JPS6241130B2 - - Google Patents

Info

Publication number
JPS6241130B2
JPS6241130B2 JP55071564A JP7156480A JPS6241130B2 JP S6241130 B2 JPS6241130 B2 JP S6241130B2 JP 55071564 A JP55071564 A JP 55071564A JP 7156480 A JP7156480 A JP 7156480A JP S6241130 B2 JPS6241130 B2 JP S6241130B2
Authority
JP
Japan
Prior art keywords
outside air
output
operational amplifier
air
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55071564A
Other languages
Japanese (ja)
Other versions
JPS57906A (en
Inventor
Eiji Ookura
Toshizo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP7156480A priority Critical patent/JPS57906A/en
Publication of JPS57906A publication Critical patent/JPS57906A/en
Publication of JPS6241130B2 publication Critical patent/JPS6241130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は車輌用空気調和装置、特に外気導入量
の制御に関するものである。 一般に、車輌用空気調和装置は内外気切換ドア
により、ダクト内に導入された内気、外気を冷却
加熱し、冷風と暖風との混合割合を調整して、モ
ード吹出口より吹出すようにしたものである。従
来、上記外気の導入量は乗員の数に無関係に制御
されているので、例えば乗員数が少ない時、必要
以上の外気が導入されることから冷房負荷が大き
くなり、コンプレツサ及びこれを駆動するエンジ
ンに無理な負担がかかり、低燃費化の実現に障害
となる欠点を有し、また乗員が多い場合、換気量
の不足を招き、乗員に不快感を与える欠点を有す
る。このため、乗員数に応じて外気導入量を制御
する技術思想が特開昭55―13744号に開示されて
いる。しかし、自動車用として、該技術を適用す
るには更に改良を施す必要がある。 本発明の目的は、乗員数を検知する検知部を設
け、乗員数に応じて、内外気切換ドアの回動角度
を調整し、且つ、外気導入量を送風量に関連させ
て制御し、又内外気の温度よりコンプレツサを制
御するようにして上記欠点を除去するものであ
り、以下実施例を用いて詳細に説明する。 第1図は本発明による車輌用空気調和装置の一
実施例を示す回路図であり、同装置は第2図に示
すようにダクト1の前端側の外気口2と内気口3
との間に位置する内外気切換ドア4の回動角度θ
を乗員数及び外気口2より導入される風量に応じ
て、自動的に調整するものである。上記乗員数は
車輌の助手席に設けたスイツチS1と後席に設けた
スイツチS2とにより検出するもので、これ等スイ
ツチS1,S2とにより乗員数検知スイツチ部を構成
し、スイツチS1のみがオンのときは助手席に人が
乗つていることを意味し、乗員数は運転者と合わ
せて2人であるとして計算する。スイツチS2のみ
がオンのときは、便宜上後部席に2人の人が乗つ
ているものと計算し、乗員数は合計3名である。
従つてスイツチS1とS2が両方オンのときは4人、
両方オフのときは1人である。また、外気口2よ
り導入される風量は軸5を支点として回動し、か
つ一方向にスプリング6で牽引された風圧ドア7
の回動角検出部8により検出されるもので、該検
出部8は可変端子9がドア7に連動する可変抵抗
器10により構成される。すなわち、外気口2よ
り導入される風圧により風圧ドア7がスプリング
6に抗して回動すると可変抵抗器10の出力V3
が大きくなる。 スイツチS1とS2の信号はアナログスイツチ11
に供給され、このアナログスイツチ11は互に連
動するスイツチa1とa2、スイツチb1とb2、スイツ
チc1とc2、スイツチd1とd2を有し、スイツチa1
b1,c1,d1の一端は共通に演算増幅器12の反転
入力側に接続され、他端はそれぞれ演算増幅器1
2のフイードバツク抵抗としての抵抗13,1
4,15,16を介して、抵抗17,18,1
9,20の一端に接続される。なお、抵抗13,
14,15,16の各抵抗値R11,R12,R13,R14
はR11<R12<R13<R14の関係を満足し、抵抗1
7,18,19,20の抵抗値R1,R2,R3,R4
はR1>R2>R3>R4の関係を満足する。抵抗1
7,18,19,20は演算増幅器12のリミツ
タとして作用するもので、その一端はそれぞれ各
スイツチa2,b2,c2,d2を介して、ダイオード2
1のアノードに接続され、ダイオード21のカソ
ードは演算増幅器12の出力側に接続され、抵抗
17,18,19,20の他端は共通接続され
て、電源に接続される。上記アナログスイツチ1
1、各抵抗13〜17により第1制御手段を構成
するもので、前述の乗員数検知スイツチ部の出力
と、設定温度TDと内気温度trとの差とにもとづ
きあらかじめ設定された特性で変化する信号を出
力する。その特性とは、つぎのとおりである。す
なわち、設定温度TDと内気温度trとの差の増加
に伴ない内外気切換ドアより導入される外気を所
定の値まで漸増することとし、かつ乗員数の増加
に伴なつてその漸増割合及び上記値を大きくする
特性である。22は室温設定可変抵抗であり、こ
の可変抵抗22の出力は抵抗23を介して、演算
増幅器24の反転入力側に接続され、また、内気
温度センサ25の出力は抵抗26を介して、演算
増幅器24の非反転入力側に接続され、この演算
増幅器24の出力は演算増幅器12の非反転入力
側に供給される。なお、演算増幅器24の非反転
入力側には抵抗27と28との分圧電圧が抵抗2
9を介して供給される。 抵抗30に現われる演算増幅器12の出力V2
は抵抗31,32を介して演算増幅器33の非反
転入力側に供給され、また、上記風量検出用とし
ての可変抵抗器10の出力V3は演算増幅器33
の反転入力側に供給され、この演算増幅器33の
出力はダイオード34を介して増幅トランジスタ
35のベース側に供給される。なお、演算増幅器
33のフイードバツクループにはコンデンサ36
と抵抗37との並列回路が接続される。上記トラ
ンジスタ35の出力は内外気切換ドア制御用のア
クチユエータ38に供給される。上記演算増幅器
33は、風圧ドア7の回動角検出部(外気導入風
量の検出部)の出力と上記第1制御手段の出力と
の差にもとづき上記アクチユエータを制御して内
外気切換ドアの開度を調整するもので、これによ
り内外気切換ドアは、第1制御手段の出力に見合
う開度に設定される。 上気内気センサ25の出力は抵抗39を介し
て、演算増幅器40の反転入力側に供給され、外
気センサ41の出力は抵抗42を介して、演算増
幅器40の非反転入力側に供給され、この演算増
幅器40の出力はダイオード43を介して、トラ
ンジスタ35のベース側及びノア回路44の一端
に供給され、ノア回路44の他方の入力側には冷
房用スイツチ45の信号が反転回路46を介して
供給される。このノア回路44の出力はリレー4
7を制御するトランジスタ48のベースに供給さ
れ、リレー47の接点49はエバポレータ温度検
出用スイツチ50を介してコンプレツサ駆動用電
磁クラツチ51に接続される。なお、52は抵
抗、53はダイオードである。 以上の構成による車輌用空気調和装置の動作に
つき、第3図に示すフローチヤート及び第6図
a,b,cの特性図を用いて説明する。 まず、冷房用スイツチ45がオンの場合におい
て、内気温度Trが外気温度Taより高いと(第6
図a区間1)、内気温度センサ25の出力が小さ
く、外気温度センサ41の出力が大きいので演算
増幅器40の出力はHレベルとなつて、トランジ
スタ35がオンとなり、アクチユエータ38が内
外気切換ドア4の回動角度θを最大とする。一
方、反転回路46の出力と関係なくノア回路44
の出力はLレベルとなるので、トランジスタ48
はオフで、電磁クラツチ51は励磁されず、この
ためコンプレツサは作動しない。すなわち、例え
ば車輌が炎天下に放置されて内気温度が外気温度
よりも高い場合は、外気が100%導入されて、こ
れにより内気の追い出しが行われて、内気温度は
外気温度まで低下する。このときは、コンプレツ
サはオフであり冷却は行われない。従つて、外気
導入だけで温度低下が行なわれるのでコンプレツ
サの省動力化を図ることができる。 つぎに、上記外気導入により内気温度Trが外
気温度Taよりも低くなると、演算増幅器40の
出力はLレベルとなり、ノア回路44の出力はH
レベルとなるのでコンプレツサが駆動され、冷房
が行われる。 一方、演算増幅器12につき詳述すると、乗員
数nが4でスイツチS1,S2がオンの場合、アナロ
グスイツチ11の入力A,BはLレベルとなり、
アナログスイツチ11の動作は次表の如く、スイ
ツチa1,a2のみがオンとなり、演算増幅器12に
対して抵抗16,20が作用し、また、
The present invention relates to a vehicle air conditioner, and particularly to control of the amount of outside air introduced. Generally, air conditioners for vehicles cool and heat the inside and outside air introduced into the duct using an inside/outside air switching door, adjust the mixing ratio of cold air and warm air, and then blow it out from the mode outlet. It is something. Conventionally, the amount of outside air introduced is controlled regardless of the number of passengers, so for example, when the number of passengers is small, more outside air than necessary is introduced, resulting in a large cooling load, which reduces the compressor and the engine that drives it. This has the disadvantage of placing an unreasonable burden on the occupants, which hinders the realization of low fuel consumption, and also has the disadvantage of causing insufficient ventilation when there are many occupants, causing discomfort to the occupants. For this reason, a technical concept for controlling the amount of outside air introduced according to the number of passengers is disclosed in Japanese Patent Application Laid-open No. 13744/1983. However, in order to apply this technology to automobiles, it is necessary to make further improvements. An object of the present invention is to provide a detection unit that detects the number of occupants, adjust the rotation angle of the inside/outside air switching door according to the number of occupants, and control the amount of outside air introduced in relation to the amount of air blown. The above drawbacks are eliminated by controlling the compressor based on the temperature of the inside and outside air, and will be explained in detail below using examples. FIG. 1 is a circuit diagram showing an embodiment of the vehicle air conditioner according to the present invention, and as shown in FIG.
The rotation angle θ of the inside/outside air switching door 4 located between
is automatically adjusted according to the number of passengers and the amount of air introduced from the outside air port 2. The number of occupants mentioned above is detected by a switch S 1 installed in the passenger seat of the vehicle and a switch S 2 installed in the rear seat. These switches S 1 and S 2 constitute a passenger number detection switch section, and the switch When only S1 is on, it means that there is a person in the passenger seat, and the number of occupants is calculated assuming that there are two people including the driver. When only switch S2 is on, it is calculated that there are two people in the rear seats for convenience, so the total number of passengers is three.
Therefore, when both switches S 1 and S 2 are on, there are 4 people,
When both are off, there is only one person. In addition, the amount of air introduced from the outside air port 2 is controlled by a wind pressure door 7 which rotates around a shaft 5 and is pulled in one direction by a spring 6.
The rotation angle is detected by a rotation angle detection section 8, and the detection section 8 is constituted by a variable resistor 10 whose variable terminal 9 is interlocked with the door 7. That is, when the wind pressure door 7 rotates against the spring 6 due to the wind pressure introduced from the outside air port 2, the output V 3 of the variable resistor 10
becomes larger. The signals of switches S 1 and S 2 are analog switches 11
This analog switch 11 has switches a 1 and a 2 , switches b 1 and b 2 , switches c 1 and c 2 , and switches d 1 and d 2 that operate in conjunction with each other, and the switches a 1 ,
One end of b 1 , c 1 , d 1 is commonly connected to the inverting input side of operational amplifier 12, and the other end is connected to operational amplifier 1, respectively.
Resistor 13,1 as feedback resistance of 2
4, 15, 16, resistors 17, 18, 1
9 and 20. In addition, the resistor 13,
Each resistance value of 14, 15, 16 R 11 , R 12 , R 13 , R 14
satisfies the relationship R 11 < R 12 < R 13 < R 14 , and the resistance is 1
Resistance values of 7, 18, 19, 20 R 1 , R 2 , R 3 , R 4
satisfies the relationship R 1 > R 2 > R 3 > R 4 . resistance 1
7, 18, 19, 20 act as a limiter for the operational amplifier 12, one end of which is connected to the diode 2 through each switch a 2 , b 2 , c 2 , d 2 .
The cathode of the diode 21 is connected to the output side of the operational amplifier 12, and the other ends of the resistors 17, 18, 19, and 20 are commonly connected and connected to a power source. Analog switch 1 above
1. Each of the resistors 13 to 17 constitutes a first control means, which changes according to preset characteristics based on the output of the aforementioned passenger number detection switch section and the difference between the set temperature T D and the inside air temperature tr. Outputs a signal to Its characteristics are as follows. That is, as the difference between the set temperature T D and the inside air temperature tr increases, the outside air introduced from the inside/outside air switching door is gradually increased to a predetermined value, and as the number of passengers increases, the rate of gradual increase and This is a characteristic that increases the above value. 22 is a room temperature setting variable resistor, the output of this variable resistor 22 is connected via a resistor 23 to the inverting input side of an operational amplifier 24, and the output of the inside air temperature sensor 25 is connected via a resistor 26 to the operational amplifier 24. The output of the operational amplifier 24 is supplied to the non-inverting input of the operational amplifier 12. Note that the divided voltage of resistors 27 and 28 is connected to the non-inverting input side of the operational amplifier 24.
9. Output V 2 of operational amplifier 12 appearing at resistor 30
is supplied to the non-inverting input side of the operational amplifier 33 via resistors 31 and 32, and the output V 3 of the variable resistor 10 for air volume detection is supplied to the operational amplifier 33.
The output of this operational amplifier 33 is supplied to the base side of an amplification transistor 35 via a diode 34. Note that a capacitor 36 is connected to the feedback loop of the operational amplifier 33.
A parallel circuit of the resistor 37 and the resistor 37 is connected. The output of the transistor 35 is supplied to an actuator 38 for controlling the inside/outside air switching door. The operational amplifier 33 controls the actuator to open the inside/outside air switching door based on the difference between the output of the rotation angle detection section (detection section of the amount of outside air introduced) of the wind pressure door 7 and the output of the first control means. This adjusts the degree of opening of the inside/outside air switching door, thereby setting the opening degree of the inside/outside air switching door to match the output of the first control means. The output of the upper air inside air sensor 25 is supplied to the inverting input side of the operational amplifier 40 via a resistor 39, and the output of the outside air sensor 41 is supplied to the non-inverting input side of the operational amplifier 40 via a resistor 42. The output of the operational amplifier 40 is supplied to the base side of the transistor 35 and one end of the NOR circuit 44 via the diode 43, and the signal from the cooling switch 45 is supplied to the other input side of the NOR circuit 44 via the inverting circuit 46. Supplied. The output of this NOR circuit 44 is relay 4
A contact 49 of the relay 47 is connected to an electromagnetic clutch 51 for driving the compressor via an evaporator temperature detection switch 50. Note that 52 is a resistor and 53 is a diode. The operation of the vehicle air conditioner having the above configuration will be explained using the flowchart shown in FIG. 3 and the characteristic diagrams shown in FIGS. 6a, b, and c. First, when the cooling switch 45 is on, if the inside air temperature Tr is higher than the outside air temperature Ta (sixth
In section 1) of the figure a, the output of the inside air temperature sensor 25 is small and the output of the outside air temperature sensor 41 is large, so the output of the operational amplifier 40 becomes H level, the transistor 35 is turned on, and the actuator 38 is activated to open the inside/outside air switching door 4. Maximize the rotation angle θ. On the other hand, regardless of the output of the inverting circuit 46, the NOR circuit 44
Since the output of transistor 48 is at L level,
is off and the electromagnetic clutch 51 is not energized, so the compressor is not activated. That is, for example, if the vehicle is left in the hot sun and the inside air temperature is higher than the outside air temperature, 100% of the outside air is introduced, this causes the inside air to be expelled, and the inside air temperature drops to the outside temperature. At this time, the compressor is off and no cooling is performed. Therefore, the temperature can be lowered simply by introducing outside air, so that the power consumption of the compressor can be reduced. Next, when the inside air temperature Tr becomes lower than the outside air temperature Ta due to the outside air introduced, the output of the operational amplifier 40 becomes L level, and the output of the NOR circuit 44 becomes H level.
level, the compressor is driven and cooling is performed. On the other hand, in detail regarding the operational amplifier 12, when the number of passengers n is 4 and the switches S 1 and S 2 are on, the inputs A and B of the analog switch 11 are at L level,
The operation of the analog switch 11 is as shown in the following table, only switches a 1 and a 2 are turned on, resistors 16 and 20 act on the operational amplifier 12, and

【表】 乗員数nが3の場合、スイツチb1,b2のみがオン
となつて抵抗15,19が作用し、乗員数nが2
の場合、スイツチc1,c2のみがオンとなつて抵抗
14,18が作用し、乗員数nが1の場合スイツ
チd1,d2のみがオンとなつて、抵抗13,17が
作用する。従つて、内気温度TrがTaよりも次第
に小さくなることにより、(室温設定温度Td―内
気温度Tr)が次第に大きくなると、内気センサ
25の出力が次第に大きくなり、演算増幅器24
の出力V1が第4図に示す如く、例えば冷房運転
で通常−3℃を起点として次第に大きくなる。従
つて演算増幅器12の非反転入力側には、この電
圧V1が供給されるので、演算増幅器12の出力
V2は第5図の如く−3を起点として傾斜し、一
定値において、ダイオード21がオンとなること
からその出力V2は飽和することとなるが、その
傾斜角及び飽和電圧の値は作用する抵抗13ない
し16及び抵抗17ないし20に応じて変化し、
例えば乗員1名(運転者のみ)の場合はTd―Tr
の変化に伴いTd―Tr=−3を起点として電圧V2
は最も緩やかに傾斜した後、Td―Tr=0で電圧
V1で飽和する。 これにより、温度TrがTaより低くなり、しか
も、(Td−Tr)<−3となり、第6図でTr≧Td
+3を満足すれば(区間m)、乗員が何名であつ
ても第5図の特性より明らかなように出力V2
0であるので、演算増幅器33の出力は0で、ト
ランジスタ35はオフ、これによりアクチユエー
タ38は作動せず、内外気切換ドアの回動角度θ
は0となつて外気は導入されず、コンプレツサの
みが作動する。内気温度Trがさらに低下するこ
とによりTr≦Td+3を満足し、かつTr>Td
(区間n)では出力V2は第5図に示す如く、次第
に大きくなる。このため仮に風量検出用の可変抵
抗器10の出力V3を一定とすれば、演算増幅器
33の出力も次第に大きくなるので、トランジス
タ35の出力が大きくなり、アクチユエータ38
が制御されて、内外気切換ドア4の回動角度θが
次第に大きくなり、この回動角度θの変化割合
は、出力V2が第5図で示す如く、乗員数に依存
することから、同様に乗員数に依存することにな
る。すなわち、乗員数が多くなれば、この回動角
θは急激に大きくなる。また、上記条件のもとに
Tr≦Td(区間0)では出力V2は飽和し、この飽
和レベルは乗員数に依存するので、回動角度θの
最大値もこれに依存して設定され、例えば乗員数
が多くなれば、この回動角度θの最大値は大きく
なり、多量の外気が導入される。すなわち、乗員
数に見合つて外気導入量が調整される。 つぎに、演算増幅器33の反転入力側には風量
検出用の可変抵抗器10の出力V3が供給され、
この出力V3は外気口2への空気導入量が大きい
と大きくなる。従つて、例えば送風機の回転数が
大きく設定されており、外気導入量が大きい場合
演算増幅器33の出力を小さくするように作用す
る。従つて、乗員数が多く、外気導入量を大きく
するような出力V2が演算増幅器12より送出さ
れても、その時点での外気導入量が大きければ、
その出力V2に補正が加えられるので、所定の外
気が導入されることになる。 以上の如く本実施例によれば、Tr>Ta(区間
1)では外気が100%導入され、コンプレツサは
停止となり、Tr<TaでTr>Td+3(区間m)
では外気は導入されず、コンプレツサオンとな
り、Tr<Td+3でTr>Td(区間n)では外気
が次第に導入され、この導入割合は乗員数n及び
現在の外気導入風量に依存し、Tr<Td(区間
o)で外気導入量は一定値に飽和し、この飽和値
は乗員数及び空気導入風量に依存する。このため
に、第6図cで示す如く、省動力可能部分Pを得
ることができるとともに、換気量を適切に設定で
きるので、乗員に快適感を与えることができる。 なお、本発明においては乗員数nと送風機回転
数Vとをフアクターとする内外気切換ドアの回動
角θの制御特性f(n,v)を第7図に示す如く
設定し、記憶素子に記憶しておき、両フアクター
を検出することにより、この特性f(n,v)に
したがつて、回動角θを調整するようにしてもよ
い。なお、送風機回転数Vをフアクターとするの
は、例えば送風機の回転数が上昇し、外気が必要
以上に導入されるのを防止するためである。 以上説明したように本発明によれば、乗員数に
応じて内外気切換ドアを制御し、外気導入量を調
整するようにしたので、例えば乗員数に見合つて
外気が導入され、コンプレツサに無理に負担がか
からないので省動力化が図れ、また換気が必要量
行われるので乗員に快適感を与えることができ
る。
[Table] When the number of occupants n is 3, only switches b 1 and b 2 are turned on, resistors 15 and 19 act, and the number of occupants n is 2.
In the case of , only switches c 1 and c 2 are turned on and resistors 14 and 18 act, and when the number of passengers n is 1, only switches d 1 and d 2 are turned on and resistors 13 and 17 act. . Therefore, when the inside air temperature Tr gradually becomes smaller than Ta and (room temperature set temperature Td - inside air temperature Tr) gradually increases, the output of the inside air sensor 25 gradually increases, and the operational amplifier 24
As shown in FIG. 4, the output V 1 of the air conditioner normally increases gradually from -3 DEG C. during cooling operation, for example. Therefore, since this voltage V 1 is supplied to the non-inverting input side of the operational amplifier 12, the output of the operational amplifier 12
As shown in Fig. 5, V 2 slopes from -3 as the starting point, and at a certain value, the diode 21 turns on, so its output V 2 becomes saturated, but the slope angle and the value of the saturation voltage depend on the effect. varies depending on the resistances 13 to 16 and the resistances 17 to 20,
For example, if there is one occupant (driver only), Td-Tr
As the voltage changes, the voltage V 2 starts from Td-Tr=-3.
is the most gentle slope, then the voltage at Td-Tr=0
Saturation occurs at V 1 . As a result, the temperature Tr becomes lower than Ta, and (Td-Tr)<-3, so in Fig. 6, Tr≧Td
If +3 is satisfied (section m), no matter how many people are on board, the output V 2 is 0, as is clear from the characteristics shown in Figure 5, so the output of the operational amplifier 33 is 0, and the transistor 35 is turned off. , As a result, the actuator 38 does not operate, and the rotation angle θ of the inside/outside air switching door
becomes 0, outside air is not introduced, and only the compressor operates. By further lowering the inside air temperature Tr, Tr≦Td+3 is satisfied, and Tr>Td
In (section n), the output V 2 gradually increases as shown in FIG. For this reason, if the output V 3 of the variable resistor 10 for detecting air flow rate is kept constant, the output of the operational amplifier 33 will gradually increase, so the output of the transistor 35 will increase, and the actuator 38
is controlled, and the rotation angle θ of the inside/outside air switching door 4 gradually increases, and the rate of change in this rotation angle θ is the same, since the output V 2 depends on the number of occupants as shown in FIG. It will depend on the number of passengers. That is, as the number of passengers increases, this rotation angle θ increases rapidly. Also, under the above conditions
In Tr≦Td (section 0), the output V 2 is saturated, and this saturation level depends on the number of passengers, so the maximum value of the rotation angle θ is also set depending on this. For example, if the number of passengers increases, The maximum value of this rotation angle θ becomes large, and a large amount of outside air is introduced. That is, the amount of outside air introduced is adjusted according to the number of passengers. Next, the output V 3 of the variable resistor 10 for air volume detection is supplied to the inverting input side of the operational amplifier 33.
This output V 3 increases as the amount of air introduced into the outside air port 2 increases. Therefore, for example, when the rotation speed of the blower is set high and the amount of outside air introduced is large, the output of the operational amplifier 33 is reduced. Therefore, even if the number of passengers is large and the output V 2 that increases the amount of outside air introduced is sent from the operational amplifier 12, if the amount of outside air introduced at that time is large,
Since the output V 2 is corrected, a predetermined amount of outside air is introduced. As described above, according to this embodiment, when Tr>Ta (section 1), 100% outside air is introduced and the compressor is stopped, and when Tr<Ta, Tr>Td+3 (section m).
At Tr<Td+3, outside air is gradually introduced at Tr>Td (section n), and this introduction ratio depends on the number of passengers n and the current outside air intake air volume, and when Tr<Td In (section o), the amount of outside air introduced is saturated to a constant value, and this saturation value depends on the number of passengers and the amount of air introduced. For this reason, as shown in FIG. 6c, it is possible to obtain a power-saving portion P, and the amount of ventilation can be appropriately set, so that a feeling of comfort can be given to the occupant. In the present invention, the control characteristic f(n, v) of the rotation angle θ of the internal/external air switching door is set as shown in FIG. 7, with the number of occupants n and the fan speed V as factors, and the The rotation angle θ may be adjusted in accordance with this characteristic f(n, v) by storing it and detecting both factors. Note that the reason why the blower rotation speed V is used as a factor is to prevent, for example, the blower rotation speed from increasing and introducing more outside air than necessary. As explained above, according to the present invention, the outside air switching door is controlled according to the number of passengers, and the amount of outside air introduced is adjusted. Since there is no burden on the vehicle, power can be saved, and the required amount of ventilation is provided, providing a sense of comfort to the occupants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による車輌用空気調和
装置の一実施例を示す回路図及び簡略構成図、第
3図ないし第6図は本発明による車輌用空気調和
装置の動作を説明するためのフローチヤート及び
特性図、第7図は本発明による車輌用空気調和装
置の他の実施例を示す特性図である。 S1,S2……スイツチ、2……外気口、3……内
気口、4……内外気切換ドア、7……風圧ドア、
8……回動角検出部、11……アナログスイツ
チ、12,24,33,40……演算増幅器、2
5……内気センサ、38……アクチユエータ、4
1……外気センサ、51……電磁クラツチ。
1 and 2 are circuit diagrams and simplified configuration diagrams showing an embodiment of the vehicle air conditioner according to the present invention, and FIGS. 3 to 6 explain the operation of the vehicle air conditioner according to the present invention. FIG. 7 is a characteristic diagram showing another embodiment of the vehicle air conditioner according to the present invention. S 1 , S 2 ... switch, 2 ... outside air port, 3 ... inside air port, 4 ... inside and outside air switching door, 7 ... wind pressure door,
8... Rotation angle detection section, 11... Analog switch, 12, 24, 33, 40... Operational amplifier, 2
5... Inside air sensor, 38... Actuator, 4
1... Outside air sensor, 51... Electromagnetic clutch.

Claims (1)

【特許請求の範囲】[Claims] 1 内気外気の導入量を調整する内外気切換ドア
と、この内外気切換ドアを駆動するアクチユエー
タと、乗員数検知スイツチ部と、この乗員数検知
スイツチ部の出力と、設定温度と内気温度との差
とにもとづきあらかじめ設定された特性で変化す
る信号を出力する第1制御手段と、外気の導入風
量を検出する検出部の出力と上気第1制御手段の
出力との差にもとづき上記アクチユエータを制御
して内外気切換ドアの開度を調整する第2制御手
段とを具備し、上記第1制御手段は設定温度と内
気温度との差の増加に伴ない内外気切換ドアより
導入される外気を所定の値まで漸増することと
し、かつ乗員数の増加に伴なつてその漸増割合及
び上記値を大きくする特性を有することを特徴と
する車輌用空気調和装置。
1. An inside/outside air switching door that adjusts the amount of inside and outside air introduced, an actuator that drives the inside/outside air switching door, a number of occupants detection switch, an output of this number of occupants detection switch, a set temperature and an inside air temperature. a first control means that outputs a signal that changes with preset characteristics based on the difference; and a first control means that outputs a signal that changes with a preset characteristic based on the difference, and a first control means that operates the actuator based on the difference between the output of the detection section that detects the amount of introduced outside air and the output of the first upper air control means. a second control means for controlling and adjusting the opening degree of the inside/outside air switching door; What is claimed is: 1. An air conditioner for a vehicle, characterized in that the air conditioner is gradually increased to a predetermined value, and the rate of gradual increase and the above value are increased as the number of passengers increases.
JP7156480A 1980-05-30 1980-05-30 Air conditioner for vehicle Granted JPS57906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7156480A JPS57906A (en) 1980-05-30 1980-05-30 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156480A JPS57906A (en) 1980-05-30 1980-05-30 Air conditioner for vehicle

Publications (2)

Publication Number Publication Date
JPS57906A JPS57906A (en) 1982-01-06
JPS6241130B2 true JPS6241130B2 (en) 1987-09-01

Family

ID=13464327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156480A Granted JPS57906A (en) 1980-05-30 1980-05-30 Air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JPS57906A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161034U (en) * 1982-04-21 1983-10-26 株式会社日本トライ Fixing device for handrails between handrails and supports
JPS62135735U (en) * 1986-02-20 1987-08-26
JPS63242710A (en) * 1987-03-31 1988-10-07 Nissan Shatai Co Ltd Inner and outer air introduction control structure for automatic control air conditioner
CN107860096A (en) * 2017-09-20 2018-03-30 珠海格力电器股份有限公司 Air supply speed determination method and device, storage medium and air conditioner

Also Published As

Publication number Publication date
JPS57906A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
JPS5948168B2 (en) Control method for vehicle air conditioner
JPS6140567B2 (en)
JPH0454051B2 (en)
JP3180306B2 (en) Vehicle air conditioner
US4875624A (en) Air conditioner system for automotive vehicle
JPS6241130B2 (en)
JPH05162533A (en) Air conditioner for vehicle
JPS6310322Y2 (en)
JP3265611B2 (en) Vehicle air conditioner
JPS6240812Y2 (en)
JPS5822712A (en) Controller of air conditioner for vehicle
JPH07237432A (en) Method to control air conditioner for electric automobile
JPS5841205B2 (en) Control method and device for hot water cock and air mix door in automatic air conditioner
JPS58118411A (en) Air quantity control method and its device for car air conditioning
JPS638483Y2 (en)
JP2817271B2 (en) Vehicle air conditioner
JP3024772B2 (en) Automotive air conditioners
KR200389065Y1 (en) Atc for damper control of car
JP2002036848A (en) Air conditioner for vehicle
JPS5851049Y2 (en) Temperature control device for vehicle cooling system
JPH0213205Y2 (en)
JPH0525931Y2 (en)
JPS6022516A (en) Controller of car air conditioner
JPS632804B2 (en)
JPH0478489B2 (en)