JPS6236172B2 - - Google Patents

Info

Publication number
JPS6236172B2
JPS6236172B2 JP56156570A JP15657081A JPS6236172B2 JP S6236172 B2 JPS6236172 B2 JP S6236172B2 JP 56156570 A JP56156570 A JP 56156570A JP 15657081 A JP15657081 A JP 15657081A JP S6236172 B2 JPS6236172 B2 JP S6236172B2
Authority
JP
Japan
Prior art keywords
gas
electrode
permeable membrane
solution conductivity
gas permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56156570A
Other languages
Japanese (ja)
Other versions
JPS5858457A (en
Inventor
Yaichiro Shibazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15657081A priority Critical patent/JPS5858457A/en
Publication of JPS5858457A publication Critical patent/JPS5858457A/en
Publication of JPS6236172B2 publication Critical patent/JPS6236172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 この発明は溶液導電率測定用電極を用いて構成
するガス濃度測定用電極に関し、さらに詳しく
は、溶液導電率測定用電極を覆うようにガス透過
性膜を設けるとともに、この電極とガス透過性膜
との間にガス吸収液を充填してなる溶液導電率型
ガス濃度測定用電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode for measuring gas concentration constructed using an electrode for measuring solution conductivity, and more specifically, a gas permeable membrane is provided to cover the electrode for measuring solution conductivity, and The present invention relates to a solution conductivity type gas concentration measuring electrode in which a gas absorbing liquid is filled between the electrode and the gas permeable membrane.

従来、PH電極にガス透過性膜をかぶせ、このガ
ス透過性膜を通過してくるガスをガス吸収液に吸
収させ、この吸収液のPH変化をPH電極にて電位差
変化として促え、これよりガス濃度を測定する方
法があつた。しかしながら、この方法において
は、測定される電位差とガス濃度とが対数関係に
ある為、電位差からガス濃度を求めるには逆対数
変換器を必要とする。また、用いるPH電極の内部
抵抗が大きいため(一般的に100MΩ以上)高入
力抵抗の増幅器が必要である等装置が複雑とな
り、測定に手間がかかるとともにコスト高にな
る。装置全体として複雑となるので取扱いに注意
を要し、とくに高入力抵抗増幅機であるための絶
縁低下等取扱いに注意を必要とするものであつ
た。
Conventionally, a PH electrode was covered with a gas permeable membrane, the gas passing through the gas permeable membrane was absorbed into a gas absorption liquid, and the PH change in the absorption liquid was promoted as a potential difference change at the PH electrode. There was a way to measure gas concentration. However, in this method, since the measured potential difference and gas concentration have a logarithmic relationship, an anti-logarithmic converter is required to determine the gas concentration from the potential difference. Furthermore, since the internal resistance of the PH electrode used is large (generally 100 MΩ or more), the equipment becomes complicated, such as requiring an amplifier with a high input resistance, making the measurement time-consuming and costly. Since the device as a whole is complicated, care must be taken when handling it, and in particular, because it is a high input resistance amplifier, the insulation may deteriorate.

この発明は上記の従来法の欠点を解消するべく
なされたもので、溶液導電率測定用電極を用いて
ガス濃度を測定しようとするものである。
This invention was made to eliminate the drawbacks of the above-mentioned conventional methods, and aims to measure gas concentration using an electrode for measuring solution conductivity.

以下この発明を実施例に基づいて詳述するもの
であるが、この発明は下記実施例に限定されるも
のではない。
This invention will be described in detail below based on Examples, but this invention is not limited to the Examples below.

第1図はこの発明の溶液導電率型ガス濃度測定
用電極1を示すもので、溶液導電率測定用電極2
を覆うようにガス透過性膜3が設けられて構成さ
れている。溶液導電率測定用電極2は、極板4,
4と、この極板4,4を埋設して支持する支持管
5と、リード線6,6とからなるもので、従来の
溶液導電率測定用電極においては極板を支持管よ
り突出させて支持していたのに対し、支持管5面
と下端部が面一となるように極板4,4を設けて
いる。これはガス透過性膜3が納まりよく、支持
管5との間に適当な空隙を作るように設けられる
べく配慮したものである。ガス透過性膜3として
は2μ〜100μ厚程度のテフロン、ポリプロピレ
ン、シリコーン等の疎水性高分子膜が用いられ、
ガス吸収液の充填は実際にはこのガス透過性膜3
の内面に滴下しておこなわれるもので、ガス透過
性膜3はOリング7により支持管5に取り付けら
れる。この取り付けの際ガス透過性膜3のガス吸
収液部分の厚みが2μ〜10μ程度に保たれるよう
にするものである。
FIG. 1 shows a solution conductivity type gas concentration measuring electrode 1 of the present invention, and a solution conductivity measuring electrode 2.
A gas permeable membrane 3 is provided to cover the gas permeable membrane 3. The electrode 2 for measuring solution conductivity includes an electrode plate 4,
4, a support tube 5 that supports the electrode plates 4, 4 by burying them, and lead wires 6, 6. In conventional solution conductivity measurement electrodes, the electrode plates are made to protrude from the support tube. However, the electrode plates 4, 4 are provided so that the support tube 5 surface and the lower end portion are flush with each other. This is done so that the gas permeable membrane 3 can be accommodated well and an appropriate gap can be created between the gas permeable membrane 3 and the support tube 5. As the gas permeable membrane 3, a hydrophobic polymer membrane such as Teflon, polypropylene, silicone, etc. with a thickness of about 2μ to 100μ is used.
The gas absorption liquid is actually filled in this gas permeable membrane 3.
The gas permeable membrane 3 is attached to the support tube 5 with an O-ring 7. During this installation, the thickness of the gas-absorbing liquid portion of the gas-permeable membrane 3 is kept at about 2 to 10 microns.

以下この発明の実施例を使用しておこなうアン
モニヤガス濃度測定について示す。
The measurement of ammonia gas concentration using an embodiment of the present invention will be described below.

ガス吸収液としては塩化アンモニウム水溶液を
用いるもので、ガス透過膜を透過したアンモニヤ
ガスは塩化アンモニウム水溶液と次式のように反
応し、水酸化アンモニウム(NH4 OH)を生成し
平衡状態となる。
An ammonium chloride aqueous solution is used as the gas absorption liquid, and the ammonia gas that has passed through the gas permeable membrane reacts with the ammonium chloride aqueous solution as shown in the following equation, producing ammonium hydroxide (NH 4 OH) and reaching an equilibrium state.

NH3+NH4Cl+H2ONH4Cl+NH4OH 生成する水酸化アンモニウム量は被測定ガスで
あるアンモニヤガス濃度に可逆的に比例する。す
なわち、アンモニヤガス濃度が大であれば生成さ
れる水酸化アンモニウムの量も多くなり、アンモ
ニヤガス濃度が小であれば水酸化アンモニウムの
量も少なくなる。
NH 3 +NH 4 Cl + H 2 ONH 4 Cl + NH 4 OH The amount of ammonium hydroxide generated is reversibly proportional to the concentration of ammonia gas, which is the gas to be measured. That is, if the ammonia gas concentration is high, the amount of ammonium hydroxide produced will be large, and if the ammonia gas concentration is low, the amount of ammonium hydroxide produced will also be small.

一方溶液導電率電極で測定されるガス吸収液の
溶液電導率()は次式で示されるように生成さ
れる水酸化アンモニウムの量に比例する。
On the other hand, the solution conductivity ( ) of the gas-absorbing liquid measured with a solution conductivity electrode is proportional to the amount of ammonium hydroxide produced as shown by the following equation.

=KNH4Cl・CNH4Cl+KNH4CH・CNH4OH (KNH4Cl:NH4Clのイオン価と移動度の積で表
わされる定数 KNH4OH:NH4OHのイオン価と移動度の積で
表わされる定数 CNH4Cl:NH4Clの濃度 CNH4OH:生成されるNH4OHの濃度) 従がつてガス吸収液の溶液導電率変化を測定す
ることによつて被測定ガスであるアンモニヤガス
濃度を求めることができるものである。
= KNH 4 Cl・CNH 4 Cl + KNH 4 CH・CNH 4 OH (KNH 4 Cl: Constant expressed as the product of the ion valence and mobility of NH 4 Cl KNH 4 OH: The constant expressed as the product of the ion valence and mobility of NH 4 OH Constants represented: CNH 4 Cl: Concentration of NH 4 Cl CNH 4 OH: Concentration of generated NH 4 OH) Therefore, by measuring the change in solution conductivity of the gas absorption liquid, ammonia gas, which is the gas to be measured, can be measured. It is possible to determine the concentration.

ガス吸収液としてはガス吸収に伴なう溶液導電
率変化の大きい溶液を、測定ガスに対応させて適
宜選択して用いるもので、アンモニヤガスの場合
は上記塩化アンモニウム水溶液の他に炭酸水素ナ
トリウム水溶液を用い、炭酸ガスの場合は炭酸水
素ナトリウム水溶液を用いる。
As the gas absorption liquid, a solution with a large change in solution conductivity due to gas absorption is selected and used as appropriate depending on the measurement gas.In the case of ammonia gas, in addition to the above ammonium chloride aqueous solution, a sodium bicarbonate aqueous solution is used. In the case of carbon dioxide gas, use an aqueous sodium bicarbonate solution.

第1図に示した実施例においては極板を2個用
いたものを示したが、溶液導電率測定用電極には
極板が3個のもの4個のものがあるので、この発
明においてもそれらの使用が可能である。
Although the embodiment shown in FIG. 1 uses two electrode plates, there are other types of electrodes for measuring solution conductivity, one with three plates and the other with four plates, so this invention also applies. Their use is possible.

この発明は上述のように構成されているもの
で、この発明によれば溶液導電率より直線関係に
おいてガス濃度が得られるので逆対数変換器を用
いる必要がなく、また内部抵抗も大とならないの
で増幅器も必要とせず、全体構成が簡単となり取
り扱いが容易になるとともにコスト安に提供でき
るものである。さらにこの発明を溶液の導電率測
定に用いた場合、ガス体のみに感応するので共存
の液体成分の妨害が少なく、選択性のある測定が
可能になるという付加的効果も発揮するものであ
る。
This invention is constructed as described above. According to this invention, the gas concentration can be obtained in a linear relationship from the solution conductivity, so there is no need to use an anti-logarithm converter, and the internal resistance does not become large. Since no amplifier is required, the overall configuration is simple, easy to handle, and can be provided at low cost. Furthermore, when this invention is used to measure the conductivity of a solution, it has the additional effect of being sensitive only to gaseous bodies, resulting in less interference from coexisting liquid components and enabling selective measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の一部切欠断面図で
ある。 1……溶液導電率型ガス濃度測定用電極、2…
…溶液導電率測定用電極、3……ガス透過性膜。
FIG. 1 is a partially cutaway sectional view of an embodiment of the invention. 1... Electrode for solution conductivity type gas concentration measurement, 2...
... Electrode for measuring solution conductivity, 3... Gas permeable membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 支持管の先端部に少なくとも一対の極板をそ
の先端部と面一になるように埋設構成し、この先
端部を厚さ2μ〜100μの疎水性高分子膜からな
るガス透過性膜で覆うと共に、この先端部とガス
透過性膜との間にガス吸収液を充填してなる溶液
導電率型ガス濃度測定用電極。
1. At least one pair of electrode plates is embedded in the tip of the support tube so that it is flush with the tip, and this tip is covered with a gas permeable membrane made of a hydrophobic polymer membrane with a thickness of 2μ to 100μ. In addition, a solution conductivity type gas concentration measuring electrode is formed by filling a gas absorbing liquid between the tip portion and the gas permeable membrane.
JP15657081A 1981-09-30 1981-09-30 Measuring electrode for ionic activity Granted JPS5858457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15657081A JPS5858457A (en) 1981-09-30 1981-09-30 Measuring electrode for ionic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15657081A JPS5858457A (en) 1981-09-30 1981-09-30 Measuring electrode for ionic activity

Publications (2)

Publication Number Publication Date
JPS5858457A JPS5858457A (en) 1983-04-07
JPS6236172B2 true JPS6236172B2 (en) 1987-08-05

Family

ID=15630654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15657081A Granted JPS5858457A (en) 1981-09-30 1981-09-30 Measuring electrode for ionic activity

Country Status (1)

Country Link
JP (1) JPS5858457A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691418B2 (en) * 1988-06-08 1997-12-17 株式会社加藤精工所 Knot structure of fishing net, its braiding method and its braiding device
GB9815667D0 (en) 1998-07-17 1998-09-16 Medinnova Sf Device
BRPI0513428B8 (en) 2004-07-16 2021-07-27 Alertis Medical As physiological detection device for measuring pco2
JP6213906B2 (en) * 2012-06-22 2017-10-18 オムロン株式会社 Gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098396A (en) * 1973-12-21 1975-08-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098396A (en) * 1973-12-21 1975-08-05

Also Published As

Publication number Publication date
JPS5858457A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US4267023A (en) Chemically integrating dosimeter and gas analysis methods
Frank et al. Diffusion of neon isotopes in fused quartz
EP0637381B1 (en) Method and apparatus for determining the concentration of ammonium ions in solution
US3380929A (en) Standard gas solution
GB1329898A (en) Apparatus for plotting adsorption-desorption isotherms
JPS6236172B2 (en)
DE3504499C1 (en) Process for sensitizing and stabilizing the operating state of semiconductor gas sensors
US3357908A (en) Electrolytic sensor with water diffusion compensation
US2837082A (en) Accelerometer
US4235689A (en) Apparatus for detecting traces of a gas
Jones et al. The thermodynamic dissociation constant of benzoic acid and the entropy of the benzoate ion
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
US3830709A (en) Method and cell for sensing nitrogen oxides
US4992738A (en) Device for the measuring of gas, vapor or aerosol fractions of a measured gas
USRE31299E (en) Ion-selective electrode device for polarographic measurement of oxygen
US3467582A (en) Method for the determination of acid-base status in biological fluids
US3950231A (en) Method of determining hydrogen cyanide
Mesaric´ et al. A polarographic study of lead fluoride complexes and solubility
GB2208006A (en) Gas sensing device
GB1303708A (en)
DK133280A (en) Electrode arrangement
SE8306050D0 (en) SENSOR OF CHEMICAL ANALYSIS
Ovenden The electrolytic determination of carbon monoxide
Barna et al. Semiquantitative potentiometric method for direct measurement of nitrogen dioxide in air
Bessette et al. Performance characteristics and calibration of the ENDECO pulsed dissolved oxygen type 1125 system