JPS6226624A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS6226624A
JPS6226624A JP16630585A JP16630585A JPS6226624A JP S6226624 A JPS6226624 A JP S6226624A JP 16630585 A JP16630585 A JP 16630585A JP 16630585 A JP16630585 A JP 16630585A JP S6226624 A JPS6226624 A JP S6226624A
Authority
JP
Japan
Prior art keywords
substrate
magnetic
recording medium
rare earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16630585A
Other languages
Japanese (ja)
Inventor
Koji Okamoto
康治 岡本
Eiji Kamijo
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP16630585A priority Critical patent/JPS6226624A/en
Publication of JPS6226624A publication Critical patent/JPS6226624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve resistance to corrosion and oxidation without using a protective film by forming a thin magnetic metallic film into which the oxide of a rate earth metal is incorporated at 0.1-10wt% on a substrate. CONSTITUTION:A magnetic recording medium 40 is constituted by forming the thin magnetic metallic film 20 into which the oxide of the rate earth metal is incorporated at 0.1-10wt% on the substrate 1 in tight contact therewith. A nonmagnetic material which excels in heat resistance and dimensional stability and has high tensile strength is preferable for the substrate 1; for example, polyester, ceramics, etc. are usable for said substrate. A ferromagnetic metal such as, for example, Co-Ni or Co-Cr alloy can be adopted for the magnetic material to constitute the thin magnetic metallic film 20. The amt. of the magnetic metal in the thin magnetic metallic film 20 is relatively decreased and the coercive force of the film 20 is more deteriorated when the content ratio of the oxide of the rare earth metal exceeds 10wt%. On the other hand, the effect of improving the resistance to corrosion and oxidation is substantially lost at <0.1wt%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基体上に磁性金属薄膜を形成して成る磁気
記録媒体であって、耐食性、耐酸化性を向上させるよう
に改良した磁気記録媒体およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium formed by forming a magnetic metal thin film on a substrate, which is an improved magnetic recording medium with improved corrosion resistance and oxidation resistance. It relates to a medium and its manufacturing method.

〔従来の技術〕[Conventional technology]

第6図は、従来の磁気記録媒体を部分的に示す断面図で
ある。この磁気記録媒体30は、例えばポリエステル等
の基体1上に、例えばCo−Cr等の強磁性の磁性金属
薄膜2を形成して成る。この磁性金属薄膜2は、例えば
PVD法、メッキ法等により形成される。尚、窒化鉄等
の保護膜が磁性金属薄膜2上に形成される場合もある。
FIG. 6 is a sectional view partially showing a conventional magnetic recording medium. This magnetic recording medium 30 is formed by forming a ferromagnetic metal thin film 2 of, for example, Co--Cr on a substrate 1 of, for example, polyester. This magnetic metal thin film 2 is formed by, for example, a PVD method, a plating method, or the like. Note that a protective film such as iron nitride may be formed on the magnetic metal thin film 2 in some cases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の磁気記録媒体30においては、次の
ような問題点がある。
The conventional magnetic recording medium 30 as described above has the following problems.

■磁性金属薄膜2中の磁性金属が環境条件により腐食し
易く、その腐食によって磁性金属の磁気特性が劣化した
り消失したりする。あるいは、ピンホール的腐食によっ
て、記録・再生エラーの増加を招く場合もある。
(2) The magnetic metal in the magnetic metal thin film 2 is susceptible to corrosion depending on environmental conditions, and the magnetic properties of the magnetic metal deteriorate or disappear due to the corrosion. Alternatively, pinhole corrosion may lead to an increase in recording/reproducing errors.

■磁気記録媒体30は、記録再生ヘッドとの摩擦により
、瞬時の間200〜300℃程度に温度上昇する場合が
あり、このヒートサイクルによって磁性金属薄膜2中の
磁性金属の腐食、酸化が助長される。
■The magnetic recording medium 30 may instantaneously rise in temperature to about 200 to 300°C due to friction with the recording/reproducing head, and this heat cycle promotes corrosion and oxidation of the magnetic metal in the magnetic metal thin film 2. Ru.

■上記保護膜を磁性金属薄膜2上に積層する場合、磁性
金属薄膜2と当該保護膜の形成は別工程となり、各工程
あるいは工程間の管理が煩雑となり、また生産性の観点
からも非能率的である。
■When the above-mentioned protective film is laminated on the magnetic metal thin film 2, the formation of the magnetic metal thin film 2 and the protective film are separate processes, which makes the management of each process or between processes complicated, and also causes inefficiency in terms of productivity. It is true.

そこでこの発明は、上記のような保護膜を用いることな
く、耐食性、耐酸化性を向上させることができる磁気記
録媒体およびその製造方法を提供することを目的とする
Therefore, an object of the present invention is to provide a magnetic recording medium that can improve corrosion resistance and oxidation resistance without using a protective film as described above, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、基体上に、希土類金属の酸化物を0.1〜
10重景%含有せしめた磁性金属薄膜を形成して成るこ
とを特徴とする磁気記録媒体およびその製造方法である
In this invention, a rare earth metal oxide is applied on a substrate from 0.1 to
A magnetic recording medium characterized by forming a magnetic metal thin film containing 10% by weight, and a method for manufacturing the same.

〔作用〕[Effect]

磁性金属薄膜中に上記量の希土類金属の酸化物を含有せ
しめることにより、常温での空気中における水分等に対
する耐食性や、摩擦熱のヒートサイクルに対する耐食性
、耐酸化性が向上する。これは、上記酸化物が磁性金属
薄膜中での酸素の拡散障壁として働くためと考えられる
By incorporating the above amount of rare earth metal oxide into the magnetic metal thin film, corrosion resistance against moisture in the air at room temperature, corrosion resistance against heat cycles of frictional heat, and oxidation resistance are improved. This is thought to be because the oxide acts as a diffusion barrier for oxygen in the magnetic metal thin film.

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係る磁気記録媒体を部
分的に示す断面図である。この磁気記録媒体40は、基
体1上に、希土類金属の酸化物を0.1〜10重量%分
散含有せしめた磁性金属薄膜20を密着形成して成る。
FIG. 1 is a sectional view partially showing a magnetic recording medium according to an embodiment of the present invention. This magnetic recording medium 40 is formed by closely forming a magnetic metal thin film 20 containing 0.1 to 10% by weight of a rare earth metal oxide dispersed on a substrate 1 .

基体1としては、非磁性の材料で耐熱性、寸法安定性が
優れ、抗張力の大きいものが好ましく、例えばポリエス
テル、ポリオレフィン、プラスチック類、セラミックス
等が利用できる。またその形態としては、フィルム状、
テープ状、シート状、ディスク状、カード状、ドラム状
等が採り得る。
The substrate 1 is preferably a non-magnetic material with excellent heat resistance, dimensional stability, and high tensile strength; for example, polyester, polyolefin, plastics, ceramics, etc. can be used. In addition, its form is film-like,
It can be in the form of a tape, sheet, disk, card, drum, etc.

磁性金属薄膜20を構成する磁性金属としては、例えば
Co−Ni、Co−Fe、Co−Cr合金等の強磁性金
属が採り得る。
The magnetic metal constituting the magnetic metal thin film 20 may be, for example, a ferromagnetic metal such as Co-Ni, Co-Fe, or Co-Cr alloy.

希土類金属としては、例えばY% HO% Th等が採
り得る。
Examples of the rare earth metal include Y% HO% Th.

希土類金属の酸化物(例えばY2O3等)の含有割合を
上記のように選定したのは次の理由による8即ち、当該
酸化物は常磁性体であり、磁性金属薄膜20の保持力等
の磁性に影響を与えることはないけれども、それが10
重量%を超えると磁性金属薄膜20中の磁性金属の量が
相対的に減少して磁性金属薄膜20の保持力の低下が大
きくなるので、前記酸化物の割合は10重量%以下にす
るのが好ましい。一方、前記酸化物の割合が0. 1重
量%未満では後述する耐食性、耐酸化性の改善効果が殆
どなくなるのでそれ以上とするのが好ましい。
The content ratio of the rare earth metal oxide (for example, Y2O3, etc.) was selected as described above for the following reason. Although it has no influence, it is 10
If the proportion of the oxide exceeds 10% by weight, the amount of magnetic metal in the magnetic metal thin film 20 will be relatively reduced and the coercive force of the magnetic metal thin film 20 will be greatly reduced. preferable. On the other hand, the proportion of the oxide is 0. If it is less than 1% by weight, the effect of improving corrosion resistance and oxidation resistance, which will be described later, is almost lost, so it is preferable to use more than 1% by weight.

、 上記のような磁気記録媒体40においては、磁性金
属薄膜20の、常温での空気中における水分等に対する
耐食性や、例えば200〜300℃程度の摩擦熱による
ヒートサイクルに対する耐食性、耐酸化性が向上する。
In the magnetic recording medium 40 as described above, the magnetic metal thin film 20 has improved corrosion resistance against moisture in the air at room temperature, corrosion resistance against heat cycles due to frictional heat at about 200 to 300°C, and oxidation resistance. do.

これは、上記酸化物が磁性金属薄膜20中での酸素の拡
散障壁として働くためと考えられる。それゆえ、従来の
ように磁性金属薄膜20上に窒化鉄等の保護膜を積層す
る必要もなくなる。
This is thought to be because the oxide acts as an oxygen diffusion barrier in the magnetic metal thin film 20. Therefore, there is no need to laminate a protective film such as iron nitride on the magnetic metal thin film 20 as in the conventional case.

次に上記のような磁性金属薄膜20を有する磁気記録媒
体40の製造方法の幾つかを第2図〜第5図を参照して
説明する。
Next, some methods of manufacturing the magnetic recording medium 40 having the magnetic metal thin film 20 as described above will be explained with reference to FIGS. 2 to 5.

第2図は、真空蒸着による方法を示す。即ち、真空槽3
内に上記基体1と例えば2つの電子ビーム加熱式の蒸発
源4.6を配設し、例えば蒸発源4の蒸発材として前述
したような磁性金属5を用い、例えば蒸発源6の蒸発材
として前述したような希土類金属の酸化物7を用いる。
FIG. 2 shows a method by vacuum evaporation. That is, vacuum chamber 3
The base 1 and, for example, two electron beam heating type evaporation sources 4.6 are disposed within the evaporation source 4. For example, the magnetic metal 5 as described above is used as the evaporation material of the evaporation source 4. The rare earth metal oxide 7 as described above is used.

そして真空槽3を例えば10−’To r r程度以下
に排気した後、蒸発′6Q4.6から磁性金属5、希土
類金属の酸化物7をそれぞれ同時に蒸発させてこれらを
基体1上に蒸着させる。この場合、蒸発源4.6をそれ
ぞれ調整して、基体1上に形成される磁性金属薄膜20
中の希土類金属の酸化物7の割合が前述したような範囲
内に入るようにする。もつとも、蒸発源を1つとして、
その蒸発材として、磁性金属5と希土類金属の酸化物7
とを予め所定組成に調整したもの、即ち形成される磁性
金属薄膜20中の希土類金属の酸化物の割合が上述した
ような範囲内になるように調整したものを用いても良い
After the vacuum chamber 3 is evacuated to, for example, 10-' Torr or less, the magnetic metal 5 and the rare earth metal oxide 7 are simultaneously evaporated from the evaporation process '6Q4.6 and deposited on the substrate 1. In this case, the evaporation sources 4 and 6 are adjusted so that the magnetic metal thin film 20 formed on the substrate 1 is
The proportion of the rare earth metal oxide 7 in the mixture is made to fall within the above-mentioned range. However, considering only one evaporation source,
Magnetic metal 5 and rare earth metal oxide 7 are used as the evaporation material.
It is also possible to use a material whose composition has been adjusted in advance to a predetermined composition, that is, a material whose proportion of rare earth metal oxide in the formed magnetic metal thin film 20 is within the above-mentioned range.

上記のような方法によれば、密着性の良い、しかも膜質
の均一性の良い磁性金属薄膜20を基体1上に形成する
ことができる。
According to the method described above, the magnetic metal thin film 20 with good adhesion and uniform film quality can be formed on the substrate 1.

第3図は、スパッタリングによる方法を示す。FIG. 3 shows a method using sputtering.

即ち、真空槽3内において、上記基体1と、磁性金属5
に希土類金属の酸化物7を埋設あるいは接着せしめた複
合ターゲット8とを対向させる。そして真空槽3を例え
ば1O−7Tbrr程度に排気した後、基体1とターゲ
ット8の間に電源9から直流電圧あるいは高周波を印加
すると共に、例えばアルゴン等の不活性ガスを導入して
真空槽3内を10−4〜10−2T o r r程度の
真空にする。これによって、基体lとターゲット8の間
にグロー放電が生じてターゲット8が基体1に向けてス
パツクされる。この場合、ターゲット8における磁性金
属5と希土類金属の酸化物7の割合は、基体1上に形成
される磁性金属薄膜20中の希土類金属の酸化物7の割
合が前述したような範囲内に入るようなものに予め選定
しておく。上記のような方法によれば、更に密着強度の
高い、しかも膜質の均一性の良い磁性金属薄膜20を基
体1上に形成することができる。
That is, in the vacuum chamber 3, the base 1 and the magnetic metal 5
A composite target 8 in which a rare earth metal oxide 7 is embedded or bonded is made to face the target. After evacuating the vacuum chamber 3 to, for example, about 10-7 Tbrr, a DC voltage or high frequency is applied from a power source 9 between the substrate 1 and the target 8, and an inert gas such as argon is introduced into the vacuum chamber 3. to a vacuum of about 10-4 to 10-2 Torr. As a result, a glow discharge occurs between the base 1 and the target 8, and the target 8 is spattered toward the base 1. In this case, the ratio of the magnetic metal 5 to the rare earth metal oxide 7 in the target 8 is such that the ratio of the rare earth metal oxide 7 in the magnetic metal thin film 20 formed on the base 1 falls within the range described above. Select something like this in advance. According to the method described above, it is possible to form the magnetic metal thin film 20 on the substrate 1 with even higher adhesion strength and uniform film quality.

第4図は、真空蒸着とイオンビーム照射とを併用する方
法を示す。即ち、真空槽3内に上記基体1と例えば電子
ビーム加熱式の蒸発源10とを配設し、当該蒸発源10
の蒸発材11として、磁性金属と希土類金属とを予め所
定組成に調整したもの、即ち形成される磁性金属薄膜2
0中の希土類金属の酸化物の割合が上述したような範囲
内になるように調整したものを用いる。そして真空槽3
を例えば10−’Torr程度以下に排気した後、イオ
ン源12から基体1に酸素イオン(酸素イオンビーム)
13を照射しながら、蒸発a、10から上記蒸発材11
を蒸発させ、基体1上で蒸発材11中の希土類金属と酸
素イオン13とを反応させて上記磁性金属薄膜20を形
成する。あるいは、先に蒸発源10から蒸発材11を蒸
発させて基体1上に薄膜を形成した後、イオン源12か
ら酸素イオン13を基体lに照射して、薄膜中の希土類
金属を酸化させて酸化物を形成しても良い。いずれの場
合においても、希土類金属の方がはるかに酸化し易いの
で、・磁性金属の酸化は問題とならない。上記のような
方法によれば、イオン打込みの効果により、密着強度の
一層高い、しかも膜質の均一性の良い磁性金属薄膜20
を基体1上に形成することができる。また、予め酸化さ
せた希土類金属を用意する必要もない。
FIG. 4 shows a method that uses vacuum evaporation and ion beam irradiation in combination. That is, the base 1 and, for example, an electron beam heating type evaporation source 10 are arranged in a vacuum chamber 3, and the evaporation source 10 is
As the evaporation material 11, a magnetic metal and a rare earth metal are prepared in advance to have a predetermined composition, that is, a magnetic metal thin film 2 is formed.
The ratio of the rare earth metal oxide in 0 is adjusted to be within the above-mentioned range. and vacuum chamber 3
After evacuating to, for example, 10-' Torr or less, oxygen ions (oxygen ion beam) are emitted from the ion source 12 to the substrate 1.
While irradiating the evaporator 13, the evaporator a, 10 to the evaporator 11
is evaporated, and the rare earth metal in the evaporator 11 and oxygen ions 13 are reacted on the substrate 1 to form the magnetic metal thin film 20. Alternatively, after first evaporating the evaporation material 11 from the evaporation source 10 to form a thin film on the substrate 1, the substrate 1 is irradiated with oxygen ions 13 from the ion source 12 to oxidize the rare earth metal in the thin film. You can also form things. In either case, rare earth metals are much more easily oxidized, so oxidation of magnetic metals is not a problem. According to the method described above, due to the effect of ion implantation, a magnetic metal thin film 20 with higher adhesion strength and good uniformity of film quality can be formed.
can be formed on the substrate 1. Furthermore, there is no need to prepare a rare earth metal that has been oxidized in advance.

第5図は、反応性スパッタリングによる方法を示す。第
3図の方法との相違点は、ターゲット14として、磁性
金属と希土類金属とを予め所定組成に調整した、即ち形
成される磁性金属薄膜20中の希土類金属の酸化物の割
合が上述したような範囲内になるように調整した合金ク
ーゲットあるいは複合ターゲットを用い、真空槽3内を
1O−5T o r r程度以下の酸素分圧にしてスパ
ッタリングを行い、希土類金属だけを酸化させて磁性金
属薄膜20を基体1上に形成するものである。これは、
前述のように希土類金属の方がはるかに酸化し易く、上
記のような低酸素分圧下においては磁性金属は殆ど酸化
しないからである。上記のような方法によれば、筒車な
装置構成で、密着強度の高い、しかも膜質の均一性の良
い磁性金属薄膜20を基体1上に形成することができる
と共に、予め酸化させた希土類金属を用いる必要もない
FIG. 5 shows a method using reactive sputtering. The difference from the method shown in FIG. 3 is that the magnetic metal and rare earth metal are used as the target 14 and are adjusted in advance to have a predetermined composition. Sputtering is performed using an alloy cougette or a composite target adjusted to fall within a certain range, and the oxygen partial pressure in the vacuum chamber 3 is set to about 10-5 Torr or less to oxidize only the rare earth metal to form a magnetic metal thin film. 20 is formed on the substrate 1. this is,
This is because, as mentioned above, rare earth metals are much more easily oxidized, and magnetic metals are hardly oxidized under the above-mentioned low oxygen partial pressure. According to the method described above, the magnetic metal thin film 20 with high adhesion strength and good uniformity of film quality can be formed on the substrate 1 with an hour wheel-like device configuration, and a rare earth metal film 20 that has been oxidized in advance can be formed on the substrate 1. There is no need to use .

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、耐食性、耐酸化性の優
れた磁気記録媒体が得られる。それゆえ、従来のように
磁性金属薄膜上に保護膜を形成する必要もなくなる。ま
たこの発明の製造方法によれば、密着強度の高い、膜質
の均一性の良い磁性金属薄膜を有する磁気記録媒体が得
られる。
As described above, according to the present invention, a magnetic recording medium with excellent corrosion resistance and oxidation resistance can be obtained. Therefore, there is no need to form a protective film on the magnetic metal thin film as in the past. Further, according to the manufacturing method of the present invention, a magnetic recording medium having a magnetic metal thin film with high adhesion strength and good uniformity of film quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例に係る磁気記録媒体を部
分的に示す断面図である。第2図〜第5図は、それぞれ
、第1図の磁気記録媒体の製造方法の例を説明するため
の概略図である。第6図は、従来の磁気記録媒体を部分
的に示す断面図である。 1・・・基体、3・・・真空槽、4,6.10・・・蒸
発源、8.14・・・ターゲット、12・・・イオン源
、20・・・この発明に係る磁性金属薄膜、40・・・
この発明に係る磁気記録媒体 第2図 第3図 第41 第5 第6
FIG. 1 is a sectional view partially showing a magnetic recording medium according to an embodiment of the present invention. 2 to 5 are schematic diagrams for explaining an example of a method for manufacturing the magnetic recording medium shown in FIG. 1, respectively. FIG. 6 is a sectional view partially showing a conventional magnetic recording medium. DESCRIPTION OF SYMBOLS 1... Substrate, 3... Vacuum chamber, 4, 6.10... Evaporation source, 8.14... Target, 12... Ion source, 20... Magnetic metal thin film according to the present invention , 40...
Magnetic recording medium according to this invention FIG. 2 FIG. 3 FIG. 41 5 6

Claims (5)

【特許請求の範囲】[Claims] (1)基体上に、希土類金属の酸化物を0.1〜10重
量%含有せしめた磁性金属薄膜を形成して成ることを特
徴とする磁気記録媒体。
(1) A magnetic recording medium characterized in that a magnetic metal thin film containing 0.1 to 10% by weight of a rare earth metal oxide is formed on a substrate.
(2)基体上に、希土類金属の酸化物を0.1〜10重
量%含有せしめた磁性金属薄膜を形成して成る磁気記録
媒体を製造するにあたり、真空中において、磁性金属と
希土類金属の酸化物とを基体に同時に蒸着させることを
特徴とする磁気記録媒体の製造方法。
(2) When manufacturing a magnetic recording medium in which a magnetic metal thin film containing 0.1 to 10% by weight of a rare earth metal oxide is formed on a substrate, the magnetic metal and the rare earth metal are oxidized in a vacuum. 1. A method for manufacturing a magnetic recording medium, characterized by simultaneously depositing a substance on a substrate.
(3)基体上に、希土類金属の酸化物を0.1〜10重
量%含有せしめた磁性金属薄膜を形成して成る磁気記録
媒体を製造するにあたり、不活性ガス雰囲気の真空中に
おいて、磁性金属と希土類金属の酸化物とを含むターゲ
ットを基体に向けてスパッタさせることを特徴とする磁
気記録媒体の製造方法。
(3) In manufacturing a magnetic recording medium in which a magnetic metal thin film containing 0.1 to 10% by weight of a rare earth metal oxide is formed on a substrate, the magnetic metal is A method for producing a magnetic recording medium, comprising sputtering a target containing a rare earth metal oxide and a rare earth metal oxide toward a substrate.
(4)基体上に、希土類金属の酸化物を0.1〜10重
量%含有せしめた磁性金属薄膜を形成して成る磁気記録
媒体を製造するにあたり、真空中において、磁性金属と
希土類金属とを基体に蒸着させることと、酸素イオンを
基体に照射することを併用することを特徴とする磁気記
録媒体の製造方法。
(4) When manufacturing a magnetic recording medium in which a magnetic metal thin film containing 0.1 to 10% by weight of a rare earth metal oxide is formed on a substrate, the magnetic metal and the rare earth metal are mixed in a vacuum. A method for producing a magnetic recording medium, comprising the steps of vapor deposition on a substrate and irradiation of oxygen ions onto the substrate.
(5)基体上に、希土類金属の酸化物を0.1〜10重
量%含有せしめた磁性金属薄膜を形成して成る磁気記録
媒体を製造するにあたり、酸素雰囲気の真空中において
、磁性金属と希土類金属とを含むターゲットを基体に向
けてスパッタさせることを特徴とする磁気記録媒体の製
造方法。
(5) When manufacturing a magnetic recording medium in which a magnetic metal thin film containing 0.1 to 10% by weight of a rare earth metal oxide is formed on a substrate, the magnetic metal and rare earth metal are 1. A method for manufacturing a magnetic recording medium, comprising sputtering a target containing a metal toward a substrate.
JP16630585A 1985-07-26 1985-07-26 Magnetic recording medium and its production Pending JPS6226624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16630585A JPS6226624A (en) 1985-07-26 1985-07-26 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16630585A JPS6226624A (en) 1985-07-26 1985-07-26 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6226624A true JPS6226624A (en) 1987-02-04

Family

ID=15828875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16630585A Pending JPS6226624A (en) 1985-07-26 1985-07-26 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6226624A (en)

Similar Documents

Publication Publication Date Title
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
US4002546A (en) Method for producing a magnetic recording medium
US4539264A (en) Magnetic recording medium
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JP2673807B2 (en) Method for manufacturing magneto-optical recording medium
JPS6226624A (en) Magnetic recording medium and its production
US4588636A (en) Magnetic recording medium
JPS6130017A (en) Manufacture of vertical magnetization thin oxide film
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
JPS62128041A (en) Photomagnetic recording medium
JPS62285253A (en) Manufacture of photomagnetic recording medium
JPS60202526A (en) Method and device for production of magnetic recording medium
JP2702483B2 (en) Method for manufacturing magneto-optical recording medium
JPS6246449A (en) Production of photomagnetic recording medium
JPS60170213A (en) Magnetic thin film and manufacture thereof
JPH0462814A (en) Method for producing artificial grid film
JPH06264218A (en) Sputtering target
JPS63149848A (en) Apparatus for producing magneto-optical disk
JPS63452A (en) Manufacture of magnetic thin film
JPH07111791B2 (en) Method for manufacturing magneto-optical recording medium
JPS6224432A (en) Production of magnetic recording medium
JPS60171634A (en) Manufacture of magnetic recording medium
JPH0323968B2 (en)
JPH087352A (en) Magneto-optical recording medium and manufacture of same
JPS60217518A (en) Magnetic recording medium