JPS6226806B2 - - Google Patents

Info

Publication number
JPS6226806B2
JPS6226806B2 JP56198674A JP19867481A JPS6226806B2 JP S6226806 B2 JPS6226806 B2 JP S6226806B2 JP 56198674 A JP56198674 A JP 56198674A JP 19867481 A JP19867481 A JP 19867481A JP S6226806 B2 JPS6226806 B2 JP S6226806B2
Authority
JP
Japan
Prior art keywords
sludge
amount
valve
drawn
integrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56198674A
Other languages
Japanese (ja)
Other versions
JPS58101710A (en
Inventor
Kenichi Saito
Norihisa Suzuki
Yoshinari Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19867481A priority Critical patent/JPS58101710A/en
Publication of JPS58101710A publication Critical patent/JPS58101710A/en
Publication of JPS6226806B2 publication Critical patent/JPS6226806B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は浄水場の沈澱池汚泥引抜制御装置に係
り、特に、薬注効果の向上および凝集剤使用量の
低減を目的とした汚泥リサイクルを行なう為に、
予定量の汚泥を沈澱池内に常に滞留させておくよ
うにすると共に、固形物の沈澱効率をより高く保
つために、堆積汚泥量を可及的少なくするような
沈澱池汚泥引抜制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a settling tank sludge extraction control device for a water purification plant, and in particular, to perform sludge recycling for the purpose of improving the chemical injection effect and reducing the amount of flocculant used.
The present invention relates to a sedimentation tank sludge extraction control device that allows a predetermined amount of sludge to stay in a settling tank at all times, and also reduces the amount of accumulated sludge as much as possible in order to keep solid matter settling efficiency higher.

浄水場においては、良く知られているように、
大別して次の3つの工程によつて原水の浄化が行
なわれている。
As is well known in water treatment plants,
Raw water is purified through the following three steps:

(1) 河川から取入れられて着水井に貯められた原
水を混和池に導き、凝集剤を注入する。
(1) Raw water taken from the river and stored in the landing well is led to a mixing pond and a flocculant is injected.

(2) 凝集剤を注入された原水を撹拌池に導き、両
者を十分にかき混ぜて反応させ、フロツクを成
長させる。
(2) The raw water injected with the flocculant is introduced into the stirring pond, and the two are sufficiently stirred to react and grow flocs.

(3) 混和された水を沈澱池に導き、フロツク(固
形物)を沈澱させて汚泥とし、処理水を過池
へ導く。沈澱した汚泥は、適当に引抜いて処分
する。
(3) The mixed water is led to a sedimentation tank, where the flocs (solid matter) are precipitated into sludge, and the treated water is led to a sedimentation tank. Sedimented sludge will be appropriately pulled out and disposed of.

前述のような工程において、混和池に取入れら
れる 原水の濁度が低い時には、凝集剤の効果が小さ
く、したがつて過池への負担が大きくなるとい
う欠点がある。この対策として、従来は、原水の
濁度が低い時には、適度に泥を原水に混入すると
いう方法が、一部で行なわれている。しかし、こ
れでは効果があまり期待出来ない。
In the above-mentioned process, when the turbidity of the raw water introduced into the mixing pond is low, the effect of the coagulant is small, resulting in a disadvantage that the burden on the mixing pond becomes large. As a countermeasure to this problem, a method conventionally used in some cases is to mix an appropriate amount of mud into the raw water when the turbidity of the raw water is low. However, we cannot expect much effect from this.

この解決の為に、本出願人は先にフロツク(汚
泥)リサイクル法を提案している。このフロツク
リサイクル法によれば、原水濁度が低い場合に
も、過池流入水濁度を低い一定値に保つことが
出来た。また、原水濁度の広範囲な変化に対して
も効果があり、凝集剤使用量の低減を計ることが
できた。
To solve this problem, the applicant has previously proposed a floc (sludge) recycling method. According to this float recycling method, even when the raw water turbidity was low, the turbidity of the inflow water to the pond could be kept at a constant low value. It was also effective against wide-ranging changes in raw water turbidity, making it possible to reduce the amount of flocculant used.

一方、沈澱池においては、従来は、すべての汚
泥を引き抜いていたが、汚泥リサイクルを確実に
行なう為には、一定量以上の汚泥を、常に沈澱池
内に滞留させておく必要がある。また、その反
面、沈澱池における沈澱効率を予定値以上に保持
するためには、沈澱池内の汚泥堆積量を予定量以
下に抑えておく必要がある。
On the other hand, conventionally, all the sludge has been extracted from the settling tank, but in order to reliably recycle the sludge, it is necessary to keep a certain amount or more of sludge in the settling tank at all times. On the other hand, in order to maintain the sedimentation efficiency in the sedimentation tank at a predetermined value or higher, it is necessary to suppress the amount of sludge deposited in the sedimentation tank below the predetermined amount.

本発明は、前述の事情に鑑みてなされたもので
あり、その目的とするところは、汚泥リサイクル
を確実に行ない、かつ堆積汚泥が、予め設定され
た上下の限界堆積量をオーバーすることのないよ
うに、堆積汚泥を効率よく引き抜くことによつ
て、浄水効果を改善するための浄水場の沈澱池汚
泥引抜制御装置を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to ensure sludge recycling and to prevent accumulated sludge from exceeding preset upper and lower limit accumulation amounts. Therefore, it is an object of the present invention to provide a settling tank sludge extraction control device for a water purification plant for improving the water purification effect by efficiently pulling out accumulated sludge.

よつて、本発明の特徴とするところは、原水と
沈澱水の濁度変化と薬注率より発生汚泥量を計算
し、それから返送汚泥量を減算した値が、規定値
内を推移するように排泥弁の開度制御をする事に
ある。
Therefore, the feature of the present invention is that the amount of generated sludge is calculated from the turbidity changes of raw water and sediment water and the chemical injection rate, and the value obtained by subtracting the amount of returned sludge from this calculation is made such that the value remains within the specified value. Its purpose is to control the opening of the sludge valve.

以下に、図面を参照して本発明を詳細に説明す
る。第1図は本発明の一実施例のブロツク図であ
る。
The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention.

図において、1は薬品混和池、2は撹拌池、3
は沈澱池である。11,12は、着水井(図示せ
ず)より導入される原水の濁度および流量を測定
する原水濁度計および原水流量計、13,14は
沈澱池3から薬品混和池1へ返送される汚泥の流
量および濃度を測定する返送汚泥流量計および返
送汚泥濁度計である。
In the figure, 1 is a chemical mixing pond, 2 is a stirring pond, and 3 is a chemical mixing pond.
is a sedimentation pond. Reference numerals 11 and 12 indicate a raw water turbidity meter and a raw water flow meter that measure the turbidity and flow rate of raw water introduced from a landing well (not shown), and 13 and 14 return the raw water from the sedimentation tank 3 to the chemical mixing tank 1. These are a return sludge flow meter and a return sludge turbidity meter that measure the flow rate and concentration of sludge.

15,16は沈澱池3から引き抜かれて排出さ
れる引抜汚泥の流量および濃度を測定する引抜汚
泥流量計および引抜汚泥濁度計、17は沈澱池3
から過池(図示せず)へ送られる水の濁度計で
ある。
15 and 16 are a drawn sludge flowmeter and a drawn sludge turbidity meter for measuring the flow rate and concentration of drawn sludge drawn out and discharged from the settling tank 3; 17 is the settling tank 3;
This is a turbidity meter for water sent from the water to the pond (not shown).

21は汚泥返送ポンプ、22は排泥弁、23は
排泥弁駆動モータ、31は凝集剤注入機、32は
薬注率演算器、33,35は発生固形物(フロツ
ク)量演算器、34は返送汚泥量演算器、36は
沈澱池堆積汚泥量演算器、37は引抜汚泥量演算
器である。
21 is a sludge return pump, 22 is a sludge valve, 23 is a sludge valve drive motor, 31 is a flocculant injector, 32 is a chemical injection rate calculator, 33 and 35 are generated solid matter (flocculate) amount calculators, 34 3 is a return sludge amount calculator, 36 is a settling tank deposited sludge amount calculator, and 37 is a drawn sludge amount calculator.

また、38,39は積算計、40は沈澱池の堆
積汚泥量の基準値(上,下限値)からの偏差を演
算し、これに基づいて開度要求指令を出力する開
度要求演算器、41は基準値設定器、42は排泥
弁22の開度測定器、43は排泥弁22の開度の
開度要求値からの偏差を演算し、これに基づいて
弁制御量を出力する制御量演算器である。
Further, 38 and 39 are totalizers, and 40 is an opening request calculator that calculates the deviation of the amount of accumulated sludge in the sedimentation tank from the reference value (upper and lower limit values) and outputs an opening request command based on this. 41 is a reference value setting device, 42 is an opening measuring device for the sludge valve 22, and 43 is a device that calculates the deviation of the opening of the sludge valve 22 from the required opening value, and outputs a valve control amount based on this. It is a control amount calculator.

原水は、着水井(図示せず)より薬品混和池1
に流入し、ここで適当に薬注処理された後、撹拌
池2に流入する。ここで成長したフロツク(固形
物)は、水と共に沈澱池3に送られ、そこで沈降
して汚泥となる。このような処理によつて得られ
た沈澱水は沈澱池から流出し、過池(図示せ
ず)に流入する。
Raw water is supplied to chemical mixing pond 1 from the receiving well (not shown).
After being appropriately injected there, it flows into the stirring pond 2. The flocs (solid matter) grown here are sent together with water to the sedimentation tank 3, where they settle and become sludge. The precipitated water obtained by such treatment flows out of the settling basin and flows into a filter basin (not shown).

汚泥返送ポンプ21は、効果的かつ経済的に原
水を薬注処理するために、沈澱池3に堆積された
汚泥を適量ずつ混和池1に返送するためのもので
ある。
The sludge return pump 21 is for returning an appropriate amount of sludge deposited in the settling tank 3 to the mixing tank 1 in order to effectively and economically chemically treat raw water.

上記のような浄水場における汚泥引抜制御は、
概略次のように行なわれる。
The sludge extraction control in water treatment plants as described above is
The process is roughly as follows.

まず、薬注率演算器32により、原水の濁度
Tu1と流量Q1に比例した凝集剤注入率Cが決定さ
れ、凝集剤注入機31に、その指令として与えら
れる。演算器32からの凝集剤注入率Cと原水流
量Q1により、演算器33では、式(1)にしたがつ
て、薬剤注入による発生固形物量S2が演算され
る。
First, the chemical dosing rate calculator 32 calculates the turbidity of the raw water.
A flocculant injection rate C proportional to Tu 1 and flow rate Q 1 is determined and given to the flocculant injector 31 as its command. Based on the flocculant injection rate C and raw water flow rate Q 1 from the calculator 32, the calculator 33 calculates the amount of solid matter S 2 generated by the chemical injection according to equation (1).

S2=K2CQ1 ………(1) ただし、K2は沈澱固形物換算係数 発生固形物量演算器35では、原水濁度Tu1
流量Q1および沈澱水濁度Tu4により、濁度による
発生固形物量S1が、式(2)にしたがつて演算され
る。
S 2 = K 2 CQ 1 ......( 1 ) However, K 2 is the precipitated solids conversion coefficient . The amount of generated solids S 1 depending on the temperature is calculated according to equation (2).

S1=K1Q1(Tu1−Tu4) ………(2) ただし、K1はSS―濁度換算係数 流量計13と濁度計14からの、返送汚泥の流
量Q2および濃度D1が演算器34に供給され、返
送汚泥量S3が両者の積に比例した値として算出さ
れる。
S 1 = K 1 Q 1 (Tu 1 − Tu 4 ) ......(2) However, K 1 is SS - turbidity conversion coefficient Flow rate Q 2 and concentration of returned sludge from flow meter 13 and turbidity meter 14 D 1 is supplied to the calculator 34, and the returned sludge amount S 3 is calculated as a value proportional to the product of both.

演算器36では、前述のようにして算出された
発生固形物量S1,S2および返送汚泥量S8が入力さ
れる事により、沈澱池3に堆積する汚泥量Sが、
式(3)にしたがつて計算される。
In the calculator 36, the amount of generated solids S 1 , S 2 and the amount of returned sludge S 8 calculated as described above are input, so that the amount S of sludge deposited in the settling tank 3 is calculated as follows.
Calculated according to equation (3).

S=S1+S2−S3 ………(3) 演算器37では、引抜汚泥の流量Q3とその濃
度D2により、引抜汚泥量が計算される。
S=S 1 +S 2 −S 3 (3) The calculator 37 calculates the amount of drawn sludge based on the flow rate Q 3 of the drawn sludge and its concentration D 2 .

38,39は積算計であり、沈澱池3における
汚泥の堆積量Sと引抜量をそれぞれ積算する。積
算値SAからSBを減算して得られる差の値SCは、
明らかなように、沈澱池3に現在堆積されている
汚泥量をあらわしている。
Numerals 38 and 39 are totalizers that respectively total the amount S of sludge deposited and the amount pulled out in the sedimentation tank 3. The difference value SC obtained by subtracting SB from the integrated value SA is
As is clear, this represents the amount of sludge currently deposited in settling tank 3.

前に述べたように、沈澱池3における沈澱効率
を予定値に確保しながら、しかも混和池1への汚
泥リサイクルを確実に行なうためには、沈澱池3
に堆積した汚泥量を、予定の上、下限値内に保持
しなければならない。
As mentioned earlier, in order to ensure the settling efficiency in settling tank 3 at the planned value and also to ensure sludge recycling to mixing tank 1, it is necessary to
The amount of sludge deposited in the sludge must be maintained within the lower limit as planned.

基準値設定器41は、前記の上、下限値を設定
し、演算器40に供給するためのものである。演
算器40では、沈澱池3内における現在の汚泥堆
積量SCを、前記上、下限値と比較し、その偏差
に基づいて排泥弁22の開度要求指令を出力す
る。
The reference value setter 41 is for setting the above-mentioned upper and lower limit values and supplying them to the arithmetic unit 40. The calculator 40 compares the current sludge accumulation amount SC in the sedimentation tank 3 with the upper and lower limit values, and outputs an opening request command for the sludge valve 22 based on the deviation.

このような機能は、例えば、汚泥堆積量の上、
下限値からの偏差と、開度要求指令との関係を、
あらかじめ記憶しておくなどすることにより、容
易に実現することができる。
Such functions, for example, increase the amount of sludge deposited,
The relationship between the deviation from the lower limit value and the opening request command is
This can be easily realized by storing it in advance.

制御量演算器43は、開度測定器42から得ら
れる開度測定値の開度要求指令からの偏差を演算
し、この偏差に基づいて、適宜の手法によつて排
泥弁22の制御量を演算し、出力する。前記出力
に基づいて、排泥弁駆動モータ23が制御され、
排泥弁22の開度が開度要求指令に一致させられ
る。
The control amount calculator 43 calculates the deviation of the opening measurement value obtained from the opening measurement device 42 from the opening request command, and based on this deviation, adjusts the control amount of the sludge valve 22 by an appropriate method. Calculate and output. Based on the output, the sludge valve drive motor 23 is controlled,
The opening degree of the mud removal valve 22 is made to match the opening degree request command.

第2図は、本発明の第2実施例の要部ブロツク
図であり、第1図の演算器40および43、なら
びに排泥弁駆動モータ23の部分に置換されるも
のである。
FIG. 2 is a block diagram of main parts of a second embodiment of the present invention, which replaces the computing units 40 and 43 and the sludge valve drive motor 23 in FIG. 1.

40Aは、沈澱池3の堆積汚泥量SCが、設定
器41で設定された上限値および下限値の間には
いつているか否かを判定し、堆積汚泥量SCが上
限値を超えているときは排泥弁22の開信号を、
また下限値を超えているときは前記弁22の閉信
号を、それぞれ排泥弁駆動モータ23に出力する
弁開閉信号出力装置である。
40A determines whether or not the accumulated sludge amount SC in the sedimentation tank 3 is between the upper limit value and the lower limit value set by the setting device 41, and when the accumulated sludge amount SC exceeds the upper limit value. is the opening signal of the mud removal valve 22,
Further, when the lower limit is exceeded, the valve opening/closing signal output device outputs a closing signal for the valve 22 to the sludge valve drive motor 23, respectively.

第3図は、前述した第2実施例による汚泥堆積
量の制御の一態様を示す図であり、横軸は時間、
縦軸は沈澱池3における汚泥堆積量SCを表わし
ている。また(22)は排泥弁22の開、閉状態
を示している。
FIG. 3 is a diagram showing one aspect of controlling the amount of sludge deposited according to the second embodiment described above, in which the horizontal axis is time;
The vertical axis represents the amount SC of sludge deposited in the sedimentation tank 3. Further, (22) shows the open and closed states of the mud draining valve 22.

この図から明らかなように、沈澱池3内の汚泥
堆積量SCがその上限設定値Luを超えている時は
排泥弁22が開かれ、反対に堆積量SCがその下
限設定値Ldを超えている時は閉じられる。
As is clear from this figure, when the sludge accumulation amount SC in the settling tank 3 exceeds its upper limit set value Lu, the sludge discharge valve 22 is opened, and on the contrary, the sludge accumulation amount SC exceeds its lower limit set value Ld. Closed when closed.

なお、この場合、弁開閉のハンチングを防止
し、制御を円滑化するには、排泥弁の開閉制御に
ヒステリシス特性をもたせるのが望ましい。
In this case, in order to prevent hunting in opening and closing the valve and smoothing the control, it is desirable to provide hysteresis characteristics to the opening and closing control of the mud removal valve.

また、以上に説明した演算器35による発生固
形物量の計算においては、混和池1から沈澱池3
までの滞留時間が考慮されるのが望ましいことは
勿論である。
In addition, in calculating the amount of generated solids by the calculator 35 explained above, from the mixing tank 1 to the settling tank 3,
Of course, it is desirable to take into account the residence time.

以上の説明から明らかなように、本発明によれ
ば、沈澱池に堆積する汚泥量を常時監視し、最適
値または最適範囲に制御することができる。これ
によつて、 (1) 汚泥リサイクルに必要な最低汚泥量の確保、
および (2) 沈澱池における沈澱効率を保持するための、
堆積汚泥量の抑制 という2つの要求を同時に満足し、すぐれた浄水
効果を挙げることができる。
As is clear from the above description, according to the present invention, the amount of sludge deposited in the settling tank can be constantly monitored and controlled to an optimal value or an optimal range. Through this, (1) securing the minimum amount of sludge necessary for sludge recycling;
and (2) to maintain sedimentation efficiency in the sedimentation basin.
It simultaneously satisfies the two requirements of suppressing the amount of accumulated sludge and provides excellent water purification effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例のブロツク図、第
2図は本発明の第2実施例の要部ブロツク図、第
3図は本発明の動作を説明するための波形図であ
る。 1…混和池、2…撹拌池、3…沈澱池、21…
汚泥返送ポンプ、22…排泥弁、23…排泥弁駆
動モータ、31…凝集剤注入機、32…薬注率演
算器、33,35…発生固形物(フロツク)量演
算器、34…返送汚泥量演算器、36…沈澱池堆
積汚泥量演算器、37…引抜汚泥量演算器、3
8,39…積算計、40…開度要求演算器、41
…基準値設定器、42…開度測定器、43…制御
量演算器。
FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a block diagram of essential parts of a second embodiment of the present invention, and FIG. 3 is a waveform diagram for explaining the operation of the present invention. 1...Mixing basin, 2...Agitation basin, 3...Sedimentation basin, 21...
Sludge return pump, 22... Sludge valve, 23... Sludge valve drive motor, 31... Coagulant injector, 32... Chemical injection rate calculator, 33, 35... Generated solids (floe) amount calculator, 34... Return Sludge amount calculator, 36... Sedimentation tank deposited sludge amount calculator, 37... Pulled sludge amount calculator, 3
8, 39... Totalizer, 40... Opening request calculator, 41
...Reference value setter, 42...Opening degree measuring device, 43...Controlled amount calculator.

Claims (1)

【特許請求の範囲】 1 混和池において原水に凝集剤を注入し、撹拌
池においてフロツクを形成し、沈澱池において濁
質分を汚泥として沈澱させ、前記汚泥の一部を排
泥弁を通して引抜き除去すると共に、その一部を
原水に返送する浄水場の沈澱池汚泥引抜制御装置
において、 原水の濁度と流量、沈澱水濁度、および凝集剤
注入率から沈澱池内に発生する固形物量を演算す
る発生固形物量演算手段と、返送汚泥の流量およ
び濃度から返送汚泥量を演算する返送汚泥量演算
手段と、前記発生固形物量演算手段および返送汚
泥量演算手段の出力の差を求める汚泥堆積量演算
手段と、引抜汚泥の流量および濃度から引抜汚泥
量を演算する引抜汚泥量演算手段と、前記汚泥堆
積量演算手段の出力である堆積量を積算する第1
積算手段と、前記引抜汚泥量演算手段の出力であ
る引抜量を積算する第2積算手段と、前記第1積
算手段の出力と第2積算手段の出力の差を、現在
堆積汚泥量として求める手段と、 前記現在堆積汚泥量を設定値と比較する手段
と、前記現在堆積汚泥量が設定値より大きいとき
は前記排泥弁の開度を大とし、反対に前記現在堆
積汚泥量が設定値より小さいときは前記排泥弁の
開度を小とするように制御する手段とを具備した
ことを特徴とする浄水場の沈澱池汚泥引抜制御装
置。
[Scope of Claims] 1. Injecting a flocculant into raw water in a mixing basin, forming flocs in a stirring basin, settling turbidity as sludge in a settling basin, and removing a part of the sludge through a sludge valve. At the same time, the sedimentation tank sludge extraction control device at the water treatment plant, which returns a portion of the sludge to the raw water, calculates the amount of solid matter generated in the sedimentation tank from the turbidity and flow rate of the raw water, the sedimentation water turbidity, and the flocculant injection rate. A generated solids amount calculation means, a returned sludge amount calculation means for calculating the amount of returned sludge from the flow rate and concentration of the returned sludge, and a sludge accumulation amount calculation means for calculating the difference between the outputs of the generated solids amount calculation means and the returned sludge amount calculation means. , a drawn sludge amount calculating means for calculating the drawn sludge amount from the flow rate and concentration of the drawn sludge, and a first sludge accumulation amount calculating means for integrating the accumulated amount which is the output of the sludge accumulation amount calculating means.
an integrating means, a second integrating means for integrating the amount of drawn sludge that is the output of the drawn sludge amount calculation means, and a means for determining the difference between the output of the first integrating means and the output of the second integrating means as the currently accumulated sludge amount. and a means for comparing the currently accumulated sludge amount with a set value, and when the currently accumulated sludge amount is larger than the set value, the opening degree of the sludge valve is increased; 1. A settling tank sludge extraction control device for a water purification plant, comprising means for controlling the opening of the sludge valve to be small when the sludge valve is small.
JP19867481A 1981-12-11 1981-12-11 Controller for discharging sludge from settling basin Granted JPS58101710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19867481A JPS58101710A (en) 1981-12-11 1981-12-11 Controller for discharging sludge from settling basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19867481A JPS58101710A (en) 1981-12-11 1981-12-11 Controller for discharging sludge from settling basin

Publications (2)

Publication Number Publication Date
JPS58101710A JPS58101710A (en) 1983-06-17
JPS6226806B2 true JPS6226806B2 (en) 1987-06-11

Family

ID=16395155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19867481A Granted JPS58101710A (en) 1981-12-11 1981-12-11 Controller for discharging sludge from settling basin

Country Status (1)

Country Link
JP (1) JPS58101710A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108652A (en) * 1976-03-09 1977-09-12 Kubota Ltd Device for controlling flow of sludge-gathering apparatus
JPS5535943A (en) * 1978-09-08 1980-03-13 Fuji Electric Co Ltd Waste sludge control for settling basin in water purification plant
JPS55152510A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Controller for extracting sludge at sedimentation basin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271266U (en) * 1975-11-25 1977-05-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108652A (en) * 1976-03-09 1977-09-12 Kubota Ltd Device for controlling flow of sludge-gathering apparatus
JPS5535943A (en) * 1978-09-08 1980-03-13 Fuji Electric Co Ltd Waste sludge control for settling basin in water purification plant
JPS55152510A (en) * 1979-05-18 1980-11-27 Hitachi Ltd Controller for extracting sludge at sedimentation basin

Also Published As

Publication number Publication date
JPS58101710A (en) 1983-06-17

Similar Documents

Publication Publication Date Title
JP4492473B2 (en) Flocculant injection control device and method
JP2007098287A (en) Method for controlling operation of water purifying process
JP4596108B2 (en) Flocculant injection method and flocculant injection apparatus
JPS6226806B2 (en)
JPS63162007A (en) Method for controlling chemical feeding in water purification
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
AU746936B2 (en) Improvements to waste water treatment using activated sludge process
JP3195495B2 (en) Coagulation sedimentation method and equipment
JP3973967B2 (en) Coagulation separation device
JPH0739000B2 (en) Sludge control device for sedimentation pond
JP3933991B2 (en) Coagulation separation device
JPS5992006A (en) Apparatus for controlling waste sludge of precipitation basin in water purification plant
JPS5845883B2 (en) Sludge hopper in sedimentation tank Discharge control device for accumulated sludge
JPS625036B2 (en)
JP2907657B2 (en) Operation method of floc blanket type coagulating sedimentation equipment
JPS5861881A (en) Controlling method for water purification plant
JPS63137708A (en) Treated water turbidity control device in purification facilities
JPH04346887A (en) Method for predicting water quality of inflow water and method for controlling injection of chemical
JPS5844003B2 (en) Sludge removal control device for sedimentation ponds at water treatment plants
JPS5952502A (en) Apparatus for controlling water purification
JPH03284303A (en) Control method for injecting flocculant
KR820000960B1 (en) Apparatus for detecting coagulation effect
JPS63242392A (en) Method for removing phosphorus contained in drainage
JPS5998710A (en) Water treatment system of water purification plant
Thérien et al. Improving the Performance of the Activated Sludge Process: A Time Controlled Flow Equalisation Basin