JPS62260305A - Permananent magnet - Google Patents

Permananent magnet

Info

Publication number
JPS62260305A
JPS62260305A JP61102087A JP10208786A JPS62260305A JP S62260305 A JPS62260305 A JP S62260305A JP 61102087 A JP61102087 A JP 61102087A JP 10208786 A JP10208786 A JP 10208786A JP S62260305 A JPS62260305 A JP S62260305A
Authority
JP
Japan
Prior art keywords
permanent magnet
sintered
crystal grains
particle size
grain diameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61102087A
Other languages
Japanese (ja)
Inventor
Hideki Nakamura
英樹 中村
Osamu Kawamoto
修 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61102087A priority Critical patent/JPS62260305A/en
Publication of JPS62260305A publication Critical patent/JPS62260305A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent crystal grains from becoming large and control a distribution of final grain diameters after a sintering process, by reducing a mean diameter and distribution of the grains in permanent magnet minute powder. CONSTITUTION:A R-Fe-B group sintered permanent magnet, whose sintered crystal grains are all made to be essentially within the range of 3-30mum in their final grain diameters (n) by using minute powder obtained by moreover powdering minute powdered grains so as to have a uniform granular degree, is provided with excellent magnetic characteristics. The sintered permanent magnet, containing crystal grains of less than 3mum in their final grain diameters (n) after the sintering process, is remarkably deteriorated in the magnetic characteristics, caused by oxidation during the manufacturing process. On the other hand, a sintered permanent magnet, containing crystal grains in excess of 30mum in their final grain diameters (n) after the sintering process, is also deteriorated in their magnetic characteristics, caused by inferior orientation. Constituents of the sintered permanent magnet are permitted to be ones as known, without special limitation, and generally with R=5-20atom% and B=2-15atom%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−Fe−B系永久磁石(RはYを含む希土類
元素を表わす)に関するものである。さらに詳しく述べ
るならば、本発明は、残留磁束密度、保磁力および最大
エネルギ積等の磁気的性質が良好なR−Fe−B系焼結
永久磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an R-Fe-B permanent magnet (R represents a rare earth element containing Y). More specifically, the present invention relates to an R-Fe-B based sintered permanent magnet that has good magnetic properties such as residual magnetic flux density, coercive force, and maximum energy product.

〔従来の技術〕[Conventional technology]

R−Fe−Bを基本成分とする永久磁石についての研究
が近年活発になされ、その結果が公開特許公報等により
公表されている。
Research on permanent magnets having R-Fe-B as a basic component has been actively conducted in recent years, and the results have been published in published patent publications and the like.

特開昭57−141901号公報によると、遷移族金属
(T)、メタロイド金属(M)、Yおよびランタニド元
素の組み合わせからなる組成を非晶質化し、次に非晶質
組成を熱処理により結晶化することによって保磁力を発
生せしめる永久磁石粉末製法が記載されている。この公
報によると、TはTi。
According to JP-A-57-141901, a composition consisting of a combination of a transition group metal (T), a metalloid metal (M), Y, and a lanthanide element is made amorphous, and then the amorphous composition is crystallized by heat treatment. A method for manufacturing permanent magnet powder is described in which coercive force is generated by According to this publication, T is Ti.

V、Cr、Mn、Fe、Co、Ni、Cu、Zr。V, Cr, Mn, Fe, Co, Ni, Cu, Zr.

Nb、Mo、Hf 、Ta、Wより選ばれる1種もしく
は2種以上の組合せであり、またMはB。
One or a combination of two or more selected from Nb, Mo, Hf, Ta, and W, and M is B.

si 、p、cより選ばれる1種もしくは2種以上の組
合せ、RはYおよびランタニド元素より選ばれる1種も
しくは2種以上の組合せ、であって、これらを(TI−
xMX)2R+−zなる関係式(但し、0≦X≦063
5.0.35≦2≦0.90)で含有させた永久磁石粉
末についての特許が請求されている。
one or more combinations selected from si, p, and c; R is one or more combinations selected from Y and lanthanide elements;
xMX)2R+-z (however, 0≦X≦063
A patent is claimed for a permanent magnet powder containing a powder with a content of 5.0.35≦2≦0.90).

特開昭58−123853号公報によると、Laおよび
Pr含有材料が提案されており、その組成は、(F e
 xB +−x)y(L a t P r wR+−z
−w) +−y、但し、Rはl、a、pr以外の希土類
金属、x = 0.75〜0.85、y = 0.85
〜0.95.2 = 0.40〜0.75、W=0、2
5〜0.60、z+w≦1.0である。この公報には、
液体急冷法により非晶質化したR−Fe−B含有合金を
焼鈍して結晶化させる際の保磁力増大を適切にするため
に、希土類元素の種類および割合を上述の(L a z
P r wRl−11−W )とする組成調節法が述べ
られている。
According to JP-A-58-123853, a material containing La and Pr has been proposed, and its composition is (Fe
xB +-x)y(L at P r wR+-z
-w) +-y, where R is a rare earth metal other than l, a, and pr, x = 0.75 to 0.85, y = 0.85
~0.95.2 = 0.40~0.75, W=0, 2
5 to 0.60, and z+w≦1.0. This bulletin includes
In order to appropriately increase the coercive force when annealing and crystallizing the R-Fe-B-containing alloy that has been made amorphous by the liquid quenching method, the types and proportions of the rare earth elements are adjusted according to the above (L a z
A method for adjusting the composition of P r wRl-11-W) is described.

特開昭59−46008号公報には、8〜30原子%の
R(但し、Rは希土類元素の少なくとも1種)、2〜2
8原子%のB、及び残部Feからなる磁気異方性焼結体
を、スタンプミルおよびボールミルでの微粉を得る粉砕
工程、磁界中成形工程および焼結工程により製造するこ
とが記載されている。
JP-A No. 59-46008 discloses that 8 to 30 atomic % of R (wherein R is at least one rare earth element), 2 to 2
It is described that a magnetically anisotropic sintered body consisting of 8 atomic % of B and the balance of Fe is produced by a pulverization process to obtain fine powder in a stamp mill and a ball mill, a molding process in a magnetic field, and a sintering process.

同公報の実施例によると微粉砕工程では3〜10pmの
微粉末が得られている。
According to the examples in the publication, a fine powder of 3 to 10 pm is obtained in the pulverization process.

一般に、焼結法においては、合金を溶製し、造塊したイ
ンゴットを微粉砕して永久磁石材料粉末力q開裂される
。微粉砕法としては、ボールミル法の他に、ジェットミ
ル法などがあり、通常約2〜約10μmの平均粒径を有
す、る微粉末が得られる。
Generally, in the sintering method, an alloy is melted, an ingot is pulverized, and the permanent magnet material is cleaved by force q. Fine pulverization methods include a ball mill method and a jet mill method, and a fine powder having an average particle size of about 2 to about 10 μm is usually obtained.

この微粉末を異方性磁石を得る場合は磁場中、等方性磁
石を得る場合は無磁場中でプレス成型した後に、焼結あ
るいは焼結および熱処理を行ない永久磁石を得る。
This fine powder is press-molded in a magnetic field to obtain an anisotropic magnet, or in no magnetic field to obtain an isotropic magnet, and then sintered or sintered and heat treated to obtain a permanent magnet.

(発明が解決しようとする問題点〕 従来の微粉砕粉末は平均粒径が上記約2〜約10μmの
ある値であるが、粒度分布は平均値力約3μmとなる。
(Problems to be Solved by the Invention) Conventional finely pulverized powder has an average particle diameter of about 2 to about 10 μm, but the particle size distribution has an average value of about 3 μm.

このような粒度分布をもった粉末を焼結すると、焼結中
の粒成長、粒子の凝集等により、粒度分布は約2〜約1
0μmからさらに約2〜60μmに広がる。粉砕時の粗
粒粉中の多結晶粒子の存在は焼結体の配向度を低下させ
るために、異方性焼結磁石の残留磁束密度、保磁力およ
び角形比が劣化する。さらに、粒径の小さい微粉は非常
に酸化され易く、焼結体中で非磁性相を形成し、異方性
・等方性如何にかかわらず磁石磁気特性劣化の原因とな
る。
When powder with such a particle size distribution is sintered, the particle size distribution will be about 2 to about 1 due to grain growth and aggregation of particles during sintering.
It further expands from 0 μm to about 2 to 60 μm. The presence of polycrystalline particles in the coarse powder during pulverization reduces the degree of orientation of the sintered body, thereby degrading the residual magnetic flux density, coercive force, and squareness ratio of the anisotropic sintered magnet. Furthermore, fine powder with a small particle size is very easily oxidized and forms a non-magnetic phase in the sintered body, causing deterioration of the magnetic properties of the magnet regardless of whether it is anisotropic or isotropic.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は従来の微粉砕粉末をさらに分級して得られ
た粒度が揃った微粉末を用いて、焼結後結晶粒子の実質
的に全部が最終粒径(n)=3〜30μmの範囲内にあ
るR−Fe−B系焼結永久磁石はすぐれた磁気特性が得
られることを見出した。焼結後の最終粒径(n)が3μ
m未満の結晶粒子を含む焼結永久磁石では、その製造工
程中の酸化による磁気特性劣化が著しく、また焼結後の
最終粒径(n)が30μmを越える結晶粒子を含む焼結
永久磁石では配向劣化による磁気特性不良が起こる。よ
って、本発明においては焼結後の最終粒径(n)を3〜
30μmとした。好ましくは(n)は3〜20μmであ
る。
The present inventors used fine powder with uniform particle size obtained by further classifying conventional finely pulverized powder. It has been found that R-Fe-B based sintered permanent magnets within this range can provide excellent magnetic properties. Final particle size (n) after sintering is 3μ
In sintered permanent magnets containing crystal grains of less than 30 μm, the magnetic properties deteriorate significantly due to oxidation during the manufacturing process, and in sintered permanent magnets containing crystal grains with a final grain size (n) of more than 30 μm after sintering, Defects in magnetic properties occur due to orientation deterioration. Therefore, in the present invention, the final particle size (n) after sintering is set to 3 to 3.
It was set to 30 μm. Preferably (n) is 3 to 20 μm.

焼結後の最終粒径(n)=3〜30μmとなる焼結永久
磁石を得るためには、公知の微粉砕法で得られた微粉末
を遠心分離機等の分級機を用いることにより粗粒粉と微
粒粉とを分離し、後の所望粒径(N)±2μm、好まし
くは(N)±1μmの分級微粉末を得る。この分級微粉
末を通常のプレス、焼結および必要に応じて熱処理によ
り逐次処理する。焼結条件は通常1050〜1150”
C、アルゴンもしくは真空雰囲気である。
In order to obtain a sintered permanent magnet with a final particle size (n) of 3 to 30 μm after sintering, the fine powder obtained by a known pulverization method is coarsened by using a classifier such as a centrifuge. Grain powder and fine powder are separated to obtain classified fine powder having a desired particle size (N) ±2 μm, preferably (N) ±1 μm. This classified fine powder is sequentially processed by conventional pressing, sintering and, if necessary, heat treatment. Sintering conditions are usually 1050-1150"
C, argon or vacuum atmosphere.

本発明に係る焼結永久磁石の組成は公知のものであって
よく、特に限定されないが一般にはR=5〜20原子%
、B原子−15原子%である。さらに、本出願人に譲渡
された特願昭59−280125号に係るCeおよびL
aを希土類元素の主成分とする組成: ((Ce XL a +−x)yR+−y) z(F 
e l−11Bv)I−2、但し、Rは少なくとも1種
の希土類金属(Yを含む)、0.4≦X≦0.9.0.
2 < y≦1.0.0.05≦2≦0,3.0.01
≦V≦0,03であり、RはCeおよびLa以外の少な
くとも1種の希土類元素についても、最終粒径(n)=
3〜30μmとすることにより磁気的性質が改良される
The composition of the sintered permanent magnet according to the present invention may be a known one, and is not particularly limited, but generally R = 5 to 20 atomic %.
, B atom -15 atom %. Furthermore, Ce and L related to Japanese Patent Application No. 59-280125 assigned to the present applicant.
Composition in which a is the main component of rare earth element: ((Ce XL a +-x)yR+-y) z(F
e l-11Bv) I-2, provided that R is at least one rare earth metal (including Y), 0.4≦X≦0.9.0.
2 < y≦1.0.0.05≦2≦0, 3.0.01
≦V≦0,03, and R is also for at least one rare earth element other than Ce and La, the final particle size (n) =
Magnetic properties are improved by setting the thickness to 3 to 30 μm.

〔作 用〕[For production]

上述のように、永久磁石用微粉の平均粒径および粒度分
布を小さくすることにより、結晶粒の粗大化を防ぎかつ
焼結後の最終粒径分布を制御する。
As described above, by reducing the average particle size and particle size distribution of the fine powder for permanent magnets, coarsening of crystal grains is prevented and the final particle size distribution after sintering is controlled.

かかる粒径分布制御によって非磁性相の存在を低減させ
かつ配向性を向上させることができるので焼結磁石の磁
気特性が改良される。
Such particle size distribution control reduces the presence of non-magnetic phases and improves orientation, thereby improving the magnetic properties of the sintered magnet.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例〕〔Example〕

実施例I N d IsB? F e ?I!なる組成の合金を溶
製した後、造塊し得られたインゴットを粗粉砕し、ジェ
ットミルを用いて平均粒径4μm程度まで微粉砕した。
Example I Nd IsB? Fe? I! After melting an alloy having the following composition, the ingot obtained by agglomeration was coarsely pulverized, and then finely pulverized to an average particle size of about 4 μm using a jet mill.

次に遠心式分級機を用いて4±2μmの粒度(N)分布
をもつ分級微粉末と、4±1μmの粒度(N)分布をも
つ分級微粉末と、を作製した。各分級微粉とジェットミ
ルで得られた微粉を、10kOeの磁場中で1.5トン
/cI11の圧力で圧粉した後、1100℃、2時間、
アルゴン雰囲気中で焼結し、続いて600℃、1時間時
効処理を行なった。
Next, a classified fine powder with a particle size (N) distribution of 4±2 μm and a classified fine powder with a particle size (N) distribution of 4±1 μm were produced using a centrifugal classifier. Each classified fine powder and the fine powder obtained by the jet mill were compacted at a pressure of 1.5 tons/cI11 in a magnetic field of 10 kOe, and then heated at 1100°C for 2 hours.
Sintering was performed in an argon atmosphere, followed by aging treatment at 600° C. for 1 hour.

4±1μmの分級微粉を用いて作製した永久磁石の焼結
後の粒径(n)は4〜18μmであった(発明A)。
The particle size (n) after sintering of the permanent magnet produced using the 4±1 μm classified fine powder was 4 to 18 μm (Invention A).

4±2μmの分級微粉を用いて作製した永久磁石の焼結
後の粒径(n)は3〜27μmであった(発明B)。
The particle size (n) after sintering of the permanent magnet produced using the 4±2 μm classified fine powder was 3 to 27 μm (Invention B).

ジェットミルで得られた平均粒径4μm(粒度(N)分
布=1〜10μm)の微粉を用いて作製した焼結後の永
久磁石の粒径(n)は1〜39μmであった(比較例)
The particle size (n) of the permanent magnet after sintering produced using fine powder with an average particle size of 4 μm (particle size (N) distribution = 1 to 10 μm) obtained with a jet mill was 1 to 39 μm (comparative example )
.

焼結後の結晶粒径の測定は顕微鏡により焼結体の最表面
を測定対象から除外して行なった。
The grain size after sintering was measured using a microscope, excluding the outermost surface of the sintered body from the measurement target.

各永久磁石の角型比(Hk/1Hc)、最大エネルギ積
((BH)□、l)、残留磁束密度(Br)保磁力(i
Hc)を測定した結果を第1図に示す。
Squareness ratio (Hk/1Hc), maximum energy product ((BH)□, l), residual magnetic flux density (Br), coercive force (i
The results of measuring Hc) are shown in FIG.

第1図より、焼結後の粒径(n)が3〜30μmの範囲
内にある発明A、Bの例は、焼結後の粒径(n)が3〜
30μmの範囲外にある比較例よりも磁気特性がすぐれ
ていることが分かる。
From FIG. 1, examples of inventions A and B, in which the particle size (n) after sintering is within the range of 3 to 30 μm, have a particle size (n) of 3 to 30 μm after sintering.
It can be seen that the magnetic properties are superior to those of the comparative example outside the 30 μm range.

〔発明の効果〕〔Effect of the invention〕

本発明によると残留磁束密度、保磁力および最大エネル
ギ積が高い焼結永久磁石が製造される。
According to the present invention, a sintered permanent magnet with high residual magnetic flux density, high coercive force, and high maximum energy product is manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、角型比、最大エネルギ積、残留磁束密度、保
磁力を本発明例および実施例について示すグラフである
FIG. 1 is a graph showing squareness ratio, maximum energy product, residual magnetic flux density, and coercive force for examples and examples of the present invention.

Claims (1)

【特許請求の範囲】 1、粒径(n)が3〜30μmの範囲内にあることを特
徴とするR(Yを含む希土類元素)−Fe−B系焼結永
久磁石。 2、R含有量が5〜20原子%、B含有量が2〜15原
子%であることを特徴とする特許請求の範囲第1項記載
の焼結永久磁石。
[Scope of Claims] 1. An R (rare earth element containing Y)-Fe-B based sintered permanent magnet, characterized in that the particle size (n) is within the range of 3 to 30 μm. 2. The sintered permanent magnet according to claim 1, wherein the R content is 5 to 20 at % and the B content is 2 to 15 at %.
JP61102087A 1986-05-06 1986-05-06 Permananent magnet Pending JPS62260305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102087A JPS62260305A (en) 1986-05-06 1986-05-06 Permananent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102087A JPS62260305A (en) 1986-05-06 1986-05-06 Permananent magnet

Publications (1)

Publication Number Publication Date
JPS62260305A true JPS62260305A (en) 1987-11-12

Family

ID=14317992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102087A Pending JPS62260305A (en) 1986-05-06 1986-05-06 Permananent magnet

Country Status (1)

Country Link
JP (1) JPS62260305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414376A2 (en) * 1989-07-24 1991-02-27 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-iron-boron permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414376A2 (en) * 1989-07-24 1991-02-27 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-iron-boron permanent magnet

Similar Documents

Publication Publication Date Title
US7867343B2 (en) Rare earth magnet and method for production thereof
JPH0216368B2 (en)
JP3549382B2 (en) Rare earth element / iron / boron permanent magnet and method for producing the same
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH08162312A (en) Permanent magnet material, permanent magnet and manufacture of permanent magnet
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JP2024023206A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP4442597B2 (en) Rare earth magnet and manufacturing method thereof
JPH08181009A (en) Permanent magnet and its manufacturing method
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JPS62260305A (en) Permananent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3090401B2 (en) Manufacturing method of rare earth sintered magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS62257704A (en) Permanent magnet
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2577373B2 (en) Sintered permanent magnet
JP3222919B2 (en) Method for producing nitride-based magnetic material
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JP2007049010A (en) Rear earth sintered magnet and manufacturing method thereof
JPH06163228A (en) Nitride magnetic powder and manufacturing method thereof