JPS62293833A - Optical input and output device - Google Patents

Optical input and output device

Info

Publication number
JPS62293833A
JPS62293833A JP61136892A JP13689286A JPS62293833A JP S62293833 A JPS62293833 A JP S62293833A JP 61136892 A JP61136892 A JP 61136892A JP 13689286 A JP13689286 A JP 13689286A JP S62293833 A JPS62293833 A JP S62293833A
Authority
JP
Japan
Prior art keywords
light
optical
section
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136892A
Other languages
Japanese (ja)
Inventor
Terumi Chikama
輝美 近間
Chiaki Osawa
千晶 大沢
Masami Goto
後藤 正見
Kazuo Hironishi
一夫 廣西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61136892A priority Critical patent/JPS62293833A/en
Publication of JPS62293833A publication Critical patent/JPS62293833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide lots of terminal equipments by allowing an optical loop network to be used for the coherent optical frequency multiplex communication system or the like using the heterodyne or homodyne using an optical frequency allocated to each terminal equipment and applying mutual communication. CONSTITUTION:Part of plural frequency lights from a 1st optical input section 1 is reflected on a mirror 5 having no wavelength dependancy, outputted to 1st optical output section 2, the remaining light is transmitted and the output side of the transmitted light is provided with an optical multiplexor means 6, which multiplexes the transmitted light and a single frequency light selected at a narrow band without giving effect onto the light of the other frequencies and inputted from 2nd optical input section 3 and outputs the result to a 2nd optical output section 4 with nearly no loss. The means 6 selects the light of single frequency from the 2nd light input section 3 without giving effect on the light of the other frequency at a narrow band and multiplexes said light and the light of plural frequencies inputted from a mirror 6 without almost any loss, and since the branch insertion loss is less and the interval of the light wavelengths is made very narrow, lots of small sized terminal equipments are inserted into the option loop network.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔1既要〕 例えば光ループ’jr ノlワーイ7を用い、各◇:1
.i末に割当られた光周波数を用いて相互に通信を行う
ヘテロダイン又はホモダイン検波方式を用いるコヒーレ
ン;・光周波数多m通信方式等において、yH8末毎に
設ける光入出力装置を、光ループネットワークより入力
する複数の周波数の光は小量分岐して受信部に入力する
ようにし、大部分は光ループネットワークに再び出力し
、且つ送信部より入力するm−周波数の光は上記光ルー
プネットワークより入力する他の周波数の光に影響を及
はさず且つ狭帯域で選択して入力させ、殆ど1n失なく
光ループネットワークに出力するようにすることで、光
ループネットワークに挿入出来るO:1;末の数を増加
出来るようにしたものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [1 Already Required] For example, using an optical loop 'jr Nori Wai 7, each ◇:1
.. Coherence using a heterodyne or homodyne detection method that communicates with each other using the optical frequency assigned to the yH8 end; ・In the optical frequency multi-m communication system, etc., the optical input/output device provided for each yH8 end is connected to the optical loop network. A small amount of the input light of multiple frequencies is branched and input to the receiving section, and most of it is outputted again to the optical loop network, and the m-frequency light input from the transmitting section is input from the above optical loop network. O:1; It is possible to increase the number of

〔産業上の利用分野〕[Industrial application field]

本発明は、光ループネットワークを用い、各端末に割当
られた光周波数を用い゛C相互Gこ通信を行うヘテロダ
イン又はホモダイン検波方式を用いろコヒーレント光周
波数多重通信方式等において、端末毎に設ける光入出力
装置に関する。
The present invention uses an optical loop network and uses a heterodyne or homodyne detection method to perform mutual communication using an optical frequency assigned to each terminal. Regarding input/output devices.

上記通信システムは目ド研究段階ごあるが、1例につい
て第4図を用いて説明すると、各端末60〜6nには、
送信機40〜4nの送信光源として夫々波長λl〜λn
のコヒーレンE・な光が割当てあり、例えば端末60が
送信する時はスイッチ50を点線側とし、光入出力装置
20を介して光ループネットワークに送信する。
The above communication system is still in the research stage, but to explain one example using FIG. 4, each terminal 60 to 6n has a
Wavelengths λl to λn are used as transmission light sources of the transmitters 40 to 4n, respectively.
For example, when the terminal 60 transmits, the switch 50 is set to the dotted line side and the light is transmitted to the optical loop network via the optical input/output device 20.

この光は、光入出力装置21〜2nを介して端末61〜
6nの受信a31〜3nにて受信され、自局宛てのもの
であれば、当該受信機ではこれを受信する。
This light is transmitted to terminals 61 to 61 through optical input/output devices 21 to 2n.
6n reception a31 to 3n, and if it is addressed to the own station, the receiver receives it.

ごの受信ja31〜3nには受信待ちの時は、ス、イノ
ヂ51〜5nは実線側に接続されており、自を 局のコヒーレンl−な光/可変して他局の波長にチェウ
ニングしヘテロダイン又はホモダイン検波方式で受信さ
れるようになっている。従ってS/Nが非常によいので
入カレベルは小さくすることが出来ろ。
When waiting for reception, Inoji 51 to 5n are connected to the solid line side, and the self-coherent light of the station is tuned to the wavelength of another station and heterodyned. Alternatively, it is received using the homodyne detection method. Therefore, since the S/N ratio is very good, the input level can be made small.

ここに用いる光入出力装置20〜2nとしては、周波数
的には、送信周波数の間隔を狭く出来、又分岐神入打1
失を極力小さく出来、多数の端末を光ループぶソトワー
クに挿入出来るようにする為に、光ループネットワーク
から入力した光(λ1〜λn)は成るべく少量分岐して
受信機に入力し、大部分の光は光ループネットワークに
出力し、又送信機より人力する単一周波数の光(例えば
λ1)は光ループネットワークより゛入力する他の周波
数の光に影音を及ぼさず且つ狭帯域で選択して入力させ
、殆ど損失なく光ループネットワークに出力するように
出来ることが望ましい。
As for the optical input/output devices 20 to 2n used here, in terms of frequency, the interval between transmission frequencies can be narrowed, and
In order to minimize loss and to allow a large number of terminals to be inserted into an optical loop network, the light input from the optical loop network (λ1 to λn) is branched as little as possible and input to the receiver, so that most of the light is The light is output to the optical loop network, and the light of a single frequency (for example, λ1) manually input from the transmitter is selected in a narrow band without affecting the light of other frequencies input from the optical loop network. It is desirable to be able to input the signal and output it to the optical loop network with almost no loss.

〔従来の技術と発明が解決しようとする問題点〕この光
入出力−装置としては現在発表されていないが、従来技
術にて構成するとすると、第5図に示す如く、波長依存
性のないミラー5.I2を用 。
[Prior art and problems to be solved by the invention] Although this optical input/output device has not been announced at present, if it were constructed using the prior art, it would be a mirror with no wavelength dependence, as shown in Figure 5. 5. Use I2.

いて構成することが考えられるが、この場合は、ミラー
5の反射係数を小さくすれば、光出力部2に出力する波
長λl〜λnの光は小さく出来、ミラー12には大半の
光を人力出来るが、ミラー12にて、この波長λI〜λ
nの光を損失が少なく光出力部4に出力しようとして反
射係数を小さくすると、光入力部3より入力する波長λ
mの光は殆どIJして光出力部4に出力する光は非常に
少なくなり問題となる。
In this case, if the reflection coefficient of the mirror 5 is made small, the light with wavelengths λl to λn outputted to the light output section 2 can be made small, and most of the light can be sent to the mirror 12 manually. However, at the mirror 12, this wavelength λI~λ
If the reflection coefficient is made smaller in an attempt to output n light to the light output section 4 with less loss, the wavelength λ input from the light input section 3
Most of the light of m is converted into IJ, and the amount of light outputted to the light output section 4 becomes very small, which causes a problem.

そごで、光入力部3より入力する光の偏向方向を、ミラ
ー5より人力する光と異ならしめ、ミラー12の反射率
かミラー5よりの光の偏向に対し”ζは小さく、光入力
部3よりの光の偏向に対しては大きくする方法が考えら
れるが、この場合は光ループネノ1ワークに出力される
光の偏向が2種となり、次段に用いる光入出力装置に来
た時、片方の偏向の光のみ損失が大きくなるごとになる
ので実用にはならない。
Therefore, the deflection direction of the light inputted from the optical input section 3 is made different from that of the light manually inputted from the mirror 5. One possible method is to increase the polarization of the light from the third stage, but in this case, there will be two types of polarization of the light output to the optical loop Neno 1 work, and when it comes to the optical input/output device used in the next stage, This method is not practical because the loss increases only for light of one polarization.

次に、第6図に示す如く、ミラー5を出た光を単一モー
ド光ファイバ14の入力端部ら光出力部4に入力させ、
ミラー5よりの光を遮らないよう角度θをつけて光入力
部3よりの光を全反射ミラー13にて反射させて、光フ
ァイバ14の入力0:1;即ち光出力部4に人力させろ
方法が考えられるが、ごれでば111−モー]・光ブr
・イハ1,1の伝15モー[゛と、光入力部3よりの光
ヒームので−トとは不整合となり損失が大きく実用には
ならない。
Next, as shown in FIG. 6, the light exiting the mirror 5 is inputted into the light output section 4 from the input end of the single mode optical fiber 14,
A method in which the light from the optical input section 3 is reflected by the total reflection mirror 13 at an angle θ so as not to block the light from the mirror 5, and the input to the optical fiber 14 is 0:1; that is, the optical output section 4 is manually operated. is possible, but if it is dirty, 111-Mo]・Hikari Blue
- The transmission mode of IHA 1, 1 and the output of the optical beam from the optical input section 3 are mismatched, and the loss is large, making it impractical.

ミラー5よりの光を遮らず且つこの角度θを小さくする
と単一モード光ファイバ14とミラー13との距離が大
きくなり実用性がない。
If the light from the mirror 5 is not blocked and this angle θ is made small, the distance between the single mode optical fiber 14 and the mirror 13 becomes large, which is impractical.

次に第7図に示す如く、グレーティングを施したミラー
15.16を用い、ミラー5よりミラー15に入力した
波長λ1〜λnの光を波長jljに分散さI、ごれを光
学装置17により集光してミラー1Gに人力させて光出
力部5より出力させ、又光入力部3より入力した波長λ
mの光はミラー18にて反射させミラー1Gに入力さ−
Qて、光出力部4より出力させる方法が考えられろ。
Next, as shown in FIG. 7, using mirrors 15 and 16 provided with gratings, the light with wavelengths λ1 to λn input from mirror 5 to mirror 15 is dispersed into wavelengths jlj, and the dirt is collected by optical device 17. The wavelength λ inputted from the optical input section 3 is outputted from the optical output section 5 by manually applying light to the mirror 1G.
The light of m is reflected by mirror 18 and input to mirror 1G.
Q: Can you think of a way to output the light from the light output unit 4?

この場合はグレーティングを施すことにより光波長分解
能は50オ一ムストロング程度であるが、光学装置17
よりの光がミラー■8を避りるように光波長の間隔を広
くせねばならず、多数の端末を光ルーブネノ!・ワーク
に挿入出来なくなる問題点と、光学装置17を用いる為
に大形になる問題点がある。
In this case, the optical wavelength resolution is about 50 ohmstrong by applying a grating, but the optical device 17
The distance between the light wavelengths must be widened so that more light can avoid the mirror ■8, and a large number of terminals can be connected to an optical lube! - There is a problem that it cannot be inserted into the workpiece, and a problem that it becomes large because the optical device 17 is used.

C問題点を解決するための手段〕 上記問題点は、第1図に示す如く、第1の光入力部lよ
りの複数周波数の光を波長依存性のないミラー5により
一部を反射して第1の光出力部2に出力し、残り光は透
過させ、この透過した光の出力側に、 この透過した光と、 他の周波数の光に影響を及ぼさず且っ狭帯域で選択した
、第2の光入力部3より人力する単一周波数の光とを合
成して殆ど1員失なく第2の光出力部4に出力する光合
成手段6を設けた光入出力装置により解決される。
Means for Solving Problem C] The above problem is solved by partially reflecting the light of multiple frequencies from the first optical input section l by a mirror 5 having no wavelength dependence, as shown in FIG. The remaining light is outputted to the first light output section 2, and the remaining light is transmitted, and on the output side of this transmitted light, a narrow band selected without affecting this transmitted light and light of other frequencies is provided. This problem can be solved by a light input/output device provided with a light combining means 6 which combines light of a single frequency manually inputted from the second light input part 3 and outputs it to the second light output part 4 with almost no loss of one member.

〔作用〕[Effect]

本発明によれば、光合成手段6にて、第2の光入力部3
よりの単一周波数の光を他の周波数の光に影響を及ぼさ
ず且つ狭帯域で選択出来、又この光とミラー6より入力
する複数の周波数の光とを殆ど損失なく合成して出力出
来、分岐挿入JU失が少なく、光波長の間隔も非常に狭
く出来るので、小形で且つ多数の端末を光ループネット
ワークに挿入出来るようにすることが出来る。
According to the present invention, in the light combining means 6, the second light input section 3
It is possible to select light of a single frequency in a narrow band without affecting light of other frequencies, and it is possible to combine this light with light of a plurality of frequencies input from the mirror 6 and output it with almost no loss, Since drop/add/drop JU loss is small and the interval between optical wavelengths can be made very narrow, it is possible to make the optical loop network compact and allow a large number of terminals to be inserted into the optical loop network.

〔実施例〕〔Example〕

第2図は本発明の実施例のブロック図、第3図は本発明
の他の実施例のブロック図である。
FIG. 2 is a block diagram of an embodiment of the invention, and FIG. 3 is a block diagram of another embodiment of the invention.

図中1.3は光入力部、2,4は光出力部、5は波長依
存性のないミラー、7はエタロン板、8は受光部、9は
制御部、10は光源、11は共振特性を持つリング状の
光導波路、19は光伝送路を示す。
In the figure, 1.3 is an optical input section, 2 and 4 are optical output sections, 5 is a mirror without wavelength dependence, 7 is an etalon plate, 8 is a light receiving section, 9 is a control section, 10 is a light source, and 11 is a resonance characteristic 19 is a ring-shaped optical waveguide having an optical transmission line.

第2図はある波長の光のみを非常にンヤープに例えば1
オ一ムストロング程度の波長差を選択的に透過し、他の
波長は全反射する特性を持つエタロン板7を用いた例で
ある。
Figure 2 shows that only light of a certain wavelength is very sharp, for example 1
This is an example in which an etalon plate 7 having a characteristic of selectively transmitting a wavelength difference of about one ohmstrong and totally reflecting other wavelengths is used.

エタロン板の透過特性は厚さ及び(頃きによって制御出
来る。
The transmission properties of the etalon plate can be controlled by its thickness and thickness.

そこで第2図の場合は光入力部3より入力する波長λm
の光は透過し、ミラー5よりの他の波長の光は全反射す
るように、光入力部3よりの光を反射した光及びミラー
5よりの光を透過した光を、受光部3にて受は最小にな
るよう制御部9にて傾きを制御するようにしている。
Therefore, in the case of FIG. 2, the wavelength λm input from the optical input section 3
The light reflected from the light input section 3 and the light transmitted from the mirror 5 are transmitted to the light receiving section 3 so that the light of other wavelengths is totally reflected from the mirror 5. The inclination is controlled by the control unit 9 so that the receiver is minimized.

尚この時の光入力部3.光出力部4は直線上になるよう
にしておく。
At this time, the optical input section 3. The light output section 4 is arranged to be on a straight line.

このようにすれば、光入力部1よりの複数周波数の光(
λ1〜λn)は、ミラー5で反射されて、少量を光出力
部2に出力し、大部分は透過してエタロン板7に敗り、
光入力部3よりの光の波長7m以外の波長の光は反射さ
れ°ζ光出力部4に出力される。
In this way, the light of multiple frequencies from the optical input section 1 (
λ1 to λn) are reflected by the mirror 5, a small amount is outputted to the light output section 2, and most of the light is transmitted and lost to the etalon plate 7.
Light having wavelengths other than 7 m from the light input section 3 is reflected and outputted to the °ζ light output section 4.

一方光入力部3よりの単一周波数の光(λm)は、他の
周波数の光に影♂を与えることなく直接エタロン板7に
入力し、殆ど透過して光出力部4より出力される。
On the other hand, the light of a single frequency (λm) from the optical input section 3 is directly input to the etalon plate 7 without affecting the light of other frequencies, is almost transmitted, and is output from the optical output section 4.

このようにすればミラー5を透過した光及び光入力部3
より人力した光は共に殆ど損失なく光出力部4より出力
出来る。
In this way, the light transmitted through the mirror 5 and the light input section 3
Both types of manually generated light can be output from the light output section 4 with almost no loss.

第3図の場合はミラー5よりの光はその愚兄出力部4に
出力され、光入力部3より入力する光源10よりの単一
周波数の光は例えば1オ一ムスlロング程度の波長差を
選択出来る具眼特性を持つリング状の光導波路11にて
、他の周波数の光に影響を与えることなく選択して光伝
送路19に人力し殆ど損失なく光出力部4に出力する。
In the case of FIG. 3, the light from the mirror 5 is output to the output section 4, and the light of a single frequency from the light source 10 inputted from the optical input section 3 has a wavelength difference of, for example, about 1 ohm. In a ring-shaped optical waveguide 11 having selectable optical characteristics, light of other frequencies is selected without affecting it, and is manually inputted to an optical transmission line 19 and outputted to a light output section 4 with almost no loss.

以上の説明のようにすてLば、光入力部1より入力した
複数周波数の光の一部は分岐さ:l′l、て光出力部2
に出力され大部分は光出力部4に出力さ、1′L、又光
入力部3より入力する単一周波数の光は他の周波数の光
に影響を及ぼさず狭訃域で入力し7殆ど打4失なく光出
力部4より出力されるので、光ループネットワークを用
い、各端末に;’;”I当ら、!’l、た光周波数を用
いて相互に通信を行うヘテロゲイン又はホモダイン検波
方式を用いるコヒーレンI光周波数多重通信方弐等に用
いれば、り;1:末を多数設置ノるごとが出来る。
As explained above, if L is inputted from the optical input section 1, a part of the light of multiple frequencies is branched: l'l, and then the optical output section 2
Most of the light is output to the optical output section 4, 1'L, and most of the single frequency light input from the optical input section 3 is input in a narrow range without affecting the light of other frequencies. Since the optical output unit 4 outputs the signal without any loss, a heterogain or homodyne detection method is used in which each terminal communicates with each other using an optical frequency using an optical loop network. If used in a Coheren I optical frequency multiplex communication method using 2, etc., it is possible to install a large number of RI;1: terminals.

〔発明の効果〕〔Effect of the invention〕

以上詳1111に説明せる如く本発明によれば、光ル−
プネソトワークを用い、各端末に割当られた光周波数を
用いて相互に通信を行うヘテ℃1ダイン又はホモダイン
検波方式を用いるコヒーレント光周波数多重連1S方弐
等に用いれば、端末を多数設けることが出来る効果があ
る。
As explained above in detail 1111, according to the present invention, the optical
A large number of terminals can be installed by using Pune Sotowork in a coherent optical frequency multiplexed 1S system using the Hete℃1 dyne or homodyne detection method, which communicates with each other using the optical frequency assigned to each terminal. effective.

4、12IFj5 ノa I f&説明第1図は本発明
の原理ブロック図、 第2図は本発明の実施例のブロック図、第3図は本発明
の他の実施例のブロック図、第4図は光ループネットワ
ークを用いるコヒーレント光周波数多重通信方式の1例
のブロック図、第5図は光入出力装置の第1の例の線図
、第6図は光入出力装置の第2の例の線図、第7図は光
入出力装置の第3の例のブロック図である。
4, 12IFj5 Noa If & Explanation Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the invention, Fig. 3 is a block diagram of another embodiment of the invention, Fig. 4 5 is a block diagram of an example of a coherent optical frequency division multiplexing communication system using an optical loop network, FIG. 5 is a line diagram of a first example of an optical input/output device, and FIG. 6 is a diagram of a second example of an optical input/output device. FIG. 7 is a block diagram of a third example of the optical input/output device.

図において、 1.3は光入力部、 2.4は光出力部、 5は波長依存性のないミラー、 6は光合成手段、 7はエタロン板、 8は受光部、 9は制御部、 10は光源、 11は共振特性を持つリング状の先導波路、19は光伝
送路を示す。
In the figure, 1.3 is a light input section, 2.4 is a light output section, 5 is a wavelength-independent mirror, 6 is a light synthesis means, 7 is an etalon plate, 8 is a light receiving section, 9 is a control section, and 10 is a control section. A light source, 11 a ring-shaped leading waveguide having resonance characteristics, and 19 an optical transmission line.

よjト巳同O1,敢三呈フロ・ンク図 纂 1 図 ≦斗8.目ので序を)タ1σア7゛ロック図耳 2 図 先入土力謀lの・罠2のイ列のお寮図 手 6 図Yoj Tomi O1, Gansanchei Furonku Diagram Summary 1 Diagram ≦Dou8. Eye order) Ta1σa7゛Rock Diagram Ear 2 Diagram Dormitory map of column A of Trap 2 of the first land power plot Hand 6 diagram

Claims (1)

【特許請求の範囲】 第1の光入力部(1)よりの複数の周波数の光を波長依
存性のないミラー(5)により一部を反射して第1の光
出力部(2)に出力し、残り光は透過させ、この透過し
た光の出力側に、 この透過した光と、 他の周波数の光に影響を及ぼさず且つ狭帯域で選択した
、第2の光入力部(3)より入力する単一周波数の光と
を合成して第2の光出力部(4)に出力する光合成手段
(6)を設けたことを特徴とする光入出力装置。
[Claims] Light of multiple frequencies from the first optical input section (1) is partially reflected by a wavelength-independent mirror (5) and output to the first optical output section (2). However, the remaining light is transmitted, and the output side of this transmitted light is connected to the second optical input section (3), which is selected in a narrow band and does not affect the light of other frequencies. A light input/output device characterized in that it is provided with a light combining means (6) that combines input light of a single frequency and outputs it to a second light output section (4).
JP61136892A 1986-06-12 1986-06-12 Optical input and output device Pending JPS62293833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136892A JPS62293833A (en) 1986-06-12 1986-06-12 Optical input and output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136892A JPS62293833A (en) 1986-06-12 1986-06-12 Optical input and output device

Publications (1)

Publication Number Publication Date
JPS62293833A true JPS62293833A (en) 1987-12-21

Family

ID=15185992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136892A Pending JPS62293833A (en) 1986-06-12 1986-06-12 Optical input and output device

Country Status (1)

Country Link
JP (1) JPS62293833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304421A (en) * 1989-05-18 1990-12-18 Oki Electric Ind Co Ltd Optical node
US5488500A (en) * 1994-08-31 1996-01-30 At&T Corp. Tunable add drop optical filtering method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304421A (en) * 1989-05-18 1990-12-18 Oki Electric Ind Co Ltd Optical node
US5488500A (en) * 1994-08-31 1996-01-30 At&T Corp. Tunable add drop optical filtering method and apparatus

Similar Documents

Publication Publication Date Title
KR100557318B1 (en) Splitterless optical broadcast switch
US7450849B2 (en) Wavelength-division multiplexing passive optical network
US7203392B2 (en) Optical apparatus for bidirectional optical communication
JP2002148459A (en) Array waveguide grating, optical transmitter and optical communication system
JP2763167B2 (en) Optical switching network
JPS62502649A (en) optical network
JPS62293833A (en) Optical input and output device
JP3250766B2 (en) Optical branch line monitoring system
JP2713324B2 (en) Lightwave address system
JP2733120B2 (en) Two-way optical communication system
KR100444077B1 (en) A Wireless optical communication apparatus using multiple wavelength laser beams
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
US7164858B2 (en) Optical transmission system and optical transmitter used therein
JPS6318901B2 (en)
JP2526466B2 (en) WDM optical transmission system
JPS62171335A (en) Multiwavelength optical fiber transmission system
EP0975105A2 (en) Method and device for regeneration and relay of optical transmission signal and wavelength division multiplexing transmission system using the same
JPH04355526A (en) Optical communication network and optical communication method
US20060147210A1 (en) Wavelength-division-multiplexed passive optical network
JP7438472B2 (en) Optical modules and optical communication systems
JP2658114B2 (en) Wavelength conversion switch
JPS5938777B2 (en) Communication network using optical wavelength division multiplexing transmission
JPH07264165A (en) Wavelength multiplex optical connection equipment
JPH0750212B2 (en) WDM device
JPH0364136A (en) Bidirectional optical communication system