JPS6226842A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS6226842A
JPS6226842A JP16589185A JP16589185A JPS6226842A JP S6226842 A JPS6226842 A JP S6226842A JP 16589185 A JP16589185 A JP 16589185A JP 16589185 A JP16589185 A JP 16589185A JP S6226842 A JPS6226842 A JP S6226842A
Authority
JP
Japan
Prior art keywords
film
resist
nitride film
wiring
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16589185A
Other languages
Japanese (ja)
Inventor
Takahiro Yamauchi
孝裕 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16589185A priority Critical patent/JPS6226842A/en
Publication of JPS6226842A publication Critical patent/JPS6226842A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stack numerous layers, and also to prevent the wiring resistance from augmenting due to the narrowing of the wirings by a method wherein a metal film is patterned, an insulating film is formed on the whole surface, the surface thereof is flattened and an etching is performed until the surfaces of the metal film patterns are exposed. CONSTITUTION:An Al film 27 is deposited on the whole surface of an Si substrate 21, whereon the forming process of the element parts is already finished, then a dry etching is performed on the Al film 27 using the resist pattern of the Al film 27 as a mask and Al film patterns 28 are formed on each impurity diffusion region 25 as the connecting layers between each impurity diffusion region 25 and the first-layer wiring layer. An Si nitride film 29 is deposited on the whole surface, and moreover, an organic resist 30 is applied to flatten the surface. After that, the resist 30 and the Si nitride film 29 are etched back until the surfaces of the Al film patterns 28 are made to expose. The Si nitride film 29 is left in the same height as the surfaces of the Al film patterns 28. As the result, the flat surface is obtained. After that, a series of these processes are repeated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体装置における多層配線の形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming multilayer wiring in a semiconductor device.

(従来の技術) 従来、半導体装置において、多層配線は、次のようにし
て形成されている。まず、基板全面にMなどの金属をス
・ぐツタ法などによってデポジションし、次にこの金属
をリソグラフィ法によってノターニングする。次に、こ
の上に絶RRをCVD法などによってデポジションする
。そして、コノ絶縁膜にリングラフィ法によって層間接
続孔(バイヤーホール)を開け、再び金属をデポジショ
ンし、リングラフィによって79ターニングする。そし
て1以上の工程を何回か繰り返した後、保護膜をデポジ
ションし、多層配線の製造工程を終了する。
(Prior Art) Conventionally, in a semiconductor device, multilayer wiring is formed in the following manner. First, a metal such as M is deposited on the entire surface of the substrate by a suction method or the like, and then this metal is notared by a lithography method. Next, absolute RR is deposited on this by CVD method or the like. Then, an interlayer connection hole (byer hole) is formed in the insulating film by phosphorography, metal is deposited again, and 79 turns are performed by phosphorography. After repeating one or more steps several times, a protective film is deposited to complete the multilayer wiring manufacturing process.

第3図は、このような従来の方法によシ製造された多層
配線構造の一例を示す断面図である。この図において、
1はシリコン基板、2は素子分離用の厚い酸化膜、3は
ダート電極、4はr−トm化膜、5はンース・ドレイン
としての不純物拡散領域、6はパッシベーション膜とし
てのPSG膜、7は一層目の金属配線、8は眉間絶縁膜
としてのSiN膜、9は二層目の金属配線、10は保護
膜である。
FIG. 3 is a cross-sectional view showing an example of a multilayer wiring structure manufactured by such a conventional method. In this diagram,
1 is a silicon substrate, 2 is a thick oxide film for element isolation, 3 is a dirt electrode, 4 is an R-TM film, 5 is an impurity diffusion region as a drain and drain, 6 is a PSG film as a passivation film, 7 1 is a first layer of metal wiring, 8 is a SiN film as an insulating film between the eyebrows, 9 is a second layer of metal wiring, and 10 is a protective film.

(発明が解決しようとする問題点) しかるに、上記のような従来の方法では、第3図より明
らかなように、配線のあるところとないところでどうし
ても段差がついてしまうので、あまシ多くの層を積み重
ねることが困難であった。
(Problem to be solved by the invention) However, as is clear from Figure 3, in the conventional method as described above, there is inevitably a difference in level where there is wiring and where there is no wiring, so it is necessary to use many layers. It was difficult to accumulate.

また、接続部における段差において配線が細くなり(段
差部においてスノンツタ法による7Jポジシヨン膜の被
覆率(ステップカバレッジ)が悪い)、配線抵抗が増大
するという欠点があった。
Further, there was a drawback that the wiring became thinner at the step at the connection part (the step coverage of the 7J position film by the Sonon-tsuta method was poor at the step) and the wiring resistance increased.

この発明は上記の点に鑑みなされたもので、その目的は
、3層あるいは4層以上の多くの層を積み重ねることが
でき、かつ配線の測シによる配線抵抗の増大を防止でき
る多層配線の形成方法を提供することにある。
This invention was made in view of the above points, and its purpose is to form a multilayer wiring that can stack three or four or more layers and prevent an increase in wiring resistance due to wiring measurement. The purpose is to provide a method.

(問題点を解決するための手段) この発明では、全面に金JtA膜を形成する工程、その
金属膜をパターニングする工程、その金属膜・ぐターン
上を含む全面に絶縁膜を形成し、その表面を平担化する
工程、その絶縁膜を前記金属膜パターン表面が露出する
までエツチングする工程からなる一連の工程を配線層あ
るいは接続層ごとに繰り返して多層配線を形成する。
(Means for Solving the Problems) This invention includes a step of forming a gold JtA film on the entire surface, a step of patterning the metal film, forming an insulating film on the entire surface including the metal film/gut pattern, and A series of steps consisting of a step of flattening the surface and a step of etching the insulating film until the surface of the metal film pattern is exposed is repeated for each wiring layer or connection layer to form a multilayer wiring.

(作用) このようにすると、エツチング残シの絶縁膜によシ常に
表面の平担が確保され、しかも配線層と別個に接続層を
形成するため、接続部における段差がなくなる。
(Function) In this way, a flat surface is always ensured by the insulating film remaining after etching, and since the connection layer is formed separately from the wiring layer, there is no difference in level at the connection portion.

(実施例) 以下この発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図(a)は、素子部の形成工程を終了した状態を示
し、21はシリコン基板、22は素子分離用の厚い酸化
膜、23はr−ト電極、24はr−ト酸化膜、25はソ
ース・ドレインとしての不純物拡散領域、26はノ臂ツ
シペーション膜としてのPSG膜である。
FIG. 1(a) shows the state where the forming process of the element part is completed, 21 is a silicon substrate, 22 is a thick oxide film for element isolation, 23 is an r-to electrode, 24 is an r-to oxide film, 25 is an impurity diffusion region serving as a source/drain, and 26 is a PSG film serving as a compression film.

その後、シリコン基板21上の全面に第1図(b)に示
すようにAI!膜27(金属膜)をスAツタ法にょシブ
ポジションする。
After that, AI! is applied to the entire surface of the silicon substrate 21 as shown in FIG. 1(b). The film 27 (metal film) is placed in a vertical position using the vine method.

続いて、AI!膜2膜上7上示しないがレジストを塗布
し、それをホトリソ法によって・(ターニングし、次に
そのレジストノンターンをマスクとしてA/膜27をド
ライエツチングすることによシ、第1図(c)に示すよ
うにAI!膜ノターン28を形成する。
Next, AI! Although not shown above, a resist is applied on the film 2 and the film 7 is turned by photolithography, and then the A/film 27 is dry-etched using the resist non-turn as a mask. As shown in c), an AI! membrane notarne 28 is formed.

ここで、AI!I!ターン28は、各不純物拡散領域2
5上に、これと後述する第1層配線層との接続層として
形成される。
Here, AI! I! The turn 28 is connected to each impurity diffusion region 2.
5 as a connection layer between this and a first layer wiring layer to be described later.

次に、前記レジスト・ンターンを除去した後、M膜・ゼ
ターン28上を含む全面に第1図(d)に示すようにシ
リコン窒化膜29(絶縁膜)をプラズマCVD法によっ
てデポジションし、さらにそのシリコン窒化膜29上に
有機のレジスト30を塗布して表面を平担化する。
Next, after removing the resist pattern, a silicon nitride film 29 (insulating film) is deposited on the entire surface including the M film/zetan pattern 28 by plasma CVD as shown in FIG. 1(d). An organic resist 30 is applied onto the silicon nitride film 29 to flatten the surface.

その後、レジスト30とシリコン窒化JljJ29を、
第1図(e)に示すように、A/膜ノックターン28表
面が露出するまでエッチパックする。このエッチパック
は、CF41020.1〜0.5 Torrで行い、レ
ジスト30とシリコン窒化膜29を等速エツチングする
。このエッチパックにより、シリコン窒化膜29は、A
I!I!ターン28の周辺にA//パターン28の表面
と同じ高さに残シ、その結果として平担な表面が得られ
る。
After that, resist 30 and silicon nitride JljJ29,
As shown in FIG. 1(e), etch packing is performed until the surface of the A/membrane knock turn 28 is exposed. This etch pack is performed at CF4102 at 0.1 to 0.5 Torr, and the resist 30 and silicon nitride film 29 are etched at a constant speed. With this etch pack, the silicon nitride film 29 is
I! I! The periphery of the turn 28 is left flush with the surface of the A// pattern 28, resulting in a flat surface.

しかる後、以上の一連の工程を繰り返す。つまり、A!
膜31をデポジションして(第1図(f) )、ノンタ
ーニングしく第1図(g) ) 、次にシリコン窒化膜
32をデポジションし、その上にレジスト33を塗布し
く第1図a1))、その後、レジスト33とシリコン窒
化膜32をエッチパックする(第1図(i))。そして
、この一連の工程の繰り返しによ)、ここでは、前記A
!!膜Aターン28に接続される第1層配線層としての
A//パターン34を形成スルとともに、エツチング残
シのシリコン窒化膜32により平担な表面形状を得る。
After that, repeat the above series of steps. In other words, A!
A film 31 is deposited (FIG. 1(f)), a non-turning film 32 is deposited (FIG. 1(g)), and then a silicon nitride film 32 is deposited, and a resist 33 is applied thereon. )) After that, the resist 33 and silicon nitride film 32 are etch-packed (FIG. 1(i)). By repeating this series of steps), here, the above A
! ! An A// pattern 34 as a first layer wiring layer connected to the film A turn 28 is formed, and a flat surface shape is obtained by using the silicon nitride film 32 remaining after etching.

その後、AI!I!ターン28とM膜ノ4ターン34の
接続部の抵抗を下げるために、N雪中450℃で20分
間熱処理する。
After that, AI! I! In order to lower the resistance of the connection between the turn 28 and the fourth turn 34 of the M film, heat treatment is performed at 450° C. for 20 minutes in N snow.

しかる後、この一実施例では、ちと2回、各回の終シに
上記の熱処理工程を加えて上記の一連の工程を繰り返す
。つまシ、第1回目の繰9返しく第1図(j)、(ト)
)により、層間接続層としてのM換・ンターン35を形
成し、かつ表面をエッチング残りのシリコン窒化膜36
によシ平担とし、第2回目の繰り返しく第1図(1) 
、(ホ))により、第2層配線層としてのAJ膜パター
ン37を形成し、かつ表面をエツチング残シのシリコン
窒化膜38によシ平担とする。
Thereafter, in this embodiment, the above series of steps is repeated twice, with the above heat treatment step added at the end of each step. Tsumashi, 1st repetition 9 times Figure 1 (j), (g)
) to form an M conversion layer 35 as an interlayer connection layer, and etching the surface to remove the remaining silicon nitride film 36.
Figure 1(1)
, (e)), an AJ film pattern 37 as a second wiring layer is formed, and the surface is leveled with a silicon nitride film 38 remaining after etching.

最後に、第1図(n)に示すように保護膜39を表面上
に形成する。
Finally, a protective film 39 is formed on the surface as shown in FIG. 1(n).

なお、第1図(jンおよび<aにおいて、40.41は
シリコン窒化膜36.38上に塗布されたレジストであ
る。
Note that in FIG. 1 (j and <a), 40.41 is a resist coated on the silicon nitride film 36.38.

(発明の効果) 以上のように、この発明の方法によれば、エツチング残
りの絶縁膜により常に表面を平担とすることができ、し
念がって3層あるいは4J−以上の多くの層を積み重ね
ることが可能となる。ま念、配線層と別個に接続層を形
成することによう、接続部における段差をなくすことが
でき、その結果、配線の細りをなくして配線抵抗の増大
を防止できる。そして、これらの効果を有するため、こ
の発明の方法によれば、この発明の方法で得られ九多層
配線構造の一例を第2図に示すように、同一位置で連続
コンタクトをとったり(符号42部分)、層間自由接続
(符号43.44部分)をとることが容易になる。
(Effects of the Invention) As described above, according to the method of the present invention, the surface can always be made flat by the insulating film remaining after etching, and it is possible to make the surface of the insulating film flat after etching. It is possible to stack up. By forming the connection layer separately from the wiring layer, it is possible to eliminate the difference in level at the connection part, and as a result, the thinning of the wiring can be eliminated and an increase in wiring resistance can be prevented. In order to have these effects, according to the method of the present invention, as shown in FIG. section), and interlayer free connections (sections 43 and 44) can be made easily.

【図面の簡単な説明】[Brief explanation of drawings]

(図面) 第1図はこの発明の多層配線の形成方法の一実施例を示
す断面図、第2図はこの発明の方法により得られた多層
配線構造の一例を示す断面図、第3図は従来の方法によ
シ得られた多層配線構造を示す断面図である。 27・・・11%、28・・・A/膜ノ9ターン、29
・・・シリコン窒化膜、30・・・レジスト、31・・
・AI!l1g、32・・・シリコン窒化膜、33・・
・レジスト、34・・・AI!膜パターン、35・・・
AI!!パターン、36・・・シリコン窒化膜、37・
・・A/膜ノ々ターン、38・・・シリコン窒化膜、4
0.41・・・レジスト。 本死明−(化合・)/)断面図 第1 図 第1図 40&ノスト 」ミ手ケan一つビ万しイタ・1のぽ汀づO〔ワ第1 
図 本元昭−爽方セイ列cqt面図 第1区
(Drawings) FIG. 1 is a cross-sectional view showing an example of the method for forming multilayer wiring of the present invention, FIG. 2 is a cross-sectional view showing an example of the multilayer wiring structure obtained by the method of the present invention, and FIG. FIG. 2 is a cross-sectional view showing a multilayer wiring structure obtained by a conventional method. 27...11%, 28...A/membrane 9 turns, 29
...Silicon nitride film, 30...Resist, 31...
・AI! l1g, 32... silicon nitride film, 33...
・Resist, 34...AI! Film pattern, 35...
AI! ! Pattern, 36... Silicon nitride film, 37.
...A/membrane turn, 38...silicon nitride film, 4
0.41...Resist. Honshimei-(combined・)/) Cross-sectional view 1 Figure 1
Picture book Motoaki - Soukata Sei row cqt map 1st section

Claims (1)

【特許請求の範囲】 (a)全面に金属膜を形成する工程、 (b)その金属膜をパターニングする工程、(c)その
金属膜パターン上を含む全面に絶縁膜を形成し、その表
面を平担化する工程、 (d)その絶縁膜を前記金属膜パターン表面が露出する
までエッチングする工程、 (e)からなる一連の工程を配線層あるいは接続層ごと
に繰り返して多層配線を形成することを特徴とする多層
配線の形成方法。
[Claims] (a) a step of forming a metal film on the entire surface; (b) a step of patterning the metal film; (c) a step of forming an insulating film on the entire surface including the metal film pattern; (d) etching the insulating film until the surface of the metal film pattern is exposed; and (e) repeating a series of steps for each wiring layer or connection layer to form a multilayer wiring. A method for forming multilayer wiring characterized by:
JP16589185A 1985-07-29 1985-07-29 Formation of multilayer interconnection Pending JPS6226842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16589185A JPS6226842A (en) 1985-07-29 1985-07-29 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16589185A JPS6226842A (en) 1985-07-29 1985-07-29 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS6226842A true JPS6226842A (en) 1987-02-04

Family

ID=15820936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16589185A Pending JPS6226842A (en) 1985-07-29 1985-07-29 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS6226842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350893A (en) * 1992-07-23 1994-09-27 Yazaki Corporation Lever switch
US5457443A (en) * 1992-03-30 1995-10-10 Yazaki Corporation Multifunctional combination switch
US6412322B1 (en) * 1999-03-19 2002-07-02 Kawasaki Steel Corporation Rolling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457443A (en) * 1992-03-30 1995-10-10 Yazaki Corporation Multifunctional combination switch
US5350893A (en) * 1992-07-23 1994-09-27 Yazaki Corporation Lever switch
US6412322B1 (en) * 1999-03-19 2002-07-02 Kawasaki Steel Corporation Rolling method

Similar Documents

Publication Publication Date Title
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPS6226842A (en) Formation of multilayer interconnection
JP3247729B2 (en) Method for manufacturing semiconductor device
JPH021917A (en) Semiconductor integrated circuit
JP3348564B2 (en) Method for manufacturing dielectric capacitor
JP2720480B2 (en) Multilayer wiring formation method
JP3103912B2 (en) Street structure of semiconductor wafer and method of manufacturing the same
JPH0587973B2 (en)
JPH02113566A (en) Semiconductor integrated circuit
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2669895B2 (en) Method for manufacturing semiconductor device
JP2783898B2 (en) Method for manufacturing semiconductor device
JPS62210648A (en) Semiconductor device
JP2723560B2 (en) Method for manufacturing semiconductor device
JP2809274B2 (en) Method for manufacturing semiconductor device
JPS61256742A (en) Multilayer wiring structure and manufacture thereof
JPS63166245A (en) Manufacture of semiconductor device
JPH0415925A (en) Manufacture of semiconductor device
JPH02238629A (en) Manufacture of semiconductor device
JPS61216344A (en) Manufacture of semiconductor device
JPH05259293A (en) Semiconductor device and manufacture thereof
JPH0574950A (en) Manufacture of semiconductor device
JPS62222654A (en) Manufacture of semiconductor device
JPS6134956A (en) Method for forming wiring layer
JPH079933B2 (en) Method for manufacturing semiconductor device