JPS6233205B2 - - Google Patents

Info

Publication number
JPS6233205B2
JPS6233205B2 JP50132856A JP13285675A JPS6233205B2 JP S6233205 B2 JPS6233205 B2 JP S6233205B2 JP 50132856 A JP50132856 A JP 50132856A JP 13285675 A JP13285675 A JP 13285675A JP S6233205 B2 JPS6233205 B2 JP S6233205B2
Authority
JP
Japan
Prior art keywords
pyrodiene
specific gravity
solution
purified
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50132856A
Other languages
Japanese (ja)
Other versions
JPS5257314A (en
Inventor
Sadao Ookido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP50132856A priority Critical patent/JPS5257314A/en
Publication of JPS5257314A publication Critical patent/JPS5257314A/en
Publication of JPS6233205B2 publication Critical patent/JPS6233205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は精製溶液中に含まれているパイロジエ
ンを比重別に分離し、発熱活性およびゲル化活性
の異なる数種のパイロジエンの精製方法に関する
もので、パイロジエン含有精製溶液を比重の異な
るセシウムクロライドなどの比重液とともに遠心
分離用カプセルに重層し、密度勾配遠心平衡分離
法にて処理し、その結果比重別に分別したパイロ
ジエンを含むセシウムクロライドなどの比重液の
各々を混床式イオン交換装置で処理することを特
徴とするものである。 近年、パイロジエンなかんずく細菌性内毒素は
増殖性腫瘍、進行性ガン症状に対してインターフ
エロン産生能をもち、前記症状の増殖、進行を抑
制するという研究が報ぜられ、製薬業界において
高純度に精製されたパイロジエンが求められてい
る。 従来パイロジエンの精製方法として、培養され
た分裂細菌を、トリクロル酢酸で処理し、沈殿物
をエーテル処理して得るボア・バン法、またはフ
エノール抽出によるウエストフアール法がある。
これらの精製法による市販品には、蛋白質、燐脂
質等不純物が含まれ、さらに精製度を上げること
が望まれている。 一方、滅菌精製水の製造方法としては、地下
水、河川水、海水、水道水中の粗大夾雑物を除去
し、残存するコロイド物質、電解物質、微生物を
従来の水処理方法、すなわち凝集沈殿、過、殺
菌、脱塩、精密過(0.2μ〜0.45μの膜を使
用)等によつて処理して、通常局方精製水を製造
し、これをさらに121℃付近にて加熱滅菌して滅
菌精製水を製造する方法が行なわれているが、実
際にはこの滅菌精製水中に混在菌が生存し、適当
な培地により継代培養すると、数日にしてその混
存菌は指数的に増殖し、パイロジエンを産生する
ためにこれらの滅菌精製水については問題があつ
た。 そこで、この点に着目し、局方精製水あるいは
滅菌製水を、通常の逆浸透装置または超過装置
であつて、アセチルセルロース系、芳香族ポリア
ミド系、ポリビニルアルコール系、ポリイオン結
合体系、ポリフルオロエチレン系、エチレン―ビ
ニル共重合体系、脂肪族ポリアミド系、ポリエス
テル系その他高分子物質のグラフト共重合体など
を基材とする透過膜をモジユール化したもので処
理することによつて、透過膜の濃縮側にパイロジ
エンを含む水溶液を得るとともに透過膜の透過側
にはパイロジエンの含まない水を得た。このよう
にして精製水中のパイロジエンを濃縮した。以後
減圧低温濃縮を行ない、当初原水に対し、濃縮倍
率が約10-7に至り、凍結乾燥により脱水固形物を
得た。当該脱水固形物は局方注射用蒸留水、生理
食塩水に容易に溶解し、この溶解度はいずれも局
方発熱性物質試験(以下局方試験と略す)におい
て陽性を示し、近年その評価の確立しつつあるリ
ムラステストにおいても顕著な陽性を示し、当該
脱水固形物は高濃度に精製されたパイロジエンで
あることを示した。この時の閾価は局方試験では
10μg/ml、リムラステストでは1μg/mlであ
つた。 以上のような知見にもとずいて、複鎖複合化合
物であるパイロジエンの精製に関する研究を重ね
ているうちに、溶液中のパイロジエンを比重別に
分離して発熱活性、ゲル化活性の異なる数種のパ
イロジエンを精製するという特異な方法、すなわ
ち、本発明を考案するに至つたのである。 本発明は、精製溶液、たとえば前述したよう
に、水、生理食塩水、糖液などの溶液を公知の方
法で精製した精製水、精製生理食塩水、精製糖液
などには、かなりのパイロジエンが存在するの
で、このパイロジエンを含む精製溶液を、必要に
応じて透過処理を行なつてパイロジエンを濃縮し
た後、これを比重が数種に異なる比重液の各々の
上に重層させて、密度勾配遠心平衡分離法を行な
い、各発熱活性、ゲル化活性の異なるパイロジエ
ンをその比重の異なる各溶液中に分離するもので
あるが、このためには適当な比重液の選択が重要
な問題となる。一般の超遠心分離用の比重液とし
て使用される蔗糖、フイコールは、リムラステス
トによるといずれも陽性であり、パイロジエンの
発熱活性、ゲル化活性に干渉的影響を与えるため
に不適当であり、またイオン強度が大きい比重液
も密度勾配遠心平衡分離の際の濃度分極形成に影
響を与えるためにまつたく不適当である。 そこで、種々検討した結果、本発明のパイロジ
エンの密度勾配遠心平衡分離を行なう場合の比重
液として、セシウムクロライド(CsCI)または
硫酸セシウム(Cs2SC4)溶液が最適であることを
知見した。なお、これらは注射用蒸留水に溶解す
ることが望ましい。 通常、密度勾配遠心平衡分離は超遠心分離機内
の数個のカプセルに、適宜、比重の異なるセシウ
ムクロライドなどの溶液の比重液を充填し、この
上にパイロジエンを含む精製溶液を重層させて一
定回転数における遠心分離処理を行なうことが多
い。 次に上記の比重別に分別したパイロジエンを含
む比重液の各々を精製液、たとえば注射用蒸留水
で100〜3000倍に希釈して、この各々を順次混床
式イオン交換装置、たとえばH型の強酸性陽イオ
ン交換樹脂とOH型の強塩基性陰イオン交換樹脂
とを所定比で混合したものに一定の流速で通液さ
せることにより、比重液中のセシウムクロライド
など、その他の不純物を除去し、その処理液は各
分離したパイロジエンを含む精製液(純水)とな
つて外部に流出させる。これらの比重の異なるパ
イロジエンを含む精製液は発熱活性およびゲル化
活性の異なる数種のパイロジエンを精製した状態
で含んでいると判断することができる。よつて必
要があれば、上記のパイロジエンを含む精製液を
濃縮および凍結乾燥させて、比重の異なる精製パ
イロジエンを濃縮固形化することができる。 以上は、水などの溶液を公知の方法によつて精
製し、溶液中のパイロジエンをさらに精製する方
法について説明したが、本発明はこれに限らず、
精製溶液、たとえば局方注射用蒸留水などに市販
のパイロジエンを混入させ、これを比重別精製の
対象としてもよい。いずれにせよ比重別に分別精
製されたパイロジエンは、活性が精製前より向上
しており、医療上の有用性が高くなつた。 以下、本発明の実施例について説明する。 実施例 1 原水としては東京都文京区内上水道水を高架水
槽より採水したものを使用したが、この原水は局
方試験によると陽性であり、リムラステストによ
つても強陽性すなわち「++」であつた。この原
水を混床式イオン交換装置によつて処理し、比電
導度0.1μυ/ml(25℃)まで脱イオンし、この
脱イオン水を芳香族ポリアミド系逆浸透モジユー
ルに、透過圧15〜25Kg/cm2、透過流量425/モ
ジユール・時にて透過循環処理し、Itonの脱イオ
ン水より、濃縮側に約10の濃縮液を得た。この
濃縮液を50℃にて、減圧濃縮して1とし、この
中に若干析出した固形物を0.45μフイルターにて
除去し、その液をさらに50℃以下にて減圧濃縮
して約50c.c.にし、これをアセトンとドライアイス
により急冷して凍結させ、超真空下にて乾燥し
た。この乾燥物は、淡黄色を呈する、約100mgの
脱水固形物であつた。この固形物を局方注射用蒸
留水に溶解し、局方試験、リムラステストによる
ゲル化活性テストを行なつた結果、それぞれの閾
価および、一般分析における含量組成は、局方試
験10μg/ml、ゲル化活性1μg/ml、全有機炭
素34.13%、有機体窒素2.94%、鉄0.21%、アンモ
ニウムイオン0.208%であつた。以上の如く、前
記の固形物は明らかに発熱物質すなわち、水中の
パイロジエンとみられるので、この固形物の純化
をさらに密度勾配遠心平衡分離により行ない、パ
イロジエンの比重(密度)別フラクシヨンをえ
た。いいかえれば、パイロジエン活性を向上させ
た純良品をうることができた。 この処理においてはあらかじめ別に標準パイロ
ジエンを対象として利用することが便利であるの
で本実験では、市販の米国デイフコ研究所
(Difco Lab・)製の大腸菌系細菌性内毒素を、
局方注射用蒸留水に溶解し、これと前記の水処理
系のパイロジエンとそれぞれ超遠心分離機(スピ
ンコE型ベツクマン社製)にかけ、回転数の変化
に伴う濃度分極の差異をそれぞれシユリーレン光
学系で確認した。この時のシユリーレン光学系に
おける検出蜂はほぼパイロジエンの由来に帰因す
ると考えられ、水処理系の濃縮パイロジエンにお
いては回転速度17000rpmと44000rpmの2位置
に、またE.coli系細菌性内毒素においては
17000rpm、、22000rpm〜25000rpmと56000rpm
の3位置に検出峰を確認した。 なお、超遠心分離する際に、パイロジエンを溶
解する比重液の種類と比重の決定のための予備実
験を行なつた。まず、第1図に示すように、各比
重のフイコールFと蔗糖Sのそれぞれ密度勾配重
層液を、容量5mlの超遠心分離用カプセル1〜3
に充填し、この上に標準パイロジエンとしてE.
coli系細菌性内毒素を含む精製溶液pをその最上
層に積層させ、回転速度44000rpmにて数時間超
遠心分離を行なつた。回転速度17000rpmでは第
1図の密度勾配の各部位には分配されない。これ
は、回転速度17000rpmにおけるパイロジエンの
濃度分極成分すなわちシユリーレン光学系におけ
る第1検出峰成分は発熱性が微弱で、リムラステ
ストによるゲル化活性も弱く、パイロジエンに含
まれる不純物、つまり主として燐脂質体で構成さ
れるものであり、その比重は、1.02より小さいと
想定される。回転速度25000rpm以上より
56000rpmに至る濃度分極成分は、フイコールお
よび蔗糖の密度勾配1.02〜1.20(20℃の比重)の
各部位に分配される。すなわち、この各密度勾配
フラクシヨンを分取して電気泳動法によつて調べ
るとあらかじめ求めていたE.coliの泳動特性と同
じ傾向を示すので、その成分の存在を知ることが
できた。 蔗糖、フイコールはそれ自体、リムラステスト
ではいずれも陽性であり、これを比重液として使
用すると、資料パイロジエンそのものの発熱活
性、ゲル化活性に影響を与えるため、パイロジエ
ンのゲル形成反応の閾価を求めるには不適当であ
つた。 そこで、本実験においては、密度勾配遠心分離
用比重液として、セシウムクロライド(CsCI)
を注射用蒸留水に溶解したものを使用し、比重が
d1=1.15、d2=1.10、d3=1.05の3種類の比重液
として調整した。 そして第2図に示すように、5mlの超遠心分離
用カプセル4〜6の1本ごとに、上記の比重の異
なるセシウムクロライドの比重液の1種類を充填
し、その上に前記の水処理系において濃縮精製し
たパイロジエンを含む精製溶液RPを重層し、回
転速度44000rpmで密度勾配遠心平衡分離を約2
時間行なつた。そして第2図に示す各カプセルの
各部位からピペツトによりサンプルを分取し、リ
ムラステストにより、ゲル化状態を分類すると、
第1表に示す如き区分に各々の部位におけるパイ
ロジエンの活性配位が確認された。
The present invention relates to a method for purifying several types of pyrodiene with different exothermic activity and gelling activity by separating pyrodiene contained in a purified solution according to specific gravity. The liquid is layered in a centrifugal separation capsule with the liquid, and processed using the density gradient centrifugal equilibrium separation method, and each of the specific gravity liquids, such as cesium chloride containing pyrodiene, separated by specific gravity, is processed in a mixed bed ion exchange device. This is a characteristic feature. In recent years, research has reported that pyrogen, especially bacterial endotoxin, has the ability to produce interferon against proliferative tumors and advanced cancer symptoms, and suppresses the growth and progression of these symptoms. pyrogens are in demand. Conventional methods for purifying pyrodiene include the Bois-Vin method, which is obtained by treating cultured fission bacteria with trichloroacetic acid and treating the precipitate with ether, and the Westfahl method, which involves extraction with phenol.
Commercially available products obtained by these purification methods contain impurities such as proteins and phospholipids, and it is desired to further increase the degree of purification. On the other hand, methods for producing sterilized purified water include removing coarse impurities from groundwater, river water, seawater, and tap water, and removing remaining colloidal substances, electrolytes, and microorganisms using conventional water treatment methods, such as coagulation-sedimentation, filtration, Normally, pharmacopoeial purified water is produced by sterilization, desalination, precision filtration (using a membrane of 0.2μ to 0.45μ), etc., which is then heat sterilized at around 121°C to produce sterile purified water. However, in reality, mixed bacteria survive in this sterilized purified water, and when subcultured in an appropriate medium, the mixed bacteria multiply exponentially within a few days, producing pyrogen. There were problems with these sterile purified waters for producing. Therefore, we focused on this point and used conventional reverse osmosis equipment or excess equipment to collect pharmacopoeically purified water or sterilized water using acetyl cellulose, aromatic polyamide, polyvinyl alcohol, polyion bond system, polyfluoroethylene, etc. Concentration of the permeable membrane can be achieved by treating it with a modular permeable membrane based on a graft copolymer of ethylene-vinyl copolymer, aliphatic polyamide, polyester, or other high-molecular substances. An aqueous solution containing pyrodiene was obtained on the side, and water free of pyrodiene was obtained on the permeate side of the permeable membrane. In this way, the pyrodiene in the purified water was concentrated. Thereafter, low-temperature concentration under reduced pressure was performed to reach a concentration ratio of approximately 10 -7 compared to the original raw water, and a dehydrated solid was obtained by freeze-drying. The dehydrated solid substance is easily dissolved in distilled water for pharmacopoeial injections and physiological saline, and this solubility showed positive results in both pharmacopoeial pyrogen tests (hereinafter abbreviated as pharmacopoeia tests), and the evaluation has been established in recent years. The Limulus test, which is currently underway, also showed a significant positive result, indicating that the dehydrated solid was highly purified pyrodiene. The threshold value at this time is
It was 10 μg/ml, and 1 μg/ml in the Limulus test. Based on the above knowledge, we have been conducting research on the purification of pyrodiene, which is a multi-chain complex compound, and have separated pyrodiene in solution according to specific gravity, and have separated several types of pyrodiene with different exothermic activity and gelling activity. This led them to devise a unique method for purifying pyrodiene, that is, the present invention. The present invention provides that purified solutions, such as purified water, purified physiological saline, purified sugar solution, etc. obtained by purifying solutions such as water, physiological saline, and sugar solution by known methods, contain a considerable amount of pyrogen. Therefore, the purified solution containing pyrodiene is permeated as necessary to concentrate the pyrodiene, and then this is layered on top of each of several solutions with different specific gravities and subjected to density gradient centrifugation. The equilibrium separation method is used to separate pyrogienes with different exothermic activities and gelling activities into solutions with different specific gravities, and for this purpose, selection of an appropriate specific gravity liquid is an important issue. Sucrose and Ficoll, which are commonly used as specific gravity liquids for ultracentrifugation, are positive in the Limulus test, and are unsuitable because they interfere with the exothermic activity and gelling activity of pyrodiene. A high-strength specific gravity liquid is also unsuitable because it affects the formation of concentration polarization during density gradient centrifugal equilibrium separation. As a result of various studies, it was found that cesium chloride (CsCI) or cesium sulfate (Cs 2 SC 4 ) solution is optimal as the specific gravity liquid when carrying out density gradient centrifugal equilibrium separation of pyrodiene according to the present invention. Note that these are preferably dissolved in distilled water for injection. Normally, in density gradient centrifugal equilibrium separation, several capsules in an ultracentrifuge are filled with specific gravities of solutions such as cesium chloride with different specific gravities, and a purified solution containing pyrodiene is layered on top of the capsules, which are then rotated at a constant speed. Centrifugation treatment is often performed in several cases. Next, each of the specific gravity liquids containing pyrodiene separated by specific gravity is diluted 100 to 3000 times with a purified liquid, such as distilled water for injection, and each is sequentially transferred to a mixed bed ion exchanger, such as H-type strong acid. Other impurities such as cesium chloride in the specific gravity liquid are removed by passing the liquid through a mixture of a strong basic cation exchange resin and an OH type anion exchange resin at a specified ratio at a constant flow rate. The treated liquid becomes a purified liquid (pure water) containing each separated pyrogen and flows out to the outside. It can be determined that these purified liquids containing pyrogienes with different specific gravity contain several kinds of pyrogienes with different exothermic activities and gelling activities in a purified state. Therefore, if necessary, the purified liquid containing the pyrodiene described above can be concentrated and freeze-dried to concentrate and solidify the purified pyrodiene having different specific gravities. The above describes a method of purifying a solution such as water by a known method and further purifying the pyrodiene in the solution, but the present invention is not limited to this.
A commercially available pyrodiene may be mixed into a purification solution, such as distilled water for pharmacopoeial injection, and this may be subjected to purification by specific gravity. In any case, pyrodiene that has been fractionated and purified according to its specific gravity has improved activity compared to before purification, and has increased medical usefulness. Examples of the present invention will be described below. Example 1 The raw water used was tap water sampled from an elevated water tank in Bunkyo Ward, Tokyo, but this raw water was positive according to the pharmacopoeial test, and was strongly positive, ie "++", according to the Limulus test. It was hot. This raw water is treated with a mixed-bed ion exchange device to deionize it to a specific conductivity of 0.1μυ/ml (25℃), and this deionized water is passed through an aromatic polyamide reverse osmosis module with a permeation pressure of 15 to 25 kg. /cm 2 and a permeation flow rate of 425/module/time, a concentrated solution of about 10% was obtained on the concentration side from Iton deionized water. This concentrated liquid was concentrated under reduced pressure at 50°C to obtain 1. A small amount of solid matter precipitated therein was removed using a 0.45 μ filter, and the liquid was further concentrated under reduced pressure at below 50°C to approximately 50 c.c. This was quenched with acetone and dry ice, frozen, and dried under ultravacuum. This dried product was a dehydrated solid with a light yellow color and weighing about 100 mg. This solid substance was dissolved in distilled water for pharmacopoeial injection, and a gelation activity test was performed using a pharmacopoeial test and a limulus test. The gelation activity was 1 μg/ml, total organic carbon 34.13%, organic nitrogen 2.94%, iron 0.21%, and ammonium ion 0.208%. As mentioned above, since the solid substance was apparently a pyrogen, that is, pyrodiene in water, this solid substance was further purified by density gradient centrifugal equilibrium separation, and fractions of pyrodiene by specific gravity (density) were obtained. In other words, we were able to obtain a pure product with improved pyrodiene activity. In this process, it is convenient to separately use standard pyrodiene as a target, so in this experiment, we used a commercially available Escherichia coli bacterial endotoxin manufactured by Difco Lab in the United States.
Dissolved in distilled water for pharmacopoeial injections, this and the pyrodiene from the water treatment system described above were placed in an ultracentrifuge (Spinco E model manufactured by Beckman), and the differences in concentration polarization due to changes in rotational speed were measured using a Schilleren optical system. I confirmed it. It is thought that the number of bees detected by the Schilleren optical system at this time is almost attributable to the origin of pyrodiene, and for concentrated pyrodiene in water treatment systems, there are two rotational speeds of 17,000 rpm and 44,000 rpm, and for E. coli bacterial endotoxin,
17000rpm, 22000rpm~25000rpm and 56000rpm
Detection peaks were confirmed at three positions. In addition, a preliminary experiment was conducted to determine the type and specific gravity of the specific gravity liquid that dissolves pyrodiene during ultracentrifugation. First, as shown in FIG.
E. as a standard pyrogen.
Purified solution P containing coli-based bacterial endotoxin was layered on the top layer, and ultracentrifugation was performed at a rotation speed of 44,000 rpm for several hours. At a rotational speed of 17,000 rpm, the density is not distributed to each part of the density gradient shown in FIG. This is because the concentration polarization component of pyrodiene at a rotation speed of 17,000 rpm, that is, the first detection peak component in the Schilleren optical system, has weak exothermicity and weak gelation activity by the Limulus test, and is composed mainly of impurities contained in pyrodiene, that is, phospholipid bodies. The specific gravity is assumed to be less than 1.02. From rotation speed 25000rpm or more
The concentration polarized component up to 56000 rpm is distributed to each part of the density gradient of 1.02 to 1.20 (specific gravity at 20°C) of ficoll and sucrose. That is, when each density gradient fraction was fractionated and examined by electrophoresis, it showed the same tendency as the previously determined electrophoretic characteristics of E. coli, making it possible to know the existence of the component. Sucrose and Ficoll themselves are both positive in the Limulus test, and if they are used as a specific gravity solution, they will affect the exothermic activity and gelling activity of the material pyrodiene itself, so it is difficult to find the threshold of the gel-forming reaction of pyrodiene. was inappropriate. Therefore, in this experiment, cesium chloride (CsCI) was used as the specific gravity liquid for density gradient centrifugation.
Dissolved in distilled water for injection, use
Three types of specific gravity liquids were prepared: d 1 =1.15, d 2 =1.10, and d 3 =1.05. Then, as shown in Figure 2, each of the 5 ml ultracentrifugal capsules 4 to 6 is filled with one type of cesium chloride specific gravity solution with a different specific gravity, and then the water treatment system described above is filled. The purified solution RP containing concentrated and purified pyrodiene was layered on top of the purified solution RP, and density gradient centrifugal equilibrium separation was carried out at a rotation speed of 44,000 rpm for about 2 minutes.
I spent time. Then, a sample was taken from each part of each capsule as shown in Figure 2 with a pipette, and the gelation state was classified by the Limulus test.
The active coordination of pyrodiene at each site was confirmed in the categories shown in Table 1.

【表】 しかし、上述のd1,d2,d3の各比重のセシウム
クロライド比重液は20℃において水中パイロジエ
ンを一定の割合で溶解する。第2表はリムラス反
応によりその程度を求めたものである。 従つて実際のパイロジエン比重別分布濃度は、
第1表の各比重液中のパイロジエンの濃度から第
2表の固有溶解性パイロジエンの濃度を差し引い
たものである。 以上の実験結果から実質的なリムラステストの
ゲル化活性の閾価は、d1において5×10-3μg/
ml、d2において1×10-2μg/ml、d3において1
×10-1μg/mlとなる。
[Table] However, the above-mentioned cesium chloride specific gravity liquids of each specific gravity of d 1 , d 2 , and d 3 dissolve pyrodiene in water at a constant rate at 20°C. Table 2 shows the degree determined by Limulus reaction. Therefore, the actual distribution concentration by pyrodiene specific gravity is
The concentration of pyrodiene in each specific gravity liquid in Table 1 is minus the concentration of intrinsically soluble pyrodiene in Table 2. From the above experimental results, the practical threshold of gelling activity in the limulus test is 5 × 10 -3 μg/
ml, 1 × 10 -2 μg/ml in d 2 , 1 in d 3
×10 -1 μg/ml.

【表】 次に比重分別、すなわち濃度分極したパイロジ
エンを含む、d1,d2,d3の比重液を、それぞれ
250℃で30分乾熱滅菌した容器に採取し、これを
希釈液、たとえば注射用蒸留水にて数1000倍に希
釈し、この各希釈液を順次、混床式イオン交換装
置、たとえば強酸性カチオン交換樹脂のH型と強
塩基性アニオン交換樹脂のOH型を1対1に均一
に混合したイオン交換樹脂筒に通液速度SV10〜
60で通液する。比重液中のセシウムクロライドは
ほぼ定量的に吸着除去され、パイロジエンは、イ
オン交換樹脂層を通過し、処理液としての純水中
に溶離する。パイロジエンを含む純水を濃縮した
後、これを凍結乾燥し、固形物として、d1,d2
d3の各比重液に比重分別、すなわち濃度分極した
パイロジエンの精製物を得た。これら3種類の脱
水固形物であるパイロジエンを、純水溶液に再溶
解し、局方試験、リムラステストを行ない、本発
明の処理前の水処理系より濃縮したパイロジエン
と比較試験、テストを行なつた結果を第3表に示
す。
[Table] Next, the specific gravity liquids of d 1 , d 2 , and d 3 containing concentration-polarized pyrodiene were separated by specific gravity, respectively.
Collect the sample in a container that has been dry-heat sterilized at 250°C for 30 minutes, dilute it several thousand times with a diluent, such as distilled water for injection, and sequentially transfer each diluted solution to a mixed-bed ion exchanger, such as a strong acid Liquid passing rate SV10 ~ through an ion exchange resin cylinder in which H type cation exchange resin and OH type strongly basic anion exchange resin are evenly mixed in a 1:1 ratio.
Run the liquid at 60°C. Cesium chloride in the specific gravity liquid is almost quantitatively adsorbed and removed, and pyrodiene passes through the ion exchange resin layer and is eluted into pure water as a treatment liquid. After concentrating the pure water containing pyrodiene, it is freeze-dried to form a solid substance, d 1 , d 2 ,
Purified pyrodiene was obtained by gravity fractionation, that is, concentration polarization, in each specific gravity solution of d3 . These three types of dehydrated solid pyrodiene were redissolved in a pure water solution and subjected to a pharmacopoeia test and a limulus test, and the results were compared with the pyrodiene concentrated from the water treatment system before the treatment of the present invention. are shown in Table 3.

【表】 以上の第3表で明らかなように、本発明の方法
によつて精製した比重別精製パイロジエンは、通
常の水処理系より濃縮精製されたパイロジエンに
比較した発熱活性がつよく、リムラステストのゲ
ル化活性閾価も向上していた。 従つて従来のパイロジエン精製物をさらに比重
別に分離することにより、各発熱活性、ゲル化活
性別に区分できるので、従来のパイロジエン精製
物より使用目的に応じた高純度のパイロジエンを
得ることができ、従つて医療上種々の分野におい
て有益に利用することができる。 実施例 2 パイロジエンとして、055B5株大腸菌内毒素の
一種を燐酸緩衝液PH6.98に10000ppmになるよう
に溶解してパイロジエン原液とした。次に比重が
それぞれ20℃において1・15、1・10、1・05に
なるごとくセシウムクロライド(CsCI)のパイ
ロジエンを含まない比重液を調整し、超遠心分離
用のカプセル(内容積5ml)3本にそれぞれ4・
5ml宛分注し、各比重液カプセル別にd1(比重
1・15)、d2(比重1・10)、d3(比重1.05)と区
別し、それぞれの比重液の上に0.5mlのパイロジ
エン原液を静かに重層分注する。しかるのち、パ
イロジエン原液の上部にさらに流動パラフイン液
によりシールし、ベツクマン社SPINCO付属
SW50Eロータに3本のカプセルを装着し、
56000r・p・mまで回転速度を上げ、約3時間保
持した後、制御をせず自動停止によつて密度勾配
遠心平衡分離を初動後8時間にて終了した。その
後、前記カプセルを取り出し、セシウムクロライ
ド層をそれぞれ注意して上部より定量分画して抜
きとり、別の容器にうつし、比重フラクシヨン別
パイロジエン分配液を得た。この液をパイロジエ
ンを含まない純水で数千倍に希釈し、通常の混床
式イオン交換樹脂筒にSV2〜15で通液した。この
時のイオン交換樹脂は通常のH型強酸性カチオン
交換樹脂、OH型強塩基性アニオン交換樹脂であ
る。 イオン交換樹脂筒より流出するパイロジエンを
含む純水はセシウムクロライドがもれていないこ
とを硝酸第2水銀法(JIS K0101)による塩素イ
オンのチエツクによつて確認した。 かくして、セシウムクロライドのないパイロジ
エン純水希釈液を得たが、この純水希釈液を減圧
濃縮し、さらに凍結乾燥して、精製パイロジエン
固形物を得た。そしてこれを通常のリムラステス
ト(INVITRO)および局方試験(INVIVO)に
よる閾価を測定したところ、下記の第4表に示す
ような結果であつた。 すなわち最終的にセシウムクロライドをイオン
交換処理にて除去した成分はほぼ次の3成分にわ
かれ、それぞれ本発明による処理前と異なるパイ
ロジエン活性を示し、d1成分はとくに本発明によ
る処理前より高い活性を示す純良品を得た。
[Table] As is clear from Table 3 above, the specific gravity purified pyrodiene purified by the method of the present invention has a stronger exothermic activity than pyrodiene concentrated and purified from a normal water treatment system, and The gelation activity threshold was also improved. Therefore, by further separating the conventional purified pyrodiene by specific gravity, it is possible to classify it by each exothermic activity and gelling activity, so it is possible to obtain pyrodiene of higher purity depending on the purpose of use than the conventional purified pyrodiene. Therefore, it can be usefully used in various medical fields. Example 2 As pyrodiene, a type of endotoxin from Escherichia coli strain 055B5 was dissolved in phosphate buffer pH 6.98 to a concentration of 10,000 ppm to obtain a pyrodiene stock solution. Next, prepare a pyrogen-free specific gravity solution of cesium chloride (CsCI) so that the specific gravity is 1.15, 1.10, and 1.05 at 20℃, and place it in a capsule (inner volume 5 ml) for ultracentrifugation. 4 for each book
Dispense 5 ml each, distinguish d 1 (specific gravity 1.15), d 2 (specific gravity 1.10), and d 3 (specific gravity 1.05) for each specific gravity liquid capsule, and add 0.5 ml of pyrodiene on top of each specific gravity liquid. Gently dispense the stock solution in layers. Afterwards, seal the top of the pyrodiene stock solution with liquid paraffin liquid and use the Beckmann SPINCO accessory.
Attach three capsules to the SW50E rotor,
The rotation speed was increased to 56,000 r.p.m., and after being maintained for about 3 hours, the density gradient centrifugal equilibrium separation was completed 8 hours after the initial operation by automatic stop without any control. Thereafter, the capsule was taken out, and the cesium chloride layer was carefully fractionated and drawn out from the upper part, and transferred to another container to obtain a pyrodiene distribution liquid by specific gravity fraction. This solution was diluted several thousand times with pure water that does not contain pyrodiene, and passed through a normal mixed bed type ion exchange resin cylinder at SV2 to 15. The ion exchange resin at this time is a normal H type strongly acidic cation exchange resin or an OH type strongly basic anion exchange resin. It was confirmed by checking for chloride ions using the mercuric nitrate method (JIS K0101) that the pure water containing pyrodiene flowing out from the ion exchange resin cylinder did not leak cesium chloride. In this way, a pyrodiene diluted pure water solution free of cesium chloride was obtained, and this pure water diluted solution was concentrated under reduced pressure and further freeze-dried to obtain a purified pyrodiene solid. When the threshold value was measured using the usual Limulus test (INVITRO) and Pharmacopoeia test (INVIVO), the results were as shown in Table 4 below. In other words, the components from which cesium chloride is finally removed by ion exchange treatment are roughly divided into the following three components, each of which exhibits a different pyrodiene activity than before the treatment according to the present invention, and the d1 component in particular has a higher activity than before the treatment according to the present invention. I obtained a pure product that shows the following.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用する密度勾配遠心
平衡分離用の比重液を選定するための予備実験で
あつて、カプセル1に比重の異なるフイコール
F、カプセル2と3に比重の異なる蔗糖Sの密度
勾配重層液を供給し、その上に標準パイロジエン
溶液pを重層させた状態を示す説明図、第2図は
本発明の実施態様であつて、カプセル4,5,6
に比重の異なるセシウムクロライド比重液d1
d2,d3をそれぞれ供給し、その上に従来の公知の
水処理系で処理した精糖パイロジエンRPを重層
させて密度勾配遠心平衡分離を行ない、各比重別
にサンプリングしたパイロジエンの分取位置の状
態を示す説明図である。 1〜6…カプセル、4―0〜4―5…サンプル
分取位置、5―0〜5―4…サンプル分取位置、
6―0〜6―5…サンプル分取位置、F…フイコ
ール、S…蔗糖、P…標準パイロジエン、RP…
精製パイロジエン。
Figure 1 shows a preliminary experiment for selecting a specific gravity liquid for density gradient centrifugal equilibrium separation to be used in the present invention. An explanatory diagram showing a state in which a gradient multilayer solution is supplied and a standard pyrodiene solution P is superimposed on it. FIG. 2 is an embodiment of the present invention, and capsules 4, 5,
Cesium chloride specific gravity liquid d 1 with different specific gravity,
d 2 and d 3 were respectively supplied, and refined sugar pyrodiene RP treated with a conventional well-known water treatment system was layered on top of them, and density gradient centrifugal equilibrium separation was performed. FIG. 1 to 6...Capsule, 4-0 to 4-5...Sample collection position, 5-0 to 5-4...Sample collection position,
6-0 to 6-5...Sample collection position, F...Ficoll, S...sucrose, P...standard pyrodiene, RP...
Purified pyrogen.

Claims (1)

【特許請求の範囲】[Claims] 1 パイロジエンを含む溶液を比重の異なる数種
のセシウムクロライドなどの比重液に重層させ
て、密度勾配遠心平衡分離を行ない、パイロジエ
ンを各比重液中に比重別に分離し、さらに各分離
したパイロジエンを含むセシウムクロライドなど
の溶液をパイロジエンを含まない溶液で稀釈した
後、その各々を順次混床式イオン交換装置に通液
させて、セシウムクロライドなどを除去し、処理
液として、各分離したパイロジエンを含む溶液を
得ることによつて発熱活性、ゲル化活性の異なる
数種のパイロジエンを精製する方法。
1. A solution containing pyrodiene is layered with several types of specific gravity liquids such as cesium chloride with different specific gravities, density gradient centrifugal equilibrium separation is performed, pyrodiene is separated according to specific gravity in each specific gravity liquid, and each separated pyrodiene is further contained. After diluting a solution such as cesium chloride with a pyrodiene-free solution, each of the diluted solutions is sequentially passed through a mixed-bed ion exchange device to remove cesium chloride, etc., and each separated pyrodiene-containing solution is used as a treatment solution. A method for purifying several types of pyrogienes with different exothermic activity and gelation activity by obtaining
JP50132856A 1975-11-07 1975-11-07 Purification of several pyrogens having different pyrogenic and gellin g activities Granted JPS5257314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50132856A JPS5257314A (en) 1975-11-07 1975-11-07 Purification of several pyrogens having different pyrogenic and gellin g activities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50132856A JPS5257314A (en) 1975-11-07 1975-11-07 Purification of several pyrogens having different pyrogenic and gellin g activities

Publications (2)

Publication Number Publication Date
JPS5257314A JPS5257314A (en) 1977-05-11
JPS6233205B2 true JPS6233205B2 (en) 1987-07-20

Family

ID=15091113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50132856A Granted JPS5257314A (en) 1975-11-07 1975-11-07 Purification of several pyrogens having different pyrogenic and gellin g activities

Country Status (1)

Country Link
JP (1) JPS5257314A (en)

Also Published As

Publication number Publication date
JPS5257314A (en) 1977-05-11

Similar Documents

Publication Publication Date Title
TWI524921B (en) A liquid membrane suitable for water extraction
US4376707A (en) Process for the removal of urea from blood wash fluids and blood
US3268441A (en) Water recovery by electrodialysis
JP2020530780A (en) Isolation method of extracellular endoplasmic reticulum using hydrophobic interaction
ES401913A1 (en) Process for the purification and clarification of sugar juices
US6106723A (en) Method for removing pyrogens from dialysate
CN100480378C (en) Process for producing lactoperoxidase
CN1871206A (en) Process for enriching extracts of natural theanine
CN107118272B (en) Cytochrome C and method for removing endotoxin thereof
JPS6233205B2 (en)
Laabs et al. Organic colloids and their influence on low-pressure membrane filtration
Bazinet et al. Recent patented applications of ion-exchange membranes in the agrifood sector
JPWO2017150679A1 (en) Selenonein separation method
EP4361252A1 (en) Commercial purification method for high-purity bacterial extracellular vesicles
US5407579A (en) Hemoglobin purification
SU513595A3 (en) The method of selection orgoteina
CN114409762A (en) Concentration and separation method of alpha-lactalbumin
Claude Properties of the causative agent of a chicken tumor: X. Chemical properties of chicken tumor extracts
KR101388862B1 (en) Method for removing boron in seawater by using mineral cluster
FR2351604A2 (en) PROCESS FOR SEPARATING LIQUIDS CONTAINING BLOOD SUBSTANCES
GB2067200A (en) Separation of plasma albumin by ultra filtration
US20240293776A1 (en) Commercial purification method for high-purity bacterial extracellular vesicles
Hardt et al. Ultrafiltration for the control of recycled solids in a biological system
JPS60137489A (en) Treatment of waste liquid
Stewart et al. Reverse osmosis as a concentration technique for soluble organic phosphorus in fresh water