the internal olefin of HE. Although such severe selectivity is required, nonmetallic catalysts such as nickel and copper-chromium have low selectivity. However, platinum group catalysts satisfy the above conditions for selective hydrogenation and can achieve the first objective. Such platinum group catalysts include palladium catalysts, platinum catalysts,
At least one of a ruthenium catalyst and a rhodium catalyst can be used. Specific examples include palladium black, colloidal palladium, palladium oxide, and catalysts with catalysts include palladium-carbon, palladium-barium sulfate, palladium-calcium carbonate, palladium-alumina,
Palladium-silica gel, palladium-diatomaceous earth, palladium-barium carbonate, Lindlar catalyst, etc., platinum black, platinum oxide, colloidal platinum, platinum-carbon, platinum-silica gel, platinum-alumina, ruthenium oxide, ruthenium-carbon, oxide Rhodium, rhodium-carbon, rhodium-alumina, etc. can be mentioned. Among these, palladium catalysts have by far the best selectivity;
Furthermore, the catalyst life is very long, so it is most preferable. Catalyst cost is hardly a problem since the life is very long. The amount of catalyst used in the present invention is suitably in the range of 0.01 to 30% by weight, more preferably 0.1 to 1.0% by weight, based on the raw material mixture used. The hydrogenation reaction in the present invention is advantageously carried out at a temperature of 0 to 150°C, more preferably 50 to 100°C.
When the reaction temperature exceeds 150°C, the internal olefins of 2-VCA and HE are simultaneously hydrogenated, reducing the selective hydrogenation of only 2-VCA. Further, the hydrogen partial pressure in the present invention is preferably 50 Kg/cm 2 or less, more preferably in the range of 0.5 to 10 Kg/cm 2 . 2 if the hydrogen partial pressure is higher than this range.
- Internal olefins such as VCA and HE are hydrogenated simultaneously, reducing selective hydrogenation of only 2-VCA. Moreover, the hydrogen gas may be not only pure hydrogen gas but also a mixed gas of an inert gas and hydrogen. Next, the hydrogenation rate of 2-VCA and HE can be considered as shown in the following equation. The rate constants for hydrogenation over platinum group catalysts are determined as follows: The reaction rate is approximately K 1 >K 4 >K 2 >>K 3 , K 5 , and by monitoring the reaction contents by gas chromatography, it is possible to stop hydrogenation when the target substance disappears. Using this difference in reactivity, 2-
VCA is converted to 2-ethylcrotonaldehyde, which has a boiling point different from that of HE, and the reaction is stopped. Examples are shown below. In these, all compositions represent area % of the gas chromatogram. The conditions for gas chromatography are column:
PEG6000 (25%), column length: 2m, temperature: 140
°C, carrier gas: N 2 (0.8Kg/cm 2 ), detector:
It is F.I.D. Example 1 A condensation reaction was carried out in a conventional manner at a molar ratio of AA to BA of 4, followed by a dehydration reaction. The dehydration reaction is
An acetic acid aqueous solution is added to the condensation reaction liquid to make it acidic, and the mixture is charged into a distillation column and distilled using this distillation column.
The reaction was carried out while removing unreacted aldehyde. The unsaturated aldehyde produced in the dehydration reaction was distilled off by azeotropic distillation with water. By separating the aqueous layer from the distillate, an unsaturated aldehyde mixture (composition: crotonaldehyde 45.3%; 2-ethylcrotonaldehyde 37.1%; HE 8.2%; 2-VCA 2.9%; 2-ethylhexenylaldehyde 4.0%; other 2.5%)
was gotten. From this unsaturated aldehyde mixture, crotonaldehyde is separated using a distillation column, and then vacuum distillation is repeated to separate 2-ethylcrotonaldehyde and 2-ethylhexenylaldehyde, resulting in crude HE (composition: HE78.1%; -VCA21.4%; 2-
Ethyl crotonaldehyde 0.3%; other 0.2%)
was gotten. 300 g of this crude HE and 3 g of a palladium-carbon catalyst (hereinafter palladium-carbon catalyst is referred to as Pd/c catalyst) with 2% palladium supported on activated carbon (50% water-containing product) (manufactured by Engelhard Japan) were placed in one autoclave. while stirring at a reaction temperature of 80 to 100°C and a hydrogenation pressure of 6 ± 2 kg/
The reaction was carried out by intermittently injecting hydrogen at cm2 . Samples were taken during the reaction and the reaction was followed by gas chromatography, and the operation was stopped when 2-VCA had completely disappeared. Next, hydrogen remaining in the reactor was purged to a gauge pressure of 1 Kg/cm 2 , the reactor was cooled with water to below room temperature, the reaction solution was taken out, and the catalyst was filtered off to obtain 298 g of a crude reaction solution. The composition of this reaction crude liquid is HE: 75.4%, 2-VCA: 0.0%, 2-
Ethyl crotonaldehyde: 21.9%, n-hexylaldehyde: 2.5%, and others: 0.2%.
The reaction rates of 2-VCA and HE were 100% and 3.5%, respectively. Next, the entire amount of the reaction crude liquid is fractionated using a packed column with three theoretical plates to obtain a highly pure product as shown below.
209.5 g of HE was obtained. Composition: HE99.6%; traces of 2-VCA; 2-ethylcrotonaldehyde 0.1%; other 0.3%. Example 2 Using the same reaction apparatus as in Example 1, 2% platinum carbon powder (hereinafter referred to as
(abbreviated as Pt/c) (manufactured by Engelhard Japan)
was charged in an amount of 0.1% by weight based on the amount of crude HE charged, and the reaction was carried out at a reaction temperature of 70 to 80° C. under the same hydrogenation pressure and other conditions as in Example 1. Comparative Example 1 Using the same reaction apparatus as in Example 1, 5% by weight of a copper-chromium catalyst (N-203; manufactured by JGC Chemical) was charged as a catalyst for the hydrogenation reaction based on the amount of crude HE charged, and the reaction temperature was The reaction was carried out at 100 to 150°C under the same hydrogenation pressure and other conditions as in Example 1. Comparative Example 2 Using the same reaction apparatus as in Example 1, the hydrogenation reaction conditions were a catalyst using stabilized nickel (N-103; manufactured by JGC Chemical), a reaction temperature of 100 to 105°C, a hydrogenation pressure, and other conditions. The reaction was carried out in the same manner as in Example 1. Comparative Example 3 Using the same reaction apparatus as in Example 1, the hydrogenation reaction conditions were as follows: Raney nickel (manufactured by Kawaken Fine Chemical Co., Ltd.) was used as a catalyst at a reaction temperature of 70 to 80°C, and other conditions were the same as in Example 1. The reaction was carried out in the same manner. Next, Table 1 shows Examples 1 and 2 and Comparative Examples 1, 2, and 3.
The composition of the crude HE used in this example and the reaction solution composition and reaction rate obtained in these examples are shown.

【表】 表1から明らかなように、処理後の反応率は白
金族触媒(特にPd/c触媒)を使用した場合2
−VCA→2−ECAの反応率が100%でもHE→HA
の反応率は非常に低い。これに対し、比較例の
内、比較的選択率のよい銅−クロム触媒でも2−
VCAの反応率が97.7%でHEはすでに64.5%反応
している。このことより白金族触媒、特にPd/
c触媒の選択率が非常にすぐれていることが明ら
かである。
[Table] As is clear from Table 1, the reaction rate after treatment is 2 when using a platinum group catalyst (particularly a Pd/c catalyst).
-VCA→2-Even if the reaction rate of ECA is 100%, HE→HA
The reaction rate is very low. On the other hand, among the comparative examples, even the copper-chromium catalyst with relatively good selectivity
The reaction rate of VCA is 97.7%, and the reaction rate of HE is already 64.5%. This suggests that platinum group catalysts, especially Pd/
It is clear that the selectivity of the c catalyst is very good.

Claims (1)

【特許請求の範囲】 1 アセトアルデヒドとn−ブチルアルデヒドと
のアルドール縮合反応生成物を脱水することに由
来し、n−ヘキセニルアルデヒド及び2−ビニル
クロトンアルデヒド(以下2−VCAと略す)を
含む混合物(以下原料混合物という)を白金族触
媒の存在下水素ガスと接触させ、前記2−VCA
を選択的に水添し、次いで得られた混合物を蒸留
することを特徴とするn−ヘキセニルアルデヒド
の精製方法。 2 原料混合物が、アセトアルデヒドとn−ブチ
ルアルデヒドとのアルドール縮合反応生成物を脱
水して得られる混合物を分留することにより得ら
れるn−ヘキセニルアルデヒドに富んだ留分であ
ることを特徴とする第1項記載の方法。 3 前記白金族触媒がパラジウム触媒、白金触
媒、ルテニウム触媒、ロジウム触媒のうち少なく
とも一種であることを特徴とする第1または第2
項記載の方法。 4 前記白金族触媒がパラジウム触媒であること
を特徴とする第3項記載の方法。 5 前記触媒の量が原料混合物に対し0.01〜30重
量%であることを特徴とする第1ないし第4項の
いずれかに記載の方法。 6 前記水添反応の温度が0〜150℃であること
を特徴とする第1ないし第5項のいずれかに記載
の方法。 7 前記水添反応における水素分圧が50Kg/cm2
下であることを特徴とする第1ないし第6項のい
ずれかに記載の方法。
[Scope of Claims] 1. A mixture containing n-hexenylaldehyde and 2-vinylcrotonaldehyde (hereinafter abbreviated as 2-VCA) derived from dehydrating an aldol condensation reaction product of acetaldehyde and n-butyraldehyde. (hereinafter referred to as the raw material mixture) with hydrogen gas in the presence of a platinum group catalyst,
1. A method for purifying n-hexenyl aldehyde, which comprises selectively hydrogenating n-hexenyl aldehyde and then distilling the resulting mixture. 2. The raw material mixture is a fraction rich in n-hexenylaldehyde obtained by fractionating a mixture obtained by dehydrating an aldol condensation reaction product of acetaldehyde and n-butyraldehyde. The method described in Section 1. 3. The first or second catalyst, wherein the platinum group catalyst is at least one of a palladium catalyst, a platinum catalyst, a ruthenium catalyst, and a rhodium catalyst.
The method described in section. 4. The method according to item 3, wherein the platinum group catalyst is a palladium catalyst. 5. The method according to any one of items 1 to 4, wherein the amount of the catalyst is 0.01 to 30% by weight based on the raw material mixture. 6. The method according to any one of items 1 to 5, wherein the temperature of the hydrogenation reaction is 0 to 150°C. 7. The method according to any one of items 1 to 6, wherein the hydrogen partial pressure in the hydrogenation reaction is 50 Kg/cm 2 or less.
JP2862080A 1980-03-07 1980-03-07 Purificatin of n-hexenylaldehyde by hydrogenation Granted JPS56125330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2862080A JPS56125330A (en) 1980-03-07 1980-03-07 Purificatin of n-hexenylaldehyde by hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2862080A JPS56125330A (en) 1980-03-07 1980-03-07 Purificatin of n-hexenylaldehyde by hydrogenation

Publications (2)

Publication Number Publication Date
JPS56125330A JPS56125330A (en) 1981-10-01
JPS6243983B2 true JPS6243983B2 (en) 1987-09-17

Family

ID=12253587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2862080A Granted JPS56125330A (en) 1980-03-07 1980-03-07 Purificatin of n-hexenylaldehyde by hydrogenation

Country Status (1)

Country Link
JP (1) JPS56125330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536216A (en) * 2010-08-24 2013-09-19 ディーエスエム アイピー アセッツ ビー.ブイ. Method for producing 3,7-dimethyl-1-octen-3-ol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536216A (en) * 2010-08-24 2013-09-19 ディーエスエム アイピー アセッツ ビー.ブイ. Method for producing 3,7-dimethyl-1-octen-3-ol

Also Published As

Publication number Publication date
JPS56125330A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
KR100878174B1 (en) Method for producing alcohol
KR100973443B1 (en) Process for production of purified alcohols
EP0052999B1 (en) Preparation of plasticizer alcohols from propylene-butene mixtures
US4026960A (en) 2,7,10,15,18,23-Hexamethyltetra-cosane
US3330867A (en) Olefinic ketones and process for the manufacture thereof
AU606245B2 (en) Process for the preparation of 2-methylbutanal
US2516826A (en) Process for catalytic semihydrogenation of tertiary acetylenic monohydric alcohols
US4005145A (en) Process for the manufacturing of oxo compounds
US4029709A (en) Process for the hydrogenation of citral to citronellal and of citronellal to citronellol using chromium-promoted Raney nickel catalyst
JPS6243983B2 (en)
US3933920A (en) Production of α, ω-dialdehydes
CA1049051A (en) Preparation of squalane by acidic hydrogenolysis
US3246036A (en) Production of 2-cyclohexylcyclo-hexanone
US4390741A (en) Process for the purification of diisopropenylbenzene
FR2463761A1 (en) PROCESS FOR THE PREPARATION OF 2-METHYL-2-SEC-BUTYL-1,3-PROPANE-DIOL
US4410755A (en) Method to purify alpha-methyl styrene prior to catalytic hydrogenation
JPH06104641B2 (en) Process for producing α- (alkylcyclohexyloxy) -β-alkanol
US4016201A (en) Process for the preparation of acetoxybutanols
EP0257727B1 (en) Process for preparing cyclohexanonecarboxylic acid compounds
EP0118877B1 (en) Process for the preparation of diacyloxybutenes
JPH0751713B2 (en) Fragrance composition
US4224251A (en) Preparation of 5-diethylaminopentan-2-ol
US2474874A (en) Recovery of by-product ether
JPH036130B2 (en)
US5471003A (en) Purification of cyclopropanecarboxaldehyde