JPS6230615A - Production of copper sulfate - Google Patents

Production of copper sulfate

Info

Publication number
JPS6230615A
JPS6230615A JP60169583A JP16958385A JPS6230615A JP S6230615 A JPS6230615 A JP S6230615A JP 60169583 A JP60169583 A JP 60169583A JP 16958385 A JP16958385 A JP 16958385A JP S6230615 A JPS6230615 A JP S6230615A
Authority
JP
Japan
Prior art keywords
solution
electrolytic
copper sulfate
cathode
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60169583A
Other languages
Japanese (ja)
Inventor
Masahiro Takewaki
竹脇 正広
Hiroshi Maekawa
前川 寛
Taku Sugiura
杉浦 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60169583A priority Critical patent/JPS6230615A/en
Publication of JPS6230615A publication Critical patent/JPS6230615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain high-purity copper sulfate inexpensively, by dissolving CuO powder obtained by electrolysis under a specific electrolytic condition in sulfuric acid and concentrating under heating and/or cooling it. CONSTITUTION:An anode using electrolytic copper and a cathode using a titanium plaste, copper plate, etc., are stored in permeable membrane bags made of a fiber such as PE, PP, polyester, etc., respectively, 0.3-1.1mol/l aqueous solution of Na2SO4 is adjusted to 5-13pH and 55-75 deg.C, electrolysis is carried out at 150-300A/m<2> cathode current density to form black CuO powder. Then, the CuO powder is optionally washed, dissolved in sulfuric acid, the solution is concentrated under heating and/or cooled, the formed crystallized substance is filtered and separated from the mother liquor and dried to give high-purity copper sulfate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度の硫酸銅を、電気銅を原料として製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high-purity copper sulfate using electrolytic copper as a raw material.

〔従来の技術〕[Conventional technology]

硫酸銅特に高純度の硫酸銅は、電子部品材料のメッキ用
などに使用されている。
Copper sulfate, especially high-purity copper sulfate, is used for plating electronic component materials.

従来、高純度の硫酸銅は、電気銅を硫酸中で電解的にあ
るいは加熱して溶解させて硫酸w4溶液を作り、この溶
液を加熱濃縮および/または冷却し、生成する晶出物を
該溶液から濾別して得る方法等によって工業的に製造さ
れている。
Conventionally, high-purity copper sulfate has been produced by dissolving electrolytic copper in sulfuric acid electrolytically or by heating to create a sulfuric acid W4 solution, and then heating and concentrating and/or cooling this solution, and removing the resulting crystallized product from the solution. It is manufactured industrially by methods such as filtering it from

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの方法によると、溶解した銅分を
陰極に電着させないで極力溶液中に残留させ且つ電力の
消費効率を大きくするように電解を行なうのが難しくて
コスト高になったり、溶解加熱用の蒸気コストや溶解槽
の設備コストが高くなったりするという問題があった。
However, with these methods, it is difficult to carry out electrolysis in such a way that the dissolved copper remains in the solution as much as possible without being electrodeposited on the cathode, and to increase the power consumption efficiency, resulting in high costs and melting heating. There was a problem in that the cost of steam and the cost of dissolving tank equipment increased.

本発明は、上記の問題点に鑑み、高純度の硫酸銅を安価
に製造することのできる方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method that can produce high-purity copper sulfate at low cost.

〔問題点を解決するための手段及び作用〕本発明による
硫酸銅の製造方法は、電気銅を原料として、直接硫酸銅
溶液を作るのではなく、電解法により一旦酸化第二銅粉
末を得た後、この酸化第二銅粉末を硫酸に溶解させて硫
酸銅溶液を作り、この溶液を加熱濃縮および/または冷
却し、濾別を行なうことにより、上記目的が達成され得
ることを見出したものである。
[Means and effects for solving the problems] The method for producing copper sulfate according to the present invention does not involve directly preparing a copper sulfate solution using electrolytic copper as a raw material, but by first obtaining cupric oxide powder by an electrolytic method. We have discovered that the above objective can be achieved by subsequently dissolving this cupric oxide powder in sulfuric acid to create a copper sulfate solution, heating and concentrating and/or cooling this solution, and filtering it. be.

まず、電気銅を原料として酸化第二銅粉末を得るには、
□既に本件出願人が特願昭59−45563号において
提案した方法を採用する。この方法では、電気銅陽極が
使用され、陰極には銅板、チタン板などを使用する0本
発明の目的達成のためには、これらの陽極および陰極は
隔膜袋中に収納されていることが必要である。陽極の隔
膜袋は生成した酸化第二銅粉末の沈積物中に陽極から発
生したスライムが混入したり、電解液中の懸濁物が陽極
に付着するのを防止し、また陰極の隔膜袋は、陰極で発
生する水素ガスが酸化第二銅粉末との接触により該粉末
を還元して亜酸化銅、金属銅に変換させることを防止す
る。隔膜袋はポリエチレン。
First, to obtain cupric oxide powder using electrolytic copper as a raw material,
□The method already proposed by the applicant in Japanese Patent Application No. 59-45563 is adopted. In this method, an electrolytic copper anode is used, and a copper plate, a titanium plate, etc. is used as the cathode. In order to achieve the purpose of the present invention, these anodes and cathodes must be housed in a diaphragm bag. It is. The diaphragm bag on the anode prevents slime generated from the anode from getting mixed in with the cupric oxide powder deposits produced, and prevents suspended matter in the electrolyte from adhering to the anode, and the diaphragm bag on the cathode prevents , preventing the hydrogen gas generated at the cathode from contacting the cupric oxide powder to reduce the powder and convert it into cuprous oxide and metallic copper. The diaphragm bag is made of polyethylene.

ポリプロピレン、ポリエステルなどの繊維製であって、
上記目的を達成するに充分な細かい織目を有するもので
ある。この隔膜袋の使用によって電解液中に形成される
酸化第二銅の品位は著しく向上する。このような高純度
酸化第二銅粉末の製造には、更に電解液の濃度、pH,
温度および陰極電流密度が適切に選択される必要がある
。電解液濃度はN a z S O4として0.3〜1
.1モル/1の範囲である。0.3モル/1未満では電
解液の液抵抗が増大するため、電力損失が大となると共
に液温を上昇させその維持が繁雑となる。濃度が1.1
モル/lを超えると、電解液の粘度が増大して生成した
酸化第二銅粉末の沈降が困難となり、電解液中の懸濁物
濃度の増大は陰極で発生する水素ガスとの接触傾向を高
めて還元不純物、したがって回収生成物中の酸未溶解残
渣分を増大させることになる。
Made of fibers such as polypropylene and polyester,
It has a fine texture sufficient to achieve the above purpose. By using this diaphragm bag, the quality of cupric oxide formed in the electrolyte is significantly improved. In order to produce such high-purity cupric oxide powder, the concentration, pH,
Temperature and cathode current density need to be selected appropriately. The electrolyte concentration is 0.3 to 1 as N az SO4
.. The range is 1 mol/1. If it is less than 0.3 mol/1, the resistance of the electrolytic solution increases, resulting in large power loss and increasing the temperature of the electrolyte, which becomes complicated to maintain. Concentration is 1.1
If it exceeds mol/l, the viscosity of the electrolyte increases and the resulting cupric oxide powder becomes difficult to settle, and the increase in the concentration of suspended matter in the electrolyte increases the tendency for contact with hydrogen gas generated at the cathode. This will increase the reduced impurities and therefore the acid undissolved residue content in the recovered product.

電解液のpHは5〜13が適当である。pH5未満では
生成した酸化第二銅が溶解してCu”イオンになり易く
、またpH13をこえても溶解してCuO,”−イオン
を形成する傾向がある。
The appropriate pH of the electrolytic solution is 5 to 13. If the pH is less than 5, the cupric oxide produced tends to dissolve and become Cu'' ions, and even if the pH exceeds 13, it tends to dissolve and form CuO,''- ions.

電解液の温度は55℃〜75℃の範囲である。The temperature of the electrolyte ranges from 55°C to 75°C.

電解液中で生成するCu(OH)tの分解にはある程度
の高温が必要であるが、あまり高温とするのはエネルギ
ー消費の増大、電解槽その他の電解設備の耐熱材料の必
要性など不利はまぬがれない。
A certain degree of high temperature is required to decompose Cu(OH)t produced in the electrolyte, but too high a temperature has disadvantages such as increased energy consumption and the need for heat-resistant materials for electrolytic cells and other electrolytic equipment. I can't escape it.

75℃以下の温度で上記目的は充分達成できる。The above objective can be fully achieved at a temperature of 75°C or lower.

しかし、55℃未満では回収された粉末中に酸化第二銅
以外の酸未溶解残渣分が2重量%以上含まれる傾向を示
す。
However, at temperatures below 55° C., the recovered powder tends to contain 2% by weight or more of acid-undissolved residues other than cupric oxide.

更に、陰極電流密度は酸化第二銅粉末の生成速度に関係
し、工業規模の実施では150A/m”以上とすること
が必要である。しかし、300A/ mlを超えると、
陰極における水素ガス発生が多くなり、電解液中の懸濁
物が還元され易くなる。
Furthermore, the cathode current density is related to the production rate of cupric oxide powder, and in industrial scale implementation it is necessary to set it to 150 A/m" or more. However, if it exceeds 300 A/ml,
Hydrogen gas generation at the cathode increases, making it easier for suspended matter in the electrolyte to be reduced.

電解中、電解液は例えば、空気吹込みなどの手段で攪拌
することが好ましく、上記本発明の電解条件下では懸濁
物の水素還元は充分防止される。
During electrolysis, the electrolytic solution is preferably stirred by means such as air blowing, and hydrogen reduction of the suspended matter is sufficiently prevented under the electrolytic conditions of the present invention.

このようにして、電解処理することによって電解液中に
黒色の酸化第二銅粉末が懸濁して生成されてくる。該粉
末は電解槽の底部に沈積されるが、電解液中にも懸濁し
ているので、電解液の濾別によって回収する。この懸濁
物の電解液中の濃度は濾液の循環使用によって、20 
g / 1以下に維持するのが好ましい。
In this manner, black cupric oxide powder is produced suspended in the electrolytic solution by electrolytic treatment. The powder is deposited at the bottom of the electrolytic cell, but is also suspended in the electrolyte and is recovered by filtering the electrolyte. By circulating the filtrate, the concentration of this suspension in the electrolyte can be increased to 20
It is preferable to maintain it below g/1.

次に、回収された酸化第二銅粉末は、必要により洗浄し
、乾燥または未乾燥のまま硫酸に熔解させる。そして、
該溶解から硫酸銅を晶出させるために該溶液の加熱濃縮
および/または冷却を行なうが、これは通常の方法でよ
い。最後に、加熱濃縮および/または冷却により生成し
た晶出物を母液から濾別し乾燥することによって、高純
度の硫酸銅が得られる。
Next, the recovered cupric oxide powder is washed if necessary and dissolved in sulfuric acid while being dried or undried. and,
In order to crystallize copper sulfate from the solution, the solution is heated and concentrated and/or cooled, which may be done by any conventional method. Finally, high purity copper sulfate is obtained by filtering and drying the crystallized product produced by heating and concentration and/or cooling from the mother liquor.

〔実施例〕 以下、実施例によって本発明を具体的に説明する。〔Example〕 Hereinafter, the present invention will be specifically explained with reference to Examples.

電解槽に、1050 (縦)X1070 (横)×15
(厚)■の電気銅の陽極21枚およびそれらの間に10
50 (縦’)X1070 (横)×4(厚)fiの銅
板の陰極20枚を極間距離130 mmになるように装
入し、陽極、陰極をそれぞれ並列に接続し、N a !
 S Oa濃度90g/l(0,63モル/Iりの電解
液を用いて電解した。電解中、電解法を空気攪拌しなが
ら、その温度を65℃に、pHを10〜12に維持する
ようにした( p H31i11整は固型水酸化ナトリ
ウムの投入により行なう)。
In the electrolytic tank, 1050 (vertical) x 1070 (horizontal) x 15
(thick) 21 pieces of electrolytic copper anodes and 10 pieces between them
20 cathodes of copper plates measuring 50' (length) x 1070 (width) x 4 (thickness) fi were inserted so that the distance between the electrodes was 130 mm, the anode and cathode were connected in parallel, and N a !
Electrolysis was carried out using an electrolytic solution with a S Oa concentration of 90 g/l (0.63 mol/l).During the electrolysis, the temperature was maintained at 65 °C and the pH at 10-12 while stirring the electrolysis method with air. (pH adjustment to 31i11 is carried out by adding solid sodium hydroxide).

なお、通電電流は陰極電流密度267A/mtであり、
陽極と陰極にそれぞれポリエステル布製のボックス(隔
膜袋)を装着した。そして陰極には、陰極とボックスと
が密着して発生するガスの上昇を阻害しないようにスペ
ーサーとして、横方向に約100 *s間隔で10〜2
0箇■φの塩化ビニール製のパイプを陰極の両面にまた
がせて、その下端まで鉛直に垂下せしめた。72時間電
解した結果、陽極電流効率は、85〜90%であった。
Note that the current applied was a cathode current density of 267 A/mt,
A polyester cloth box (diaphragm bag) was attached to each of the anode and cathode. Then, spacers are placed on the cathode at intervals of about 100 * s in the lateral direction, so that the cathode and the box are in close contact with each other and the gas generated does not rise.
A vinyl chloride pipe of 0 mm diameter was placed across both sides of the cathode and hung vertically to its lower end. As a result of electrolysis for 72 hours, the anode current efficiency was 85 to 90%.

また、電解槽の底に沈積した懸濁物と電解液を濾過し、
乾燥して得られた酸化第二銅粉末の分析と硫酸溶解性試
験を行なった。酸化第二銅粉末の分析結果を下記の第1
表に示す。
In addition, the suspended solids and electrolyte that have settled at the bottom of the electrolytic tank are filtered,
The cupric oxide powder obtained by drying was analyzed and a sulfuric acid solubility test was conducted. The analysis results of cupric oxide powder are shown in the following
Shown in the table.

第1表 硫酸溶解性試験は、5g117)H2SO,を含むll
の水溶液に6gの酸化第二銅粉末を秤取、添加した後、
この水溶液を40℃で1.2.3.4及び5分間攪拌溶
解させて、夫々の溶解率を検量するものであり、その結
果、溶解率は、1.2.3゜4及び5分後において夫々
69.97.99.99.99重量%以上であった。」
1記と同様の条件で市販の酸化第二銅粉末(試薬−級)
の硫酸溶解性試験を行なった結果、溶解率は、1.2.
5゜10.20.30.40及び50分後において夫々
12.21,36.43.55.64.68゜72重量
%であった。
Table 1 Sulfuric acid solubility test contains 5g 117) H2SO,
After weighing and adding 6 g of cupric oxide powder to the aqueous solution,
This aqueous solution was stirred and dissolved at 40°C for 1.2.3.4 and 5 minutes, and the respective dissolution rates were calibrated. As a result, the dissolution rates were 1.2.3° after 4 and 5 minutes. It was 69.97.99.99.99% by weight or more, respectively. ”
Commercially available cupric oxide powder (reagent-grade) under the same conditions as in 1.
As a result of conducting a sulfuric acid solubility test, the dissolution rate was 1.2.
At 5°10.20.30.40 and 50 minutes later, the amounts were 12.21, 36.43.55.64.68°72% by weight, respectively.

次に、上記で得た酸化第二銅粉末の2180 k[(水
分60重量%)に70重量%の希硫酸1000eを加え
、その後、更に60℃の水56001を添加した。溶液
は、濾過して固形分を分離した後、水凛気により90℃
で2時間加熱濃縮した。
Next, 70% by weight of dilute sulfuric acid 1000e was added to the cupric oxide powder 2180k (moisture 60% by weight) obtained above, and then 60°C water 56001 was added. After filtering the solution to separate the solid content, the solution is heated to 90°C with water vapor.
The mixture was heated and concentrated for 2 hours.

得られた溶液を冷却して晶出物を生成させた。4時間で
25℃まで冷却した。その後、生成した晶出物を母液か
ら濾別して得、これを55℃で乾燥した。
The resulting solution was cooled to form a crystallized product. It was cooled to 25°C over 4 hours. Thereafter, the resulting crystallized product was filtered from the mother liquor and dried at 55°C.

得られた硫酸銅結晶の分析結果を下記の第2表に示す。The analysis results of the obtained copper sulfate crystals are shown in Table 2 below.

第2表 得られた硫酸銅結晶は純度が99重量%以上という高純
度のものであった。
The copper sulfate crystals obtained in Table 2 had a high purity of 99% by weight or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明製造方法によれば、高純度の硫酸
銅を安価に製造することができる。
As described above, according to the production method of the present invention, high purity copper sulfate can be produced at low cost.

Claims (1)

【特許請求の範囲】[Claims] 電気銅を陽極とし、該陽極と陰極をそれぞれ隔膜袋内に
収納し、pH5〜13、温度55〜75℃、0.3〜1
.1モル/lの硫酸ナトリウム水溶液を電解液とし、陰
極電流密度を150〜300A/m^2として電解を行
い、次いで生成する酸化第二銅粉末を前記電解液から濾
別して得、更に該酸化第二銅粉末を硫酸に溶解させ、そ
の溶液を加熱濃縮および/または冷却し、生成する晶出
物を該溶液から濾別して得ることを特徴とする硫酸銅の
製造方法。
Electrolytic copper was used as an anode, and the anode and cathode were each housed in a diaphragm bag, and the pH was 5 to 13, the temperature was 55 to 75°C, and the temperature was 0.3 to 1.
.. Electrolysis is carried out using a 1 mol/l aqueous sodium sulfate solution as an electrolytic solution at a cathode current density of 150 to 300 A/m^2, and then the cupric oxide powder produced is filtered from the electrolytic solution. A method for producing copper sulfate, which comprises dissolving dicopper powder in sulfuric acid, heating and concentrating and/or cooling the solution, and filtering the resulting crystallized product from the solution.
JP60169583A 1985-07-31 1985-07-31 Production of copper sulfate Pending JPS6230615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60169583A JPS6230615A (en) 1985-07-31 1985-07-31 Production of copper sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169583A JPS6230615A (en) 1985-07-31 1985-07-31 Production of copper sulfate

Publications (1)

Publication Number Publication Date
JPS6230615A true JPS6230615A (en) 1987-02-09

Family

ID=15889168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169583A Pending JPS6230615A (en) 1985-07-31 1985-07-31 Production of copper sulfate

Country Status (1)

Country Link
JP (1) JPS6230615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058364A (en) * 2000-05-02 2000-10-05 정진동 The methods of copper sulpate extract from copper erodibility waste sludge in the electronic circuit board panel.
US7695527B2 (en) * 2003-09-04 2010-04-13 Nippon Mining & Metals Co., Ltd High purity copper sulfate and method for production thereof
JP2016186100A (en) * 2015-03-27 2016-10-27 国立大学法人秋田大学 Method and device of producing copper ion-containing aqueous solution
CN107641821A (en) * 2017-09-14 2018-01-30 上海新阳半导体材料股份有限公司 A kind of copper sulfate baths, its preparation method and application and electrolytic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000058364A (en) * 2000-05-02 2000-10-05 정진동 The methods of copper sulpate extract from copper erodibility waste sludge in the electronic circuit board panel.
US7695527B2 (en) * 2003-09-04 2010-04-13 Nippon Mining & Metals Co., Ltd High purity copper sulfate and method for production thereof
JP2016186100A (en) * 2015-03-27 2016-10-27 国立大学法人秋田大学 Method and device of producing copper ion-containing aqueous solution
CN107641821A (en) * 2017-09-14 2018-01-30 上海新阳半导体材料股份有限公司 A kind of copper sulfate baths, its preparation method and application and electrolytic cell
CN107641821B (en) * 2017-09-14 2019-06-07 上海新阳半导体材料股份有限公司 A kind of copper sulfate baths, preparation method and application and electrolytic cell

Similar Documents

Publication Publication Date Title
DK166735B1 (en) PROCEDURE FOR ELECTROLYTIC RECOVERY OF LEAD FROM LEAD WASTE
AU607921B2 (en) Process for refining gold and apparatus employed therefor
US5391265A (en) Process for the production of pure nickel hydroxide and its use
US5181994A (en) Process for the preparation of chromic acid
JPS6230615A (en) Production of copper sulfate
JP4057056B2 (en) Basic cobalt carbonate (II), basic cobalt carbonate oxalate (II), production method and use thereof
US2731402A (en) Production of metallic titanium
GB1045630A (en) Method of producing pure nickel by electrolytic refining and product thus obtained
JP2777955B2 (en) Desilvering or silver recovery method
US3293160A (en) Electrolytic manufacture of manganates and/or permanganates
JPS6230614A (en) Production of cupric chloride
Rao Electrolytic production of magnesium: effect of current density
JPH02289423A (en) Production of basic copper carbonate
CN110656338A (en) Method for deeply recycling tellurium through step cyclone electrolysis
JPS6122034B2 (en)
US1542265A (en) Process of making aminosalicylic acid
CN114192771B (en) Sea Dan Huazhuang electrolytic copper powder with ultralow apparent density and preparation method thereof
US2901411A (en) Methods for preparing single phase molten baths of alkalinous chlorides, titanium chlorides, and alkalinous metals
US3269926A (en) Process for the electrolytic production of alkali metal phosphates
RU2223226C1 (en) Low-temperature process for producing sodium tungstate
JPH07188963A (en) Method for recovering copper from waste copper electrolyte
JPH01219184A (en) Production of cupric oxide powder
US1367409A (en) Process of producing ferrous oxid
SU1175976A1 (en) Method of producing nitrofluoboride
JPS6372893A (en) Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride