JPS6229377Y2 - - Google Patents

Info

Publication number
JPS6229377Y2
JPS6229377Y2 JP1982080206U JP8020682U JPS6229377Y2 JP S6229377 Y2 JPS6229377 Y2 JP S6229377Y2 JP 1982080206 U JP1982080206 U JP 1982080206U JP 8020682 U JP8020682 U JP 8020682U JP S6229377 Y2 JPS6229377 Y2 JP S6229377Y2
Authority
JP
Japan
Prior art keywords
wall
peripheral wall
inner peripheral
annular grounding
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982080206U
Other languages
Japanese (ja)
Other versions
JPS58183308U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8020682U priority Critical patent/JPS58183308U/en
Priority to US06/389,250 priority patent/US4465199A/en
Priority to CA000405602A priority patent/CA1203181A/en
Priority to GB08217875A priority patent/GB2102724B/en
Priority to FR8210780A priority patent/FR2508004B1/en
Priority to KR838302784A priority patent/KR890000229B1/en
Priority to BR8203677A priority patent/BR8203677A/en
Priority to AU85111/82A priority patent/AU555015B2/en
Priority to NLAANVRAGE8202522,A priority patent/NL190277C/en
Priority to ES82513355A priority patent/ES513355A0/en
Priority to DE19823223258 priority patent/DE3223258A1/en
Priority to IT8221992A priority patent/IT1190882B/en
Priority to MX82193274A priority patent/MX158518A/en
Priority to AR28992382A priority patent/AR245666A1/en
Priority to ES1983270847U priority patent/ES270847U/en
Publication of JPS58183308U publication Critical patent/JPS58183308U/en
Application granted granted Critical
Publication of JPS6229377Y2 publication Critical patent/JPS6229377Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は炭酸飲料の包装用容器として使用さ
れる耐圧性の合成樹脂びんなどの容器の底部構造
に関するものである。 炭酸飲料用容器としてベースカツプを不要とす
る自立性のびんが一部にて開発されている。従来
の自立性のびんはいずれも底部に脚部を突出形成
しており、この脚部によつて自立性を確保し、ま
た脚部間に生じたリブ或はドーム周縁のリムによ
つて内圧による底部の変形を防止している。この
ようなびんでは脚部の成形が難しく、そこに形成
された所要数の脚部の全てを同一に形成するに
は、高度の成形技術と成形条件とが必要とされて
いる。また脚部による自立性は、静止の状態にあ
つては特に問題視されるようなことはないが、充
填のために移送しているときには、その移送路上
にある僅かな段差によつて倒れることがしばしば
あつた。 また上記自立性びんの欠点を解決する新たな底
構造を備えた容器も提案されている(特許出願公
開55−163137号公報)。このびんはシヤンペンボ
トムの底部と同様な底部構造を備えるものであ
り、びんの自立性は、底壁部を内方へ傾斜形成し
た外周壁部分と、該外周壁部分の円錐台形の内周
壁部分との下端にわたり形成された環状接地部に
より得ており、耐圧性は内周壁部分とその上部に
連続形成した凸曲面の底壁中央部とによつて得て
いる。 この新たに提案されたびんの底部構造(以下シ
ヤンペンボトムと称する)では、内味を充填した
状態で落下すると、底部が環状接地部に沿つて破
壊する。また充填状態下にて温度が上昇すると、
内周壁部分の一部が環状接地部分より押出されて
変形し、自立性を失うことが多い。 上記底部の破壊は環状接地部の曲率半径が小さ
く、成形時に充分な二軸配向がなされていないこ
による。そこで特開昭56−48946号公報に記載さ
れているように、環状接地部全周または一部を更
に断面半円形状に突出形成して、曲率半径を大き
くしているが、外周壁部と内周壁部との接続部に
当る環状接地部を全周にわたり断面半円形に突出
成形することは、先に述べた脚部の成形と同様な
難しさがあり、かつまた曲率半径が大きくなると
落下衝撃強度は増すが、耐圧強度は低下して内圧
により底面中央部が変形し易くなる。また部分的
に半円形状の突起部を形成したのでは、環状接地
部による自立性が失われ、脚部をもつて自立させ
るものと何等変るところのないものとなる。 この考案は上記従来のシヤンペンボトムと称さ
れる自立性容器の問題点を解決するために考えら
れたものであつて、その目的は耐圧強度と耐落下
衝撃強度が一段と向上した新たな合成樹脂製容器
の底部構造を提供することにある。 上記目的によるこの考案は、ポリエチレンテレ
フタレート等の樹脂により首部と胴部及び底部と
が一体に形成され、かつ胴部と共に二軸方向に分
子配向された底部を、内方へ傾斜形成した外周壁
部分と、該外周壁部分の下端から内側へ折返し成
形された内周壁部分と、内外周壁の折返し部分に
生じた環状接地部と、内周壁部分の上部に連続し
て形成された凸曲面の底壁中央部とから構成し、
上記外周壁部分は垂直線に対して6乃至30度の角
度β、内周壁部分は垂直線に対して5乃至7度の
角度αをなし、環状接地部の径dと容器胴部の最
大径Dとの比d/Dは0.55〜0.80の範囲とする耐
圧性合成樹脂容器において、上記環状接地部を外
隅部を内隅部とから構成し、その内外隅部及び内
周壁部分と底壁中央部との接続隅部をそれぞれ曲
面に形成するとともに、内周壁部分の肉厚t2と内
周壁部分の肉厚t1とをt2≧t1に形成し、底壁中央
部の肉厚t3は内周壁部の肉厚t2よりも厚く、かつ
環状接地部より内側の底壁重量は容器重量のほぼ
14.5〜16.0%の範囲を占める重さに形成して、上
記従来の問題点を解決してなる。 以下この考案を図示の例により詳細に説明す
る。 図中1はびんの胴部、2はびんの底部を示す。
上記底部2は胴部1に連なり、かつ内方へ傾斜形
成した外周壁部3と、その外周壁部3の内側に折
返し状態にて成形された内周壁部4と、外周壁部
3と内周壁部4との下端にわたり形成された環状
接地部5及び内周壁部4に連続して形成された凸
曲面の底壁中央部6とからなる。 また環状接地部5は外隅部5aと内隅部5bと
を有し、その両隅部及び内周壁部4と底壁中央部
6とにわたる接続隅部7は曲面に形成されてい
る。 上記容器における胴壁部1の最大径Dと環状接
地部5の径dとの比d/Dは0.55〜0.80の範囲で
ある。また外周壁部3は垂直線に対して6〜30度
の角度βの範囲にあり、内周壁部分4は垂直線に
対して5〜7度の角度αの範囲にある。更にまた
耐圧強度を増すために、底部2を形成する各部の
肉厚分布に考慮が払われている。 第2図に示すように、外周壁部分3の肉厚t1
内周壁壁部分4の肉厚t2は等しく形成されている
が、肉厚t2を若干厚く形成してもよい。更に底壁
中央部6の肉厚t3は内周壁部分4の肉厚t2よりも
厚く形成されており、しかもそれらの肉厚分布に
も量的限界がある。上記環状接地部5より内側の
底壁重量が、容器重量のほぼ16.0%を超えると、
耐圧強度は増すが落下衝撃強度が低下する。これ
は肉厚の増加により、ストレツチブロー成形時に
おけるパリソン底部の熱量が大きく他の部分に比
べて二軸配向が充分に行われなくなるからであ
る。 また底壁重量がほぼ14.5%以下になると内圧に
より変形を起す。これは二軸配向が充分で落下衝
撃強度は増しても剛性が失われるからである。し
たがつて底壁重量は容器重量のほぼ14.5%〜16.0
%の範囲がよく、底壁中央部6曲率Rも30乃至40
度の範囲が好ましい。 上記構造における容器底部の耐久性向上は、環
状接地部5を外隅部5aと内隅部5bとから形成
し、また内外周壁部3,4及び底壁中央部6の各
肉厚t1,t2,t3などを限定し、更に底壁重量を制
限したこと、内外隅部5a,5b及び内周壁部分
4と底壁中央部6との接続隅部7をそれぞれ曲面
に形成し、それらによつて底部における二軸配向
を一段と充実させ、かつまた内外の圧力による特
定部分への応力の集中を除去した結果である。 次に耐圧強度及び落下衝撃強度に優れた効果を
示したびんの底部構造の各フアクターを、容量が
異なる複数のびんについて表記する。なおh1は内
周壁部分の高さ、h2は底壁中央部3までの高さ、
aは内周壁部分の5の内径である。
This invention relates to the bottom structure of containers such as pressure-resistant synthetic resin bottles used as packaging containers for carbonated beverages. Some self-standing bottles that do not require a base cup have been developed as containers for carbonated beverages. All conventional self-supporting bottles have legs protruding from the bottom, and these legs ensure independence, and the ribs between the legs or the rim around the dome reduce internal pressure. This prevents the bottom from deforming due to It is difficult to mold the legs of such a bottle, and advanced molding techniques and molding conditions are required to form all the required number of legs in the same manner. In addition, the independence of the legs is not particularly problematic when it is in a stationary state, but when it is being transferred for filling, it may fall over due to a slight difference in level on the transfer path. was often hot. A container with a new bottom structure that solves the drawbacks of the above-mentioned self-supporting bottle has also been proposed (Patent Application Publication No. 55-163137). This bottle has a bottom structure similar to the bottom of a bottle bottom, and the independence of the bottle is due to the outer circumferential wall portion in which the bottom wall portion is inclined inward, and the truncated conical inner circumferential wall portion of the outer circumferential wall portion. The pressure resistance is obtained by the annular grounding portion formed over the lower end of the inner wall portion, and the pressure resistance is obtained by the inner circumferential wall portion and the central portion of the convexly curved bottom wall continuously formed on the inner peripheral wall portion. With this newly proposed bottle bottom structure (hereinafter referred to as a bottle bottom), if the bottle is dropped with contents filled, the bottom will break along the annular grounding part. Also, when the temperature rises under filling conditions,
A part of the inner circumferential wall portion is often pushed out from the annular ground contact portion and deformed, and loses its independence. The reason for the destruction of the bottom part is that the radius of curvature of the annular grounding part is small and sufficient biaxial orientation is not achieved during molding. Therefore, as described in Japanese Patent Application Laid-Open No. 56-48946, the entire circumference or a part of the annular ground contact portion is further formed to protrude into a semicircular cross section to increase the radius of curvature. Forming the annular grounding part, which connects with the inner peripheral wall, with a semicircular cross section over the entire circumference is difficult, similar to the formation of the legs mentioned above, and if the radius of curvature becomes large, it may fall. Although the impact strength increases, the pressure resistance decreases, and the central part of the bottom surface becomes easily deformed due to internal pressure. Furthermore, if semicircular protrusions are formed partially, the self-sustainability provided by the annular ground-contacting portion is lost, and the product becomes no different from a device that is self-supporting with legs. This idea was devised to solve the above-mentioned problems of the conventional self-supporting containers called champen bottoms. The object of the present invention is to provide a bottom structure for a manufactured container. This invention for the above-mentioned purpose consists of a neck, a body, and a bottom integrally formed of a resin such as polyethylene terephthalate, and a bottom having molecules oriented in biaxial directions together with the body, and an outer circumferential wall portion formed inwardly to incline. , an inner circumferential wall portion that is folded inward from the lower end of the outer circumferential wall portion, an annular ground contact portion formed at the folded portions of the inner and outer circumferential walls, and a convexly curved bottom wall formed continuously at the upper portion of the inner circumferential wall portion. It consists of a central part,
The outer peripheral wall part forms an angle β of 6 to 30 degrees with respect to the vertical line, and the inner peripheral wall part forms an angle α of 5 to 7 degrees with respect to the vertical line, and the diameter d of the annular grounding part and the maximum diameter of the container body In a pressure-resistant synthetic resin container in which the ratio d/D is in the range of 0.55 to 0.80, the annular grounding portion is composed of an outer corner and an inner corner, and the inner and outer corners, inner circumferential wall portion, and bottom wall are The connecting corners with the center part are each formed into a curved surface, and the wall thickness t 2 of the inner peripheral wall part and the wall thickness t 1 of the inner peripheral wall part are formed so that t 2 ≧ t 1 , and the wall thickness of the center part of the bottom wall t 3 is thicker than the wall thickness t 2 of the inner peripheral wall, and the weight of the bottom wall inside the annular grounding part is approximately the weight of the container.
The above-mentioned conventional problems are solved by forming the film to have a weight in the range of 14.5 to 16.0%. This invention will be explained in detail below using illustrated examples. In the figure, 1 indicates the body of the bottle, and 2 indicates the bottom of the bottle.
The bottom part 2 has an outer circumferential wall part 3 that is connected to the body part 1 and is inclined inward, an inner circumferential wall part 4 formed in a folded manner inside the outer circumferential wall part 3, and an inner circumferential wall part 3 that is connected to the outer circumferential wall part 3. It consists of an annular grounding part 5 formed over the lower end of the peripheral wall part 4 and a bottom wall central part 6 of a convexly curved surface formed continuously with the inner peripheral wall part 4 . Further, the annular grounding portion 5 has an outer corner portion 5a and an inner corner portion 5b, and a connecting corner portion 7 extending between both corners and the inner circumferential wall portion 4 and the bottom wall center portion 6 is formed into a curved surface. The ratio d/D between the maximum diameter D of the trunk wall portion 1 and the diameter d of the annular grounding portion 5 in the container is in the range of 0.55 to 0.80. Further, the outer circumferential wall portion 3 lies at an angle β of 6 to 30 degrees with respect to the vertical line, and the inner circumferential wall portion 4 lies within an angle α of 5 to 7 degrees with respect to the vertical line. Furthermore, in order to increase pressure resistance, consideration is given to the thickness distribution of each part forming the bottom part 2. As shown in FIG. 2, the wall thickness t 1 of the outer circumferential wall portion 3 and the wall thickness t 2 of the inner circumferential wall portion 4 are formed to be equal, but the wall thickness t 2 may be formed to be slightly thicker. Furthermore, the wall thickness t 3 of the bottom wall central portion 6 is formed to be thicker than the wall thickness t 2 of the inner circumferential wall portion 4, and there is also a quantitative limit to the thickness distribution thereof. If the weight of the bottom wall inside the annular grounding portion 5 exceeds approximately 16.0% of the container weight,
Pressure resistance increases, but drop impact strength decreases. This is because, due to the increase in wall thickness, the amount of heat at the bottom of the parison during stretch blow molding is large, and biaxial orientation cannot be achieved sufficiently as compared to other parts. Furthermore, when the weight of the bottom wall becomes approximately 14.5% or less, deformation occurs due to internal pressure. This is because the biaxial orientation is sufficient and even if the drop impact strength increases, the rigidity is lost. Therefore, the bottom wall weight is approximately 14.5% to 16.0% of the container weight.
% range is good, and the bottom wall central part 6 curvature R is also 30 to 40.
A range of degrees is preferred. The durability of the container bottom in the above structure is improved by forming the annular grounding portion 5 from an outer corner 5a and an inner corner 5b, and by increasing the thickness t 1 of the inner and outer circumferential walls 3, 4 and the bottom wall central portion 6. t 2 , t 3 etc., and the weight of the bottom wall is also limited, and the inner and outer corners 5a, 5b and the connecting corner 7 between the inner circumferential wall portion 4 and the bottom wall center portion 6 are formed into curved surfaces, respectively. This is the result of further enhancing the biaxial orientation at the bottom and eliminating the concentration of stress on specific parts due to internal and external pressure. Next, each factor of the bottom structure of the bottle that exhibits excellent effects on pressure resistance and drop impact strength will be described for a plurality of bottles with different capacities. In addition, h 1 is the height of the inner peripheral wall part, h 2 is the height to the bottom wall center part 3,
a is the inner diameter of 5 of the inner peripheral wall portion.

【表】 ・ 熱変形試験方法 びんに4VOL.(4ボリユーム)の炭酸水を入れ
て密栓し、38℃のオーブンに入れて24時間後に取
り出し、びん底部の変形の有無を見る。 (びん内圧力は約6.4Kg/cm2となる) ・ 落下試験方法 1.80mの高さから垂直に落下し、環状接地部の
状態を見る。 この考案は上述のように耐圧強度及び耐落下衝
撃強度にも優れ自立性をも有することから、炭酸
飲料用びんなどの包装用容器の底部構造としてき
わめて有益なものである。
[Table] - Heat deformation test method Fill a bottle with 4 volumes of carbonated water, seal it tightly, put it in an oven at 38℃, take it out after 24 hours, and check for deformation at the bottom of the bottle. (The pressure inside the bottle will be approximately 6.4Kg/ cm2 ) - Drop test method: Drop vertically from a height of 1.80m and observe the condition of the annular ground contact part. As mentioned above, this invention is extremely useful as a bottom structure for packaging containers such as carbonated beverage bottles because it has excellent pressure resistance and drop impact resistance and is self-supporting.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案に係る耐圧性合成樹脂容器の底
部構造を例示するもので、第1図は底部の略示
図、第2図は底部の一部拡大断面図である。 1……びんの胴部、2……びんの底部、3……
外周壁部、4……内周壁部、5……環状接地部、
5a……外隅、5b……内隅、6……底壁中央
部、7……接続隅部。
The drawings illustrate the bottom structure of the pressure-resistant synthetic resin container according to the invention, and FIG. 1 is a schematic diagram of the bottom, and FIG. 2 is a partially enlarged sectional view of the bottom. 1... body of the bottle, 2... bottom of the bottle, 3...
Outer peripheral wall part, 4... Inner peripheral wall part, 5... Annular grounding part,
5a...Outer corner, 5b...Inner corner, 6...Bottom wall center, 7...Connection corner.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ポリエチレンテレフタレート等の樹脂により首
部と胴部及び底部とが一体に形成され、かつ胴部
と共に二軸方向に分子配向された底部を、内方へ
傾斜形成した外周壁部分と、該外周壁部分の下端
から内側へ折返し成形された内周壁部分と、内外
周壁の折返し部分に生じた環状接地部と、内周壁
部分の上部に連続して形成された凸曲面の底壁中
央部とから構成し、上記外周壁部分は垂直線に対
して6乃至30度の角度β、内周壁部分は垂直線に
対して5乃至7度の角度αをなし、環状接地部の
径dと容器胴部の最大径Dとの比d/Dは0.55〜
0.80の範囲とする耐圧性合成樹脂容器において、
上記環状接地部を外隅部と内隅部とから構成し、
その内外隅部及び内周壁部分と底壁中央部との接
続隅部をそれぞれ曲面に形成するとともに、内周
壁部分の肉厚t2と内周壁部分の肉厚t1とをt2≧t1
形成し、底壁中央部の肉厚t3は内周壁部の肉厚t2
よりも厚く、かつ環状接地部より内側の底壁重量
は容器重量のほぼ14.5〜16.0%の範囲を占める重
さからなることを特徴とする耐圧性合成樹脂容器
の底部構造。
The neck, the body, and the bottom are integrally formed of a resin such as polyethylene terephthalate, and the bottom has biaxially oriented molecules together with the body. Consisting of an inner circumferential wall portion folded inward from the lower end, an annular grounding portion formed at the folded portions of the inner and outer circumferential walls, and a central portion of the bottom wall with a convex curved surface formed continuously at the upper portion of the inner circumferential wall portion, The outer peripheral wall part forms an angle β of 6 to 30 degrees with respect to the vertical line, and the inner peripheral wall part forms an angle α of 5 to 7 degrees with respect to the vertical line, and the diameter d of the annular grounding part and the maximum diameter of the container body The ratio d/D with D is 0.55~
In pressure-resistant synthetic resin containers with a range of 0.80,
The annular grounding portion is composed of an outer corner and an inner corner,
The inner and outer corners and the connecting corner between the inner peripheral wall part and the center part of the bottom wall are respectively formed into curved surfaces, and the thickness t 2 of the inner peripheral wall part and the wall thickness t 1 of the inner peripheral wall part are set such that t 2 ≧ t 1 The wall thickness at the center of the bottom wall, t 3 , is the wall thickness at the inner peripheral wall, t 2.
The bottom structure of a pressure-resistant synthetic resin container is characterized in that the weight of the bottom wall inside the annular grounding portion is approximately 14.5 to 16.0% of the weight of the container.
JP8020682U 1981-06-22 1982-05-31 Bottom structure of pressure-resistant synthetic resin container Granted JPS58183308U (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP8020682U JPS58183308U (en) 1982-05-31 1982-05-31 Bottom structure of pressure-resistant synthetic resin container
US06/389,250 US4465199A (en) 1981-06-22 1982-06-17 Pressure resisting plastic bottle
GB08217875A GB2102724B (en) 1981-06-22 1982-06-21 Improvements in or relating to plastics bottles
FR8210780A FR2508004B1 (en) 1981-06-22 1982-06-21 PRESSURE-RESISTANT PLASTIC BOTTLES AND METHOD FOR MOLDING SUCH BOTTLES
CA000405602A CA1203181A (en) 1981-06-22 1982-06-21 Pressure resisting plastic bottles and method of molding the same
NLAANVRAGE8202522,A NL190277C (en) 1981-06-22 1982-06-22 PRESSURE-RESISTANT BOTTLE OF POLYETHENETHALPHALATE, AND METHOD FOR MANUFACTURING SUCH A BOTTLE.
BR8203677A BR8203677A (en) 1981-06-22 1982-06-22 PRESSURE-RESISTANT PLASTIC BOTTLES AND METHODS FOR MOLDS
AU85111/82A AU555015B2 (en) 1981-06-22 1982-06-22 Pressure resistant plastics bottle
KR838302784A KR890000229B1 (en) 1981-06-22 1982-06-22 Pressure resisting plastic bottle and forming process thereof
ES82513355A ES513355A0 (en) 1981-06-22 1982-06-22 A METHOD FOR MOLDING A PRESSURE RESISTANT PLASTIC BOTTLE.
DE19823223258 DE3223258A1 (en) 1981-06-22 1982-06-22 PRESSURE-RESISTANT PLASTIC BOTTLE AND METHOD FOR THEIR PRODUCTION
IT8221992A IT1190882B (en) 1981-06-22 1982-06-22 PRESSURE RESISTANT PLASTIC BOTTLES AND METHOD TO SHAPE THEMSELVES
MX82193274A MX158518A (en) 1981-06-22 1982-06-22 IMPROVEMENTS IN PRESSURE-RESISTANT PLASTIC BOTTLES AND METHOD FOR MOLDING THEM
AR28992382A AR245666A1 (en) 1981-09-28 1982-07-07 A pressure-resistant plastic bottle.
ES1983270847U ES270847U (en) 1981-06-22 1983-03-14 Pressure resisting plastic bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020682U JPS58183308U (en) 1982-05-31 1982-05-31 Bottom structure of pressure-resistant synthetic resin container

Publications (2)

Publication Number Publication Date
JPS58183308U JPS58183308U (en) 1983-12-06
JPS6229377Y2 true JPS6229377Y2 (en) 1987-07-28

Family

ID=30089360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020682U Granted JPS58183308U (en) 1981-06-22 1982-05-31 Bottom structure of pressure-resistant synthetic resin container

Country Status (1)

Country Link
JP (1) JPS58183308U (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104500A (en) * 2003-09-29 2005-04-21 Yoshino Kogyosho Co Ltd Bottle made of synthetic resin
JP4553641B2 (en) * 2004-06-28 2010-09-29 大日本印刷株式会社 Plastic container
US8047388B2 (en) * 2008-12-08 2011-11-01 Graham Packaging Company, L.P. Plastic container having a deep-inset base
US8444002B2 (en) * 2010-02-19 2013-05-21 Graham Packaging Lc, L.P. Pressure compensating bases for polymeric containers
JP6143213B1 (en) * 2016-03-04 2017-06-07 三菱ケミカル株式会社 Plastic bottle
JP6862720B2 (en) * 2016-08-26 2021-04-21 大日本印刷株式会社 Plastic bottles and fillers
JP6894085B2 (en) * 2017-07-25 2021-06-23 パイオニア工業株式会社 Nitrogen-filled polyester resin bottle for hot pack and nitrogen-filled filling method for hot pack contents
JP2019094128A (en) * 2017-11-22 2019-06-20 三菱ケミカル株式会社 Plastic bottle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853880A (en) * 1971-11-01 1973-07-28
JPS55163137A (en) * 1979-05-31 1980-12-18 Yoshizaki Kozo Plasticcmade pressure container and making method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853880A (en) * 1971-11-01 1973-07-28
JPS55163137A (en) * 1979-05-31 1980-12-18 Yoshizaki Kozo Plasticcmade pressure container and making method thereof

Also Published As

Publication number Publication date
JPS58183308U (en) 1983-12-06

Similar Documents

Publication Publication Date Title
US7243808B2 (en) Plastic container with horizontally oriented panels
US7748552B2 (en) Plastic container with horizontally oriented panels
US4465199A (en) Pressure resisting plastic bottle
US4276987A (en) Hollow body made of an oriented thermoplastic
EP2459456B1 (en) Hot-fill container
CA2251145C (en) Load bearing polymeric container
US5803290A (en) Plastic blow molded bottle having annular grip
US20060131257A1 (en) Plastic container with champagne style base
JPS5821373Y2 (en) Biaxially stretched synthetic resin thin wall bottle
US4231483A (en) Hollow article made of an oriented thermoplastic
JPH0333613Y2 (en)
US6612451B2 (en) Multi-functional base for a plastic, wide-mouth, blow-molded container
US3871541A (en) Bottom structure for plastic containers
US7748551B2 (en) Hot fill container with restricted corner radius vacuum panels
US4438856A (en) Combination base cup and bottle
US20030196926A1 (en) Multi-functional base for a plastic, wide-mouth, blow-molded container
US20140166676A1 (en) Container Structure for Removal of Vacuum Pressure
US20030221987A1 (en) Container with stackable base
MXPA00010795A (en) Hot fill plastic container having spaced apart arched ribs.
US20160311599A1 (en) Vacuum Absorbing Bases for Hot-Fill Containers
EP1044137B1 (en) Plastic blow molded container having stable freestanding base
JPS6229377Y2 (en)
US4463860A (en) Saturated polyester resin bottle and stand
JP4315700B2 (en) Heat-resistant bottle made of polyethylene terephthalate resin
US7287658B1 (en) Container having a base with a convex dome and method of use