JPS6237617B2 - - Google Patents

Info

Publication number
JPS6237617B2
JPS6237617B2 JP53123671A JP12367178A JPS6237617B2 JP S6237617 B2 JPS6237617 B2 JP S6237617B2 JP 53123671 A JP53123671 A JP 53123671A JP 12367178 A JP12367178 A JP 12367178A JP S6237617 B2 JPS6237617 B2 JP S6237617B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
temperature
olefin
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53123671A
Other languages
Japanese (ja)
Other versions
JPS5461130A (en
Inventor
Arufusu Herumuuto
Beemu Georuku
Shutaineru Haintsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huels AG
Original Assignee
Chemische Werke Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemische Werke Huels AG filed Critical Chemische Werke Huels AG
Publication of JPS5461130A publication Critical patent/JPS5461130A/en
Publication of JPS6237617B2 publication Critical patent/JPS6237617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエノールを炭素原子数3〜4のオ
レフインにて、前後に接続された2つの反応域に
て液相中で触媒としての強酸性イオン交換樹脂の
存在下に高温のもとでアルキル化することによつ
てp−アルキルフエノール類を製造する方法に関
する。 フエノールを酸あるいはルイス酸、例えば硫酸
または三弗化硼素の存在下にアルキル化すること
は公知である。かかる触媒を使用するには、例え
ば耐腐食性の装置が必要とされ、更に生じる生成
物は必要とされる純度で得られず且つ所望の色品
質を有していない。 従つて近頃ではアルキル化する為に、H−型の
強酸性イオン交換樹脂、特にスルホン化イオン交
換樹脂、例えばフエノール−ホルムアルデヒド樹
脂またはポリスチレン樹脂を基体とするスルホン
化イオン交換樹脂等も用いられている。確かに高
い空時収率が得られるが、しかし顕著な発熱反応
の局所的過剰加熱を確実に除くことができない。
これによつて、後で用いるのに不適当な汚染され
た−特に変色した−アルキル−フエノールが生ず
る。更にイオン交換樹脂が損傷される。 ドイツ特許出願公開第1443346号明細書(=オ
ーストラリア特許第259106号明細書)の方法の場
合、オレフイン、フエノールおよび形成されるア
ルキル−フエノールより成る反応混合物を熱交換
器を通して反応器に循環供給しそして部分的にの
みアルキル化し、その時にオレフインおよびフエ
ノール類の新しい流入量に相当する量を引き出し
そして第2番目の段階で更に反応させることによ
つて局所的過剰加熱を回避している。この方法の
場合、反応成分の循環供給の為におよび目的生成
物の分解あるいは変色をもたらす熱負荷の為に費
用が掛かることが欠点である。更に、この方法に
よつたのでは、僅かな空時収率しか得ることがで
きない。 米国特許第3257467号明細書によれば、フエノ
ール類はオレフインにて、強酸性イオン交換樹脂
の存在下に断熱式反応器中で唯一の反応段階にて
アルキル化される。局所的過剰加熱によつて触媒
が早くから損傷しやすい。この方法の場合には更
に、同様に不満足な空時収率しか得ることができ
ない。 ドイツ特許出願公開第2526644号明細書の方法
の場合には、液状の反応混合物中に懸濁させた
100〜200μmの粒度の陽イオン交換体を用いて行
つている。この方法の場合に反応熱の良好な搬出
を期待通り行えたとしても、p−アルキル化化合
物の収率に関しては満足できない。 これらの全ての方法は、生ずるアルキル−フエ
ノール類が続く反応生成物の蒸溜処理の際に触媒
から発生する不純物の為に恐らく出発化合物に分
解してしまうという共通の欠点を有している。こ
れによつて収率が減少してしまうだけでなく、特
に易揮発性のオレフインが生ずる場合には、後処
理が著しく困難である程の蒸溜段階での減圧妨害
が生じうる。 従つて本発明の課題は、高い選択性および高い
空時収率にて、申し分なく後処理できる品質的に
高価値のp−アルキルフエノールを製造すること
を許容する、炭素原子数3〜4のオレフインとフ
エノールとからのp−アルキルフエノールの製造
方法を見出すことにある。 この課題は特許請求の範囲第1項に記載の方法
によつて解決される。 最初の反応段階においてはオレフインを気体状
でフリツト、篩プレートおよびその他の適当な分
配装置を通して反応混合物中に導入する。これに
よつて反応器内容物の激しい混合が達成されそし
て触媒は浮遊状態に維持される。該オレフイン−
ガスは、25/mol(オレフイン)の分子容のオ
レフイン空の反応器の自由横断面積当り3〜20
cm/秒のガス速度でオレフインを反応混合物中に
下方から導入するべきである。3cm/秒より下で
はm−アルキル−フエノールの割合が著しく増加
し、20cm/秒より上では反応混合物中に障害とな
る皿状の泡が生ずることを覚悟しなければならな
い。しかしながら、出来るだけ速いガス速度のも
とで行うのが有利である。 第1番目の段階の反応は80〜140℃の温度で行
う、但し100〜120℃の温度範囲が有利である。な
ぜならば、上記範囲が反応速度および副生成物の
発生にとつて特に有利であるからである。80℃よ
り下では著しく副生成物が発生し、140℃より上
では触媒が熱で損傷する可能性が増大する。 触媒としては、公知の有機系のスルホン酸系−
陽イオン交換体、例えばスルホン酸−フエノール
ホルムアルデヒド−またはベンゼン−ホルムアル
デヒド−樹脂、架橋したスルホン化スチレン重合
体および特に有利にはスルホン化ポリスチレン−
ジビニル−ベンゼン樹脂が用いられる。これらの
樹脂はゲル状構造を有していてもよいが、マクロ
網状(マクロ多孔質)構造の樹脂が有利である。
触媒の粒度は反応には影響しない。但しこれは勿
論、触媒が前述のガス速度のもとで浮遊状態であ
ればという仮定のもとでである。これは、0.3〜
1mmの通常の粒度を有し容易に入手しうる市販の
触媒に当てはまる。更に大きな粒度の触媒を用い
るべき場合には、触媒の浮遊状態が達成されるか
どうかを簡単な予備実験によつて明らかにするこ
とができる。イオン交換樹脂は酸の形で乾燥状態
で用いる。130〜180mVal/100cm3の交換能力を有
する市販の酸性イオン交換樹脂を用いる場合に
は、反応生成物の蒸留処理の際に出発生成物に分
解する傾向が確認されている。70〜120mVal/
100cm3、特に110mVal/100cm3の能力しか有さない
減力したイオン交換体を用いた場合に、かかる分
解が実質的に姿を消したことを見出し得たことは
驚くべきことである。70mVal/100cm3より下では
本方法の経済性が著しく減退しそして副生成物が
著しく形成される。水で湿つた新しいイオン交換
樹脂を相応する量の硫酸アルミニウム、硫酸亜
鉛、硫酸錫等の如き塩で処理し、洗浄して中和し
そして乾燥した場合に、かかる減力した触媒が得
られる。乾燥は、ベンゼン、シクロヘキセン、ト
ルエン等の如き共沸剤と共沸させて水を除くこと
によつて行うのが有利である。触媒の含有水が周
知の通り触媒活性を減少せしめるので、触媒中の
残留水分は0.5%以下とするようにつとめる。 反応の際、過剰のフエノールを用いて行うのが
合目的的である。化学量論量でも行うことができ
るが、その場合には望ましくない多量のジアルキ
ルフエノールが生じる。フエノール:オレフイン
実地において用いるモル比は約1.3:1〜3:1
であり、3:1のモル比より上では追加的効果が
全く生じず且つフエノールを蒸留する為に多大な
費用が掛かる。特に有利なモル比は約2:1であ
る。 本方法はオレフインが気体状態を留めている限
り、任意の圧力のもとで実用することができる。
しかしながら、常圧あるいは流れ抵抗に打ち勝つ
に充分である程の僅かな過剰圧が有利である。 最初の方法段階からの生成物は触媒の分離後に
第2番目の方法段階に入つていく。触媒の分離は
最初の方法段階に於いてろうそく状濾過器、濾板
およびこれらの類似物によつて行なえるが、反応
器は、触媒域の上方に触媒不含の生成物を引き出
すことのできる静かな触媒不含液体域が生ずる程
に高く構成されていることも可能である。80〜
140℃、特に120℃の温度で運転される第2番目の
反応域においては最初の方法段階からの生成物
を、どちらにしても非常に僅かな割合の0−アル
キル−および2,4−ジアルキルフエノールを所
望のP−アルキルフエノールに転化するために、
最初の方法段階と同じ交換能力の固定触媒での後
反応に委ねる。第2番目の反応域に於ける滞留時
間は殊に約0.5〜2時間であるべきせあり、最初
の反応域に於ては1〜3時間の滞留時間が有利で
ある。しかしながら更に長い反応時間であつても
生成物にマイナスの影響はない。 本発明の方法に従つて製造されたP−アルキル
フエノール類は、安定剤、老化防止剤、薬剤等を
製造する為の重要な原料である。例えば、キル
ク・オスマ(Kirk Othmer)の“エンサイクル
ロペデイア・オブ・ケミカル・テクノロジー
(Encykulopedia of Chemical Technology)”第
2版、第1巻、第901〜916頁あるいは“ウルマン
ス・エンサイクロペデイエ・デア・テヒニシエ・
シエミーエ(Ullmanns Encyclopaedie der
Technischen Che−mie)”、第13巻、第440〜447
頁(1962年)を参照されたい。 実施例 1 この実施例は最初の反応域に於けるガス速度の
影響を実証している。 3cmの内径および100cmの高さを有する反応器
中に、110mVal/100cm3の能力を有する乾燥した
マクロ多孔質のイオン交換樹脂を充填する。この
触媒は0.3〜1mmの粒度を有している。反応器に
フエノールを充填し、次いで115℃の反応温度の
もとで、反応器の底部にあるガラス製フリツター
を通して色々な量のフエノールとイソブチレンを
添加する。静止状態を実現した後に、反応器の頂
部から引き出した生成物(実験a〜c)は第1表
から判る組成(フエノール不含有として計算し
た)を有している。更に速り反応速度のもう一つ
の実験dを、同じ反応温度のもとで同じ触媒を用
いて、内径70cm、高さ450cmであり且つ200Kgのイ
オン交換樹脂を含有している反応器中で実施す
る。こ結果も同様に第1表から知ることができ
る。
In the present invention, phenol is converted into an olefin having 3 to 4 carbon atoms in the liquid phase in two reaction zones connected in front and back to form an alkyl compound at high temperature in the presence of a strongly acidic ion exchange resin as a catalyst. The present invention relates to a method for producing p-alkylphenols by It is known to alkylate phenols in the presence of acids or Lewis acids such as sulfuric acid or boron trifluoride. The use of such catalysts requires, for example, corrosion-resistant equipment and, moreover, the resulting products are not obtained in the required purity and do not have the desired color quality. Therefore, recently, H-type strongly acidic ion exchange resins, especially sulfonated ion exchange resins, such as sulfonated ion exchange resins based on phenol-formaldehyde resins or polystyrene resins, have recently been used for alkylation. . High space-time yields are indeed obtained, but the local overheating of the pronounced exothermic reaction cannot be reliably excluded.
This results in contaminated - especially discolored - alkyl-phenols which are unsuitable for later use. Furthermore, the ion exchange resin is damaged. In the process of DE 1443346 (=Australian Patent No. 259106), the reaction mixture consisting of olefin, phenol and the alkyl-phenol formed is recycled to the reactor through a heat exchanger and Local overheating is avoided by only partially alkylating and then drawing off amounts of olefins and phenols corresponding to the new inflow and reacting further in a second stage. A disadvantage of this process is that it is expensive due to the circulation of the reaction components and the heat load which can lead to decomposition or discoloration of the target product. Furthermore, only low space-time yields can be obtained using this method. According to US Pat. No. 3,257,467, phenols are alkylated with olefins in a single reaction step in an adiabatic reactor in the presence of a strongly acidic ion exchange resin. Catalysts are susceptible to early damage due to localized overheating. Furthermore, in this process only unsatisfactory space-time yields can be obtained. In the case of the method of DE 25 26 644, suspended in a liquid reaction mixture
This is carried out using a cation exchanger with a particle size of 100 to 200 μm. Even if this method achieves good removal of the reaction heat as expected, the yield of the p-alkylated compound is not satisfactory. All these processes have the common drawback that the resulting alkyl-phenols decompose into the starting compounds, possibly due to impurities generated from the catalyst during the subsequent distillation of the reaction products. Not only does this reduce the yield, but also, especially when volatile olefins are produced, it can cause vacuum disturbances in the distillation stage to the extent that work-up is extremely difficult. It was therefore an object of the present invention to prepare p-alkyl phenols having 3 to 4 carbon atoms, which allow the production of qualitatively high-value p-alkylphenols that can be worked up satisfactorily with high selectivity and high space-time yields. The object of the present invention is to find a method for producing p-alkylphenols from olefins and phenols. This problem is solved by the method according to claim 1. In the first reaction stage, the olefin is introduced in gaseous form into the reaction mixture through frits, sieve plates and other suitable distribution devices. This achieves intensive mixing of the reactor contents and keeps the catalyst suspended. The olefin-
The gas has a molecular volume of 25/mol (olefin) of 3 to 20 olefins per free cross-sectional area of the empty reactor.
The olefin should be introduced from below into the reaction mixture at a gas velocity of cm/sec. Below 3 cm/s, the proportion of m-alkylphenol increases significantly, and above 20 cm/s one must be prepared for the formation of disturbing dish-shaped bubbles in the reaction mixture. However, it is advantageous to work at gas velocities as high as possible. The first stage reaction is carried out at a temperature of 80 DEG to 140 DEG C., although a temperature range of 100 DEG to 120 DEG C. is advantageous. This is because the above range is particularly advantageous for the reaction rate and the generation of by-products. Below 80°C, significant by-products are generated, and above 140°C, the possibility of thermal damage to the catalyst increases. As a catalyst, a known organic sulfonic acid-based catalyst can be used.
Cation exchangers, such as sulfonic acid-phenolformaldehyde or benzene-formaldehyde resins, crosslinked sulfonated styrene polymers and particularly preferably sulfonated polystyrene
Divinyl-benzene resin is used. These resins may have a gel-like structure, but resins with a macroreticular (macroporous) structure are advantageous.
The particle size of the catalyst does not affect the reaction. This, of course, assumes that the catalyst is in suspension at the gas velocities mentioned above. This is 0.3~
This applies to readily available commercial catalysts with a typical particle size of 1 mm. If catalysts with larger particle sizes are to be used, simple preliminary experiments can demonstrate whether a floating state of the catalyst is achieved. Ion exchange resins are used dry in acid form. When using commercially available acidic ion exchange resins with an exchange capacity of 130-180 mVal/100 cm 3 , a tendency to decompose into starting products during distillation of the reaction products has been observed. 70~120mVal/
It was surprising to find that such decomposition virtually disappeared when using a reduced ion exchanger having a capacity of only 100 cm 3 and especially 110 mVal/100 cm 3 . Below 70 mVal/100 cm 3 the economics of the process decreases significantly and by-products are formed significantly. Such reduced strength catalysts are obtained when fresh water-moist ion exchange resins are treated with appropriate amounts of salts such as aluminum sulfate, zinc sulfate, tin sulfate, etc., washed, neutralized and dried. Drying is advantageously carried out by removing water by azeotroping with an entrainer such as benzene, cyclohexene, toluene and the like. As it is well known that the water content in the catalyst reduces the catalytic activity, efforts are made to keep the residual water content in the catalyst at 0.5% or less. It is expedient to carry out the reaction with an excess of phenol. Stoichiometric amounts can also be used, but undesirably large amounts of dialkylphenols are then formed. The molar ratio used in phenol:olefin practice is approximately 1.3:1 to 3:1.
Above a molar ratio of 3:1, no additional effect occurs and the phenol is very expensive to distill. A particularly advantageous molar ratio is approximately 2:1. This method can be practiced under any pressure as long as the olefin remains in a gaseous state.
However, normal pressure or a slight excess pressure sufficient to overcome the flow resistance is advantageous. The product from the first process step enters the second process step after separation of the catalyst. Separation of the catalyst can be carried out in the first process step by means of candlestick filters, filter plates and the like, while the reactor can withdraw the catalyst-free product above the catalyst zone. It is also possible to design it so high that a quiet catalyst-free liquid zone occurs. 80~
In the second reaction zone, which is operated at a temperature of 140 DEG C., in particular 120 DEG C., the product from the first process step is treated with a very small proportion of 0-alkyl- and 2,4-dialkyls. To convert the phenol to the desired P-alkylphenol,
It is subjected to an after-reaction with a fixed catalyst of the same exchange capacity as the first process step. The residence time in the second reaction zone should preferably be about 0.5 to 2 hours, while in the first reaction zone residence times of 1 to 3 hours are preferred. However, even longer reaction times have no negative effect on the product. P-alkylphenols produced according to the method of the present invention are important raw materials for producing stabilizers, anti-aging agents, drugs, etc. For example, Kirk Othmer's “Encykulopedia of Chemical Technology” 2nd edition, Volume 1, pp. 901-916 or “Ullmann's Encyclopedia of Chemical Technology”. Der Technicie
Ullmanns Encyclopaedie der
Technischen Che-mie)”, Volume 13, Nos. 440-447
(1962). Example 1 This example demonstrates the effect of gas velocity in the initial reaction zone. A reactor with an internal diameter of 3 cm and a height of 100 cm is filled with a dry macroporous ion exchange resin with a capacity of 110 mVal/100 cm 3 . The catalyst has a particle size of 0.3 to 1 mm. The reactor is charged with phenol and then various amounts of phenol and isobutylene are added through a glass fritter at the bottom of the reactor at a reaction temperature of 115°C. After achieving quiescent conditions, the product withdrawn from the top of the reactor (experiments a to c) has the composition (calculated on the basis of phenol-free content) as can be seen from Table 1. Another experiment d with even faster reaction rates was carried out using the same catalyst at the same reaction temperature in a reactor with an internal diameter of 70 cm and a height of 450 cm and containing 200 Kg of ion exchange resin. do. This result can also be known from Table 1.

【表】【table】

【表】 実施例 2〜7 第2表から判る交換能力を有する92gのマクロ
多孔質の陽イオン交換体が充填されている内径3
cm、高さ100cmのガラス製反応器(最初の反応段
階)中に、1時間当り450gのフエノールおよび
75のイソブチレンを反応器の底部にあるフリツ
トを導して導入する。イソブチレンのガス速度は
80〜130℃でありそしてフエノール:イソブチレ
ンのモル比は1.9:1である。 ガラス製反応器から生ずる生成物(未反応フエ
ノール、o−第3−、m−第3−およびp−第3
−ブチルフエノール並びに2,4−ジ−第3−ブ
チルフエノールよりなる混合物)を、内径5cm、
高さ50cmを有し且つ350gのマクロ多孔質の触媒
が固定配置された他の反応器(第2番目の反応段
階)に導入する。 この反応器から生ずる生成物は後処理せずに蒸
留処理することができる。 結果を第2表に示す。
[Table] Examples 2 to 7 Inner diameter 3 filled with 92 g of macroporous cation exchanger having the exchange capacity as shown in Table 2
cm, 450 g of phenol per hour in a 100 cm high glass reactor (first reaction stage)
75 g of isobutylene is introduced through a frit at the bottom of the reactor. The gas velocity of isobutylene is
80-130°C and the molar ratio of phenol:isobutylene is 1.9:1. Products arising from the glass reactor (unreacted phenol, o-tertiary, m-tertiary and p-tertiary)
-butylphenol and 2,4-di-tert-butylphenol) with an inner diameter of 5 cm,
A further reactor (second reaction stage) with a height of 50 cm and in which 350 g of macroporous catalyst is placed in a fixed manner is introduced. The product resulting from this reactor can be subjected to distillation without further treatment. The results are shown in Table 2.

【表】 実施例8および9 これらの実施例では、本発明に従つて製造され
た生成物の蒸留処理の際に判る本発明による改善
を実証する。 実施例2〜7と同様に、第1段階では115℃の
温度のもとでおよび第2段階では120℃の温度の
もとでアルキル化を行う。実施例8では本発明に
従い110mVal/100cm3の交換能力を有する触媒を
使用し、実施例9では従来技術に従い140mVal/
100cm3の交換能力を有する触媒にて行う。 それぞれ得られた生成物を蒸留処理する。蒸留
塔としては、内径60cmで高さ1mの充填塔を利用
する。この蒸留は33ミリバールの圧力下で実施す
る。分離されたイソブチレンは−78℃に冷却され
た受け器中で凝縮させそして次いで秤量する。 結果を第3表に示す。
Table of Contents Examples 8 and 9 These examples demonstrate the improvements according to the invention that are observed during distillation processing of products made according to the invention. Similar to Examples 2 to 7, the alkylation is carried out in the first stage at a temperature of 115°C and in the second stage at a temperature of 120°C. In Example 8, a catalyst with an exchange capacity of 110 mVal/100 cm 3 was used according to the present invention, and in Example 9, according to the prior art, a catalyst with an exchange capacity of 140 mVal/100 cm 3 was used.
A catalyst with an exchange capacity of 100 cm 3 is used. The products obtained in each case are treated by distillation. A packed column with an inner diameter of 60 cm and a height of 1 m is used as the distillation column. This distillation is carried out under a pressure of 33 mbar. The separated isobutylene is condensed in a receiver cooled to -78°C and then weighed. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素原子数3〜4のオレフインにてフエノー
ルを、前後に接続された2つの反応域にて液相中
で触媒としての強酸性イオン交換樹脂の存在下に
高温のもとでアルキル化することによつてp−ア
ルキルフエノール類を製造するに当たつて、アル
キル化を第1番目の反応段階に於いて、空の反応
器の自由横断面積当り3〜20cm/秒のガス速度で
25/mol(オレフイン)の分子容のオレフイン
を反応混合物中に下方から導入しながら80〜140
℃の温度で浮遊状態で存在する触媒に接触させて
行いそして得られた液状反応生成物を第2番目の
反応段階に於いて80〜140℃の温度のもとで固定
配置された触媒上に導き、そして両方の反応段階
に於いて交換能力70〜120mVal/100cm3である触
媒を用いることを特徴とする、上記p−アルキル
フエノール類の製造方法。 2 第1番目の反応域の温度が100〜120℃でそし
て第2番目の反応域の温度が120℃である特許請
求の範囲第1項に記載の方法。 3 触媒の交換能力が110mVal/100cm3である特
許請求の範囲第1項または第2項記載の方法。
[Scope of Claims] 1. Phenol is reacted with an olefin having 3 to 4 carbon atoms at high temperature in the liquid phase in two reaction zones connected in front and behind in the presence of a strongly acidic ion exchange resin as a catalyst. In the preparation of p-alkylphenols by alkylation with at gas velocity
80-140 while introducing the olefin with a molecular volume of 25/mol (olefin) into the reaction mixture from below.
in contact with a catalyst present in suspension at a temperature of 80°C to 140°C, and the liquid reaction product obtained is transferred in a second reaction stage onto a fixedly placed catalyst at a temperature of 80 to 140°C. The process for producing p-alkylphenols as described above, characterized in that a catalyst with an exchange capacity of 70 to 120 mVal/100 cm 3 is used in both the reaction steps. 2. A process according to claim 1, wherein the temperature of the first reaction zone is 100-120C and the temperature of the second reaction zone is 120C. 3. The method according to claim 1 or 2, wherein the catalyst has an exchange capacity of 110 mVal/100 cm 3 .
JP12367178A 1977-10-11 1978-10-09 Manufacture of ppalkylphenols Granted JPS5461130A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2745589A DE2745589C3 (en) 1977-10-11 1977-10-11 Process for the preparation of p-alkylphenols

Publications (2)

Publication Number Publication Date
JPS5461130A JPS5461130A (en) 1979-05-17
JPS6237617B2 true JPS6237617B2 (en) 1987-08-13

Family

ID=6021128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12367178A Granted JPS5461130A (en) 1977-10-11 1978-10-09 Manufacture of ppalkylphenols

Country Status (10)

Country Link
US (1) US4236033A (en)
JP (1) JPS5461130A (en)
BE (1) BE871105A (en)
BR (1) BR7806690A (en)
DE (1) DE2745589C3 (en)
FR (1) FR2405914A1 (en)
GB (1) GB2007224B (en)
IT (1) IT1157363B (en)
NL (1) NL7810189A (en)
SU (1) SU1178321A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890068A1 (en) 2020-03-30 2021-10-06 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380677A (en) * 1981-05-11 1983-04-19 Uop Inc. Preparation of 2,6-di-tert-butyl-4-alkylphenols
US4418222A (en) * 1981-05-26 1983-11-29 Chevron Research Company Continuous phenol alkylation process
US4391998A (en) * 1981-10-21 1983-07-05 Mobil Oil Corporation Production of para-isopropylphenol
DE3151693A1 (en) * 1981-12-29 1983-07-07 Chemische Werke Hüls AG, 4370 Marl METHOD FOR PRODUCING P-TERT.-OCTYLPHENOL BY CATALYTIC ALKYLATION OF PHENOL
DE3443736A1 (en) * 1984-11-30 1986-06-05 Hüls AG, 4370 Marl Process for the simultaneous production of ortho-, para- and 2,4-di-tert-butylphenol
CN1056597C (en) * 1996-01-25 2000-09-20 中国石油化工总公司 Process for preparing alkylphenol
GB9722719D0 (en) 1997-10-29 1997-12-24 Fmc Corp Uk Ltd Production of phosphate esters
US6124512A (en) * 1998-09-18 2000-09-26 Occidental Chemical Corporation Ring halogenation of aromatic compounds
US6339177B1 (en) 2000-05-24 2002-01-15 Sea Lion Technology, Inc. Dinitroalkyl aromatics polymerization retarders or inhibitors and methods for making and for using same
JP2003040822A (en) * 2001-07-30 2003-02-13 Dainippon Ink & Chem Inc Method for producing 4-tertiary butylphenol
TWI570102B (en) * 2009-12-04 2017-02-11 Si集團股份有限公司 Process for producing a t-butyl phenol from a c4 raffinate stream

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL123464C (en) * 1960-04-13
US3257467A (en) * 1960-07-21 1966-06-21 Monsanto Co Continuous methods for effecting ring substitution of phenols
GB953929A (en) 1960-10-12 1964-04-02 Union Carbide Corp Improvements in and relating to alkylation
US3308168A (en) * 1961-03-02 1967-03-07 Monsanto Co Method for effecting alkyl ring substitution of phenols employing a sulfonated polyvinyl aryl resin derivative as a catalyst
US3422157A (en) * 1966-04-18 1969-01-14 Union Carbide Corp Process for continuous alkylation of arylhydroxides using ion exchange resins
FR2228749A1 (en) * 1973-05-08 1974-12-06 Sidobre Sinnova Produit Chimiq Para-(octyl or tert-butyl) phenol prodn. - from phenol and diisobutylene over cation exchanger pref. with anhydrous catalyst
DE2346273C2 (en) * 1973-09-14 1975-09-04 Chemische Werke Huels Ag, 4370 Marl Process for the production of alkylphenols
DE2526644C3 (en) * 1975-06-14 1981-02-19 Basf Ag, 6700 Ludwigshafen Process for the preparation of p-alkylphenols

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890068A1 (en) 2020-03-30 2021-10-06 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20210122020A (en) 2020-03-30 2021-10-08 스미토모 오사카 세멘토 가부시키가이샤 Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
US11444282B2 (en) 2020-03-30 2022-09-13 Sumitomo Metal Mining Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPS5461130A (en) 1979-05-17
BE871105A (en) 1979-04-09
DE2745589C3 (en) 1980-03-27
GB2007224B (en) 1982-05-06
FR2405914B1 (en) 1983-11-25
NL7810189A (en) 1979-04-17
DE2745589A1 (en) 1979-04-12
IT7851414A0 (en) 1978-10-09
GB2007224A (en) 1979-05-16
IT1157363B (en) 1987-02-11
BR7806690A (en) 1979-05-02
SU1178321A3 (en) 1985-09-07
FR2405914A1 (en) 1979-05-11
US4236033A (en) 1980-11-25
DE2745589B2 (en) 1979-07-12

Similar Documents

Publication Publication Date Title
US4391997A (en) Ion exchange catalyzed bisphenol process
US3221061A (en) Process for the production of 2,2-bis-(4-hydroxyphenyl) propane
EP0210366B1 (en) Process for making bisphenol a
US2802884A (en) Alkylation-dealkylation catalysts
US2678332A (en) Esterification of olefins using ion exchange resins catalysts
JPS6237617B2 (en)
EP0249415B2 (en) Production of alkylated hydroxy aromatic compounds
KR100788091B1 (en) Process for producing bisphenol a
CA1318687C (en) Process for isomerizing the by-products of the bis-phenol synthesis
US2732408A (en) foote
JP2628705B2 (en) Ion exchanger modified with thiazolidine-2-thione
US4150059A (en) Dehydration of alpha-methylbenzyl alcohols over silica to form monovinylidene aromatic monomers
JP2634889B2 (en) Aralkylation of phenolic compounds
CA2191300C (en) Process for the preparation of camphene by the rearrangement of .alpha.-pinene
JPH0114892B2 (en)
WO2006008230A1 (en) A method to obtain visually pure bisphenol a
JPS58159434A (en) Manufacture of p-tertiary-octylphenol by phenol catalytic alkylation
JP5471392B2 (en) Method for producing pyridylethanethiol compound
US3933928A (en) Method for producing 2,6-di-tert.-butyl-4-cumyl phenol
US3081313A (en) Bisphenols and process therefor
JP3744025B2 (en) Method for producing alkylphenols
JP2000229899A (en) Production of bisphenol a
US2387341A (en) Bromination of 2,6-nitro chlor toluene
US3691238A (en) Process for the treating crude alkylated phenols
US6316677B1 (en) Production process of bisphenol compounds