JPS62260731A - Wire drawing furnace for optical fiber - Google Patents

Wire drawing furnace for optical fiber

Info

Publication number
JPS62260731A
JPS62260731A JP10194386A JP10194386A JPS62260731A JP S62260731 A JPS62260731 A JP S62260731A JP 10194386 A JP10194386 A JP 10194386A JP 10194386 A JP10194386 A JP 10194386A JP S62260731 A JPS62260731 A JP S62260731A
Authority
JP
Japan
Prior art keywords
optical fiber
gas
preform
furnace
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10194386A
Other languages
Japanese (ja)
Inventor
Takashi Ide
井出 貴史
Ichiro Yoshimura
一郎 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10194386A priority Critical patent/JPS62260731A/en
Publication of JPS62260731A publication Critical patent/JPS62260731A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • C03B2205/81Means for sealing the preform entry or upper end of the furnace using gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make it possible to maintain a small gap between a throttle plate and periphery of a preform and reduce fluctuation in wire diameter, by providing the throttle plate, having a gas blowing port and slidable in the direction perpendicular to the feed direction of a fiber preform on the top end of a wire drawing furnace. CONSTITUTION:A wire drawing furnace for an optical fiber capable of melting the tip part of an optical fiber preform 2 while heating and drawing the preform 2 into the optical fiber is formed from a throttle plate supporting member 5, provided at the top end part of a furnace body and having a gas feed port 12, the throttle plate 4 for passing the preform 2 therethrough and a gas inlet port 11 and blowing ports 14. The above-mentioned throttle plate 4 is contained in the interior of the above-mentioned support member 5 slidable to the direction perpendicular to the feed direction of the preform 2. The above-mentioned gas inlet port 11 is communicated to a gas feed port 12 of the above-mentioned support member 5. Gas F2 is evenly jetted from the above-mentioned blowing ports 14 on the outer peripheral surface of the preform 2.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炉内の気密を保つことにより線径変動の少な
い光ファイバを得るようにした光ファイバ線引炉に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical fiber drawing furnace that maintains airtightness inside the furnace to obtain an optical fiber with less variation in wire diameter.

〈従来の技術〉 光ファイバは、石英等の材料で製造した光ファイバ母t
オを線引炉の上部より炉内へ挿入し、先端を加熱溶融し
て線引炉の下部から引き出し、細径化して所望の径のも
のに製造している。この場合1.線引炉内部に混入する
空気中の異物や酸素、水プ、N気、金属イオン等によっ
て光ファイバのl;i+a的強度や性能の低下並びに酸
化によるヒータのノ1命の低下が起こるため、炉内を常
に不活1生ガスで充満させて溶融した光ファイバ母材が
空気に晒されないようにしておく必要がある。また、光
ファイバ母材の溶融した先端部の7M1度ゆらぎによる
光ファイバの線径変動を低減させるため、線引炉内の気
流の安定化に多くの努力が払われている。例えば特公昭
59−30660号公報に示されているものは、線引炉
内に芋、古性ガスを導入すると共に炉内ガスを排気して
掃引炉内の気流を制御し、更に線引炉の上下開口部に外
部からの大気の流入を防くためにガスンールを施す等し
たものである。
<Conventional technology> Optical fibers are manufactured using optical fiber matrices made of materials such as quartz.
The wire is inserted into the furnace from the upper part of the drawing furnace, the tip is heated and melted, and then pulled out from the lower part of the drawing furnace, and the diameter is reduced to the desired diameter. In this case 1. Foreign matter in the air, oxygen, water, nitrogen gas, metal ions, etc. that enter the drawing furnace cause a decrease in the strength and performance of the optical fiber, as well as a decrease in the life of the heater due to oxidation. It is necessary to constantly fill the furnace with inert raw gas to prevent the molten optical fiber preform from being exposed to air. Moreover, in order to reduce the variation in the diameter of the optical fiber due to the 7M1 degree fluctuation of the molten tip of the optical fiber preform, much effort has been made to stabilize the airflow in the drawing furnace. For example, the method shown in Japanese Patent Publication No. 59-30660 introduces potatoes and old gas into a drawing furnace, exhausts the gas in the furnace, controls the airflow in the sweeping furnace, and then The upper and lower openings are equipped with gas seals to prevent atmospheric air from entering from outside.

かかる従来の光ファイバ線引炉の上部の構造を表す第4
図に示すように、線引炉3の上部の母材挿入部分にガス
ディフューザ1を設け、このガスディフューザlから噴
出するガスによって線引炉3内のシール効果を得ようと
するものである。
The fourth figure shows the structure of the upper part of such a conventional optical fiber drawing furnace.
As shown in the figure, a gas diffuser 1 is provided at the upper part of the drawing furnace 3 where the base material is inserted, and the gas ejected from the gas diffuser 1 is used to obtain a sealing effect within the drawing furnace 3.

〈発明が解決しようとする問題点〉 一般に、線引炉内は光ファイバ母材を溶融させる必要上
、2000℃近い高温に保たれているため、強い上昇気
流が発生しており、十分なソール効果を得るためには大
量のシールガスを供給しなければならず、製品のコスト
高は避けられない。一方、第4図に示したガスディフュ
ーザlと光ファイバ母材2との間隙dを小さくすること
によってシール部でのガス圧を高め、シール効果を高め
ることが図られているが、この場合、光ファイバ母材2
の真直性が完全でなかったり、機械の動作精度が完全で
なかったりすると、シール部でガスディフューザlと光
ファイバ母材2とが接触して光ファイバ母材2が傷つけ
られ、光ファイバの強度低下を招くおそれがある。従っ
て、ガスディフューザ1と光ファイバ母材2との間隙d
はある程度以下に小さくすることはできない。
<Problems to be solved by the invention> Generally, the inside of a drawing furnace is kept at a high temperature of nearly 2000°C in order to melt the optical fiber base material, so a strong upward air current is generated and there is no sufficient sole. In order to obtain the effect, a large amount of sealing gas must be supplied, which inevitably increases the cost of the product. On the other hand, attempts have been made to increase the gas pressure at the sealing part and improve the sealing effect by reducing the gap d between the gas diffuser l and the optical fiber base material 2 shown in FIG. 4, but in this case, Optical fiber base material 2
If the straightness of the optical fiber is not perfect or the operating accuracy of the machine is not perfect, the gas diffuser l and the optical fiber base material 2 will come into contact at the sealing part, damaging the optical fiber base material 2 and reducing the strength of the optical fiber. This may lead to a decrease in Therefore, the gap d between the gas diffuser 1 and the optical fiber base material 2
cannot be reduced below a certain point.

一方、ガスディフューザ1から噴出したガスは炉内の上
昇気流とぶつかり、第4回中、矢印で示すような乱流が
発生する。このため、光ファイバ母材2の溶融した先端
部に温度むらを生し、光ファイバの線径変動の原因とな
っている。また、この流入ガスと共に空気が炉内に混入
する結果、カーボンやジルコニア等の耐熱性材料からな
る炉壁を消耗させると共に、発生ダストにより光ファイ
バ母材の表面が傷つけられ、光ファイバの強度を低下さ
せることとなっていた。これは、ガス流量が多量である
程、顕著となる。
On the other hand, the gas ejected from the gas diffuser 1 collides with the rising air current in the furnace, and during the fourth cycle, turbulent flow as shown by the arrow occurs. For this reason, temperature unevenness occurs at the molten tip of the optical fiber preform 2, causing variations in the diameter of the optical fiber. In addition, as a result of air entering the furnace together with this inflowing gas, the furnace walls made of heat-resistant materials such as carbon and zirconia are worn out, and the generated dust damages the surface of the optical fiber base material, reducing the strength of the optical fiber. It was supposed to be lowered. This becomes more noticeable as the gas flow rate increases.

本発明はかかる従来技術の問題点に鑑みてなされたもの
で、炉内の気密性を高めると共に光ファイバ母材の表面
を傷付けることなく光ファイバを線引きし得る光ファイ
バ線引炉を提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an optical fiber drawing furnace that can improve the airtightness inside the furnace and draw an optical fiber without damaging the surface of the optical fiber base material. With the goal.

〈問題点を解決するための手段〉 本発明による光ファイバ線引炉は、光ファイバ母材が内
部に送給され且つ該光ファイバ母材の先端部を加惰熔融
して光ファイバに線引きする光ファイバ線引炉において
、炉体の上端部に設けられ且つガス供給口を備えた絞り
板支持部材と、該佼り板支持部材の内部に前記光ファイ
バ母材の送給方向と直角な方向に滑動自在に収納される
とともに上記光ファイバ母材が貫通する絞り板と、この
絞り板に形成されて上記絞り板支持部tオのガス供給口
に連通するガス導入口及び該ガス導入口を介して上記高
圧ガスを上記光ファイバ母材の外周面に均等に噴出する
吹出し口とを備えたことを特徴とするものである。
<Means for Solving the Problems> In the optical fiber drawing furnace according to the present invention, an optical fiber preform is fed into the inside, and the tip of the optical fiber preform is melted and drawn into an optical fiber. In an optical fiber drawing furnace, a diaphragm plate support member provided at the upper end of the furnace body and provided with a gas supply port, and a diaphragm plate support member provided inside the aperture plate support member in a direction perpendicular to the feeding direction of the optical fiber preform. a diaphragm plate that is slidably housed in the diaphragm plate and through which the optical fiber preform passes; a gas inlet that is formed in the diaphragm plate and communicates with the gas supply port of the diaphragm plate support part; The present invention is characterized in that it includes an outlet for evenly ejecting the high-pressure gas onto the outer circumferential surface of the optical fiber preform through the optical fiber base material.

く作   用〉 炉内は光ファイバ母材の外周面と絞り板の内周面との微
小隙間部分でガスンールされる。
The inside of the furnace is filled with gas in the small gap between the outer circumferential surface of the optical fiber base material and the inner circumferential surface of the aperture plate.

光ファイバ母材と絞り仮とが心ずれを起こすと、絞り板
の吹出し口から光ファイバ母材に向けて吹出されるシー
ルガスの圧力分布が変化し、この圧力分布が均一となる
ように絞り仮が絞り板支持部材内を滑動して光ファイバ
母材と絞り板との心ずれが自動的に矯正され、光ファイ
バ母材と絞り仮との微小隙間が一定に保たれる。
If the optical fiber base material and the aperture are misaligned, the pressure distribution of the sealing gas blown out from the outlet of the aperture plate towards the optical fiber base material will change, and the aperture should be adjusted so that this pressure distribution becomes uniform. The temporary slides within the aperture plate support member, and misalignment between the optical fiber preform and the aperture plate is automatically corrected, and the minute gap between the optical fiber preform and the aperture plate is kept constant.

〈実 施 例〉 本発明による光ファイバ線引炉の一実施例の主要部の断
面構造を表す第1図及びその■−■矢視断面形状を表す
第2図に示すように、炉体に設けられた絞り板支持部材
5の内部空間5aには滑動自在に絞り板4が保持されて
いる。また、絞り仮4の中央には光ファイバ母材2が微
小間隙を保って挿通される。尚、絞り板支持部材5に2
よ高圧ガス供給口12が設けられ、絞り仮4にはこの高
圧ガス供給口12に常時接続する高圧ガス導入口11が
備えられている。又、絞り仮4の高圧ガス導入口11に
は絞り板4内に加工されて環状のガス溜め13が挿通し
ており、ガス溜め13には、絞り板4の内周面に開口し
て光ファイバ母材2の周囲に均一に高圧ガスF2を噴出
する複数個の吹出し口14が連通している。従って高圧
ガスF2は絞り板支持部材5の高圧ガス供給口12から
絞り仮4の高圧ガス導入口】1、ガス溜め13、吹出し
口14を介して光ファイバ母材2の外周面に噴出する。
<Embodiment> As shown in FIG. 1 showing the cross-sectional structure of the main part of an embodiment of the optical fiber drawing furnace according to the present invention, and FIG. 2 showing the cross-sectional shape in the direction of The aperture plate 4 is slidably held in the internal space 5a of the provided aperture plate support member 5. Further, the optical fiber preform 2 is inserted through the center of the temporary aperture 4 with a minute gap maintained. In addition, the diaphragm plate support member 5 has 2
A high-pressure gas supply port 12 is provided, and the restrictor 4 is provided with a high-pressure gas introduction port 11 that is constantly connected to this high-pressure gas supply port 12. Furthermore, an annular gas reservoir 13 is inserted into the high-pressure gas inlet 11 of the temporary diaphragm plate 4 and is inserted into the gas reservoir 13. A plurality of outlets 14 that uniformly eject high-pressure gas F2 are communicated around the fiber base material 2. Therefore, the high-pressure gas F2 is ejected from the high-pressure gas supply port 12 of the diaphragm plate support member 5 to the outer peripheral surface of the optical fiber preform 2 via the high-pressure gas inlet 1 of the diaphragm 4, the gas reservoir 13, and the outlet 14.

本実施例では吹出し口14を等間隔に八個形成しており
、各吹出し口14での圧力分布が変化する場合がある。
In this embodiment, eight outlets 14 are formed at equal intervals, and the pressure distribution at each outlet 14 may change.

例えば、絞り板4に対して光ファイバ母材2が心ずれを
起こすと、間隙の狭まった側の圧力が高くなるが、これ
らの圧力分布が平衡状態となるように絞り板4に作用す
る結果、絞り板4の内周面と光ファイバ母材2の外周面
との隙間が均等になる位置に絞り板4が滑動する。この
ような絞り仮4の回心作用は、いわゆる静圧軸受のそれ
と同様の原理に基づくものである。
For example, if the optical fiber base material 2 is misaligned with respect to the aperture plate 4, the pressure on the narrower side of the gap will increase, but as a result of acting on the aperture plate 4 so that these pressure distributions are in equilibrium, , the aperture plate 4 slides to a position where the gap between the inner circumferential surface of the aperture plate 4 and the outer circumferential surface of the optical fiber preform 2 becomes equal. Such a pivoting action of the restrictor 4 is based on the same principle as that of a so-called hydrostatic bearing.

本発明による光ファイバ線引炉の他の一実施例の主要部
の断面構造を表す第3図に示すように、絞り板支持部材
5は光ファイバ線引炉の炉体上端に取付けられており、
その中央部を光ファイバ線引炉内へ送給される光ファイ
バ母材2が貫通する。また、絞り板支持部材5の内部に
は中央部に光ファイバ母材2が貫通する絞り板4を配置
している。絞り板4は、絞り板4に対向する絞り板支持
部材5の上板部5a、下板部5bに設けられた図示しな
い多数のガス吹出し口から吹き出されるガスF3によっ
て、これら上板部5a、下板部5bとそれぞれ微小間隙
d、、d、を隔てて非常に滑らかに滑動自在に支持され
ている。
As shown in FIG. 3, which shows the cross-sectional structure of the main part of another embodiment of the optical fiber drawing furnace according to the present invention, the aperture plate support member 5 is attached to the upper end of the furnace body of the optical fiber drawing furnace. ,
The optical fiber preform 2 to be fed into the optical fiber drawing furnace passes through the central portion. Further, inside the aperture plate support member 5, an aperture plate 4 through which the optical fiber preform 2 passes is arranged in the center. The aperture plate 4 is blown out by the gas F3 blown out from a large number of gas outlets (not shown) provided on the upper plate part 5a and the lower plate part 5b of the aperture plate support member 5 facing the aperture plate 4. , are supported so as to be able to slide very smoothly with respect to the lower plate portion 5b with minute gaps d, , d, respectively.

尚、図では間隙d、、d、を説明の都合上誇張して示し
ている。
In addition, in the figure, the gaps d, , d are exaggerated for convenience of explanation.

更に、絞り板支持部材5の上板部5a、下仮部5bの複
数個所にはガス供給口12が設けられて、上下の板部5
a、5bの間に位置する絞り板4にはガス供給口12と
対向してその開口より大きい開口をもつガス導入口11
が備えられている。つまり、ル交り十反4が絞り板支持
部材5の中で滑動しても、ガス供給口12からガス導入
口11への送給ガスの流入が妨げられないように設定さ
れている。また、絞り仮4内には環状のガス溜め13が
設けられていて、ガス導入口11から導入された高圧ガ
スが一時蓄わえられる。ガス溜め13には絞り板4の内
周面に等間隙に開口する吹出し口14が接続しており、
従ってガス溜め13に蓄わえられた高圧ガスは光ファイ
バ母材2の外周面に向って均一な圧力の高圧ガス流F2
となって吹き出る。この場合、光ファイバ母材2と絞り
仮4との心ずれが起こると、先の実施例と同様に間隙の
狭まった側の圧力が高くなるが、この圧力分布の不均衡
によって絞り板4が滑動し、圧力分布が均一になるよう
に心ずれが矯正される。このような調心作用は、第1図
に示す実施例の場合と同様である。
Furthermore, gas supply ports 12 are provided at a plurality of locations on the upper plate portion 5a and the lower temporary portion 5b of the aperture plate support member 5.
The aperture plate 4 located between a and 5b has a gas inlet 11 that faces the gas supply port 12 and has an opening larger than the opening.
is provided. In other words, the configuration is such that even if the cross-shaped cross section 4 slides within the aperture plate support member 5, the flow of the feed gas from the gas supply port 12 to the gas introduction port 11 will not be hindered. Further, an annular gas reservoir 13 is provided within the restrictor 4, and the high-pressure gas introduced from the gas inlet 11 is temporarily stored therein. The gas reservoir 13 is connected to an outlet 14 that opens at equal intervals on the inner peripheral surface of the diaphragm plate 4.
Therefore, the high-pressure gas stored in the gas reservoir 13 flows toward the outer peripheral surface of the optical fiber base material 2 in a high-pressure gas flow F2 with a uniform pressure.
It bursts out. In this case, if misalignment occurs between the optical fiber base material 2 and the diaphragm plate 4, the pressure on the narrower side of the gap increases as in the previous embodiment, but due to this imbalance in pressure distribution, the diaphragm plate 4 It slides and the misalignment is corrected so that the pressure distribution is uniform. Such centering action is similar to that of the embodiment shown in FIG.

本実施例では、絞り板4が絞り板支持部材5の上下の板
部5a、5bに設けられているガス吹出し口からのガス
流F3によって保持されているため、滑動性が著しく勝
れており、追従性が良いことから絞り板4が光ファイバ
母材2に接触して光ファイバ母材2を傷つけるようなこ
とはない。
In this embodiment, the diaphragm plate 4 is held by the gas flow F3 from the gas outlet provided in the upper and lower plate parts 5a and 5b of the diaphragm plate support member 5, so the sliding property is significantly improved. Since the followability is good, the aperture plate 4 will not come into contact with the optical fiber base material 2 and damage the optical fiber base material 2.

絞り板4のガス導入口11と絞り板支持部材5のガス供
給口12とは常に連通しており、一定2t!iのガスが
供給されるように保たれているため、絞り板4の滑動に
伴って高圧ガスの吹き出し圧力が変動することもない。
The gas inlet 11 of the diaphragm plate 4 and the gas supply port 12 of the diaphragm plate support member 5 are always in communication with each other at a constant rate of 2t! Since the gas of i is kept supplied, the blowing pressure of the high pressure gas does not fluctuate due to the sliding movement of the throttle plate 4.

また、絞り板支持部材5と絞り板4との間隙d1゜d2
はきわめて狭いのでこの部分から流出されるガス量は極
めて少量であって何ら問題はない。更に、本実施例では
絞り板支持部材5に設けられたガス供給口12は、絞り
板支持部材の上下の板部5a、5bに対向状!璋で設け
られており、上下のガス供給口12から上下均等に絞り
板4のガス導入口11に高圧ガスが導入されるため、高
圧ガスのガス流の変動があっても間隙d、 、d2が変
化することはなく、ガス流F3による絞り板4の支持へ
の影響は全く無視できる。
Also, the gap d1°d2 between the aperture plate support member 5 and the aperture plate 4
Since the area is extremely narrow, the amount of gas flowing out from this area is extremely small and poses no problem. Furthermore, in this embodiment, the gas supply ports 12 provided in the aperture plate support member 5 are opposed to the upper and lower plate portions 5a and 5b of the aperture plate support member! Since the high-pressure gas is introduced from the upper and lower gas supply ports 12 to the gas inlet 11 of the throttle plate 4 evenly above and below, even if there is a fluctuation in the gas flow of the high-pressure gas, the gaps d, , d2 are maintained. does not change, and the influence of the gas flow F3 on the support of the diaphragm plate 4 can be completely ignored.

〈発明の効果〉 本発明の光ファイバ線引炉によれば、炉体上端の絞り板
支持部材によって滑動自在に支持された絞り板から高圧
ガスを光ファイバ母材の外周面に噴出させ、静圧軸受の
原理により絞り仮を光ファイバ母材の周囲にわずかな間
隙で接触することなく保つことができる。
<Effects of the Invention> According to the optical fiber drawing furnace of the present invention, high-pressure gas is ejected onto the outer peripheral surface of the optical fiber preform from the aperture plate slidably supported by the aperture plate support member at the upper end of the furnace body. Due to the principle of pressure bearing, the temporary diaphragm can be maintained around the optical fiber base material without contacting it with a small gap.

このため、大気から炉体内を気密に保つことができ、炉
体内の雰囲気を清浄に維持するとともに炉体内の高温上
昇気流の変動を抑え、光ファイバ母材先端部の加熱溶融
部分の温度のゆらぎによる光ファイバ線径変動を極めて
低減することができた。
Therefore, the inside of the furnace can be kept airtight from the atmosphere, keeping the atmosphere inside the furnace clean and suppressing fluctuations in the high-temperature rising air current inside the furnace, thereby preventing fluctuations in the temperature of the heated and melted part of the optical fiber base material tip. We were able to significantly reduce the variation in optical fiber diameter caused by this.

また、炉体内は大気と有効に遮断されることによって、
大気中の異物、酸素、水蒸気、金属イオン等の不純物の
炉体内への導入がなく、これによる光ファイバのa h
5.的強度の低下が避けられるとともに、酸化に伴う炉
体内の部品の消耗やヒータの劣下といった問題点は解消
され、優れた高品質の光ファイバを安定して生産するこ
とができる。
In addition, by effectively sealing the inside of the furnace from the atmosphere,
Impurities such as foreign matter, oxygen, water vapor, and metal ions in the atmosphere are not introduced into the furnace body, and this makes the optical fiber a
5. In addition to avoiding a decrease in optical strength, problems such as wear of parts in the furnace body and deterioration of the heater due to oxidation are eliminated, and excellent, high-quality optical fibers can be stably produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光ファイバ線引炉のガスシール部
分の一実施例の断面図、第2図はその■−■矢視断面図
、第3図は本発明の他の一実施例におけるガスシール部
分の断面図、第4図は従来の光ファイバ線引炉の上端部
の概略図である。 図面中、2は光ファイバ母材、4は絞り板、5は絞り板
支持部材、11はガス導入口、12はガス供給口、13
はガス溜め、14は吹出し口である。 第1図 第3図
FIG. 1 is a cross-sectional view of an embodiment of the gas seal portion of an optical fiber drawing furnace according to the present invention, FIG. 2 is a cross-sectional view taken along arrows -■, and FIG. A cross-sectional view of the gas seal portion, and FIG. 4 is a schematic view of the upper end of a conventional optical fiber drawing furnace. In the drawing, 2 is an optical fiber base material, 4 is an aperture plate, 5 is an aperture plate support member, 11 is a gas introduction port, 12 is a gas supply port, and 13
14 is a gas reservoir, and 14 is an outlet. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ母材が内部に送給され且つ該光ファイバ母材
の先端部を加熱溶融して光ファイバに線引きする光ファ
イバ線引炉において、炉体の上端部に設けられ且つガス
供給口を備えた絞り板支持部材と、該支持部材の内部に
前記光ファイバ母材の送給方向と直角な方向に滑動自在
に収納されるとともに上記光ファイバ母材が貫通する絞
り板と、この絞り板に形成されて上記絞り板支持部材の
ガス供給口に連通するガス導入口及び該ガス導入口を介
して上記高圧ガスを上記光ファイバ母材の外周面に均等
に噴出する吹出し口とを備えたことを特徴とする光ファ
イバ線引炉。
In an optical fiber drawing furnace in which an optical fiber preform is fed into the interior and the tip of the optical fiber preform is heated and melted to draw the optical fiber, the furnace is provided at the upper end of the furnace body and is provided with a gas supply port. an aperture plate support member, an aperture plate that is slidably housed inside the support member in a direction perpendicular to the feeding direction of the optical fiber preform and through which the optical fiber preform passes; A gas inlet is formed and communicates with the gas supply port of the diaphragm plate support member, and a blow-off port is provided for evenly jetting the high-pressure gas onto the outer peripheral surface of the optical fiber preform through the gas inlet. An optical fiber drawing furnace featuring:
JP10194386A 1986-05-06 1986-05-06 Wire drawing furnace for optical fiber Pending JPS62260731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10194386A JPS62260731A (en) 1986-05-06 1986-05-06 Wire drawing furnace for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10194386A JPS62260731A (en) 1986-05-06 1986-05-06 Wire drawing furnace for optical fiber

Publications (1)

Publication Number Publication Date
JPS62260731A true JPS62260731A (en) 1987-11-13

Family

ID=14313977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10194386A Pending JPS62260731A (en) 1986-05-06 1986-05-06 Wire drawing furnace for optical fiber

Country Status (1)

Country Link
JP (1) JPS62260731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182136A1 (en) 2018-03-23 2019-09-26 住友電気工業株式会社 Furnace gas feeding device, optical fiber production device, and optical fiber production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182136A1 (en) 2018-03-23 2019-09-26 住友電気工業株式会社 Furnace gas feeding device, optical fiber production device, and optical fiber production method
KR20200135357A (en) 2018-03-23 2020-12-02 스미토모 덴키 고교 가부시키가이샤 Furnace gas supply device, optical fiber manufacturing device, optical fiber manufacturing method
US11795099B2 (en) 2018-03-23 2023-10-24 Sumitomo Electric Industries, Ltd. Furnace gas feeding device, optical fiber production device, and optical fiber production method

Similar Documents

Publication Publication Date Title
CA1199495A (en) Methods of and apparatus for heating a preform from which lightguide fiber is drawn
US5160359A (en) Apparatus and method for drawing an optical fiber from a solid blank
EP0659699A1 (en) Optical fiber drawing furnace and drawing method
US6192715B1 (en) Furnace for forming optical fiber
JPH0248500B2 (en)
FI80008B (en) REFERENCE TO A CONTAINER CONTAINING FRAMSTAELLNING AV GLASFIBER.
US5266027A (en) Roller-hearth continuous furnace
US6709630B2 (en) Metallurgical lance and apparatus
KR100201186B1 (en) Method and apparatus for heating elongated glass substrate
JPS62260731A (en) Wire drawing furnace for optical fiber
JPS62246837A (en) Drawing furnace for optical fiber
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
KR910008144B1 (en) Method and apparatus for degassing moldten metal utilizing rh method
JP2002321934A (en) Device for supporting horizontally guided glass continuous body
JPS63176330A (en) Drawing furnace for optical fiber
EP2860448B1 (en) Quartz glass burner
US3294510A (en) Apparatus for and process of annealing glass as it is being drawn upwardly
CN109665711B (en) Burner for synthesis
JPH10279326A (en) Drawing and heating furnace for optical fiber
JPS62176938A (en) Airtight device of optical fiber drawing furnace
JPH11291023A (en) Plasma torch for heating molten steel in tundish
JPH0710545A (en) Glass fusion furnace provided with oxygen lance
JPS62260730A (en) Wire drawing furnace for optical fiber
JPS5864239A (en) Air nozzle assembly for spinning glass fiber
JPH0333021A (en) Equalization of molten glass temperature and its device