JPS62253656A - Molded polyarylene thioether article - Google Patents

Molded polyarylene thioether article

Info

Publication number
JPS62253656A
JPS62253656A JP9848886A JP9848886A JPS62253656A JP S62253656 A JPS62253656 A JP S62253656A JP 9848886 A JP9848886 A JP 9848886A JP 9848886 A JP9848886 A JP 9848886A JP S62253656 A JPS62253656 A JP S62253656A
Authority
JP
Japan
Prior art keywords
melt viscosity
molded product
potassium titanate
strength
pate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9848886A
Other languages
Japanese (ja)
Inventor
Toshitaka Kayama
香山 俊孝
Harunobu Egawa
江川 治伸
Hiroshi Iizuka
洋 飯塚
Yoshiya Shiiki
椎木 善彌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP9848886A priority Critical patent/JPS62253656A/en
Priority to DE19873781011 priority patent/DE3781011T2/en
Priority to EP19870303709 priority patent/EP0244188B1/en
Publication of JPS62253656A publication Critical patent/JPS62253656A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/12Protection against corrosion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:A molded article, consisting of an uncrosslinked polyarylene thioether having a specific melt viscosity and specific potassium titanate fibers, having slight tackiness, improved processability and excellent mechanical strength as well as solder resistance and suitable for electronic part sealing materials. CONSTITUTION:A molded article, obtained by melt blending (A) 100pts.wt. uncrosslinked polyarylene thioether, preferably consisting mainly of p-phenylene groups having 10-200P melt viscosity (at 310 deg.C and 10,000/sec shear rate) with (B) 40-250pts.wt., preferably 55-190pts.wt. potassium titanate fibers, having 0.8-4mum, preferably 1.01-2mum average fiber diameter and 20-70mum, preferably 30-60mum average fiber length (preferably the surface thereof is treated with an aminosilane, etc.) to give pellets and preferably injection molding the pellets and having 100-400P melt viscosity, >=10kg/mm<2> flexural strength, >=6kg/mm<2> tensile strength and >=7kg.cm/cm Izod strength.

Description

【発明の詳細な説明】 本発明は、溶融粘度(310℃、10,000(セf1
の剪断速度で測定したもの)が10〜200po1se
である未架橋ポリアリーレンチオエーテルと平均繊維長
が20〜70μmで平均繊維が0.8〜4μmのチタン
酸カリクム繊維からなるポリアリーレンチオエーテル成
形物に関する。本発明の成形物は特に溶融加工時に加工
機械に粘着せず、且つ実用上必要とされる機械的強度及
び耐ハンダ性を有するものであって電子部品封止材に適
したポリアリーレンチオエーテル成形物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a melt viscosity (310°C, 10,000
(measured at a shear rate of 10 to 200 po1se)
The present invention relates to a polyarylene thioether molded product comprising an uncrosslinked polyarylene thioether and potassium titanate fibers having an average fiber length of 20 to 70 μm and an average fiber length of 0.8 to 4 μm. The molded product of the present invention is a polyarylene thiolether molded product that does not stick to processing machines particularly during melt processing and has practically required mechanical strength and solder resistance, and is suitable as an electronic component encapsulating material. It is.

更に本発明は前記成形物から成る耐ハンダ性のある電子
部品用封止材に関する。
Furthermore, the present invention relates to a solder-resistant sealing material for electronic components made of the molded article.

従来技術 電子部品、例えばIC,LSI、)ランシスター、ダイ
オード、コンf/サー等は、電気絶縁性の保持、機械的
保砕、外m雰囲気による特性変化の防止等の目的で樹脂
封止を施すことが広く行なわれている。従来の樹脂封止
はエポキシ樹脂、シリコーン樹脂等の熱硬化性+a l
l&を用いてトランスファー成形によジ行なうのが普通
であったが、熱硬化性樹脂を用いるため、成形時間が長
いこと、樹脂のポットライフに起因する保存管理の難し
さ、スゲルー、ランナー等のスクラップの再利用ができ
ないこと等の欠点を有している。このような問題点を解
決する九め熱可塑性樹脂であるポリアリーレンチオエー
テA/(以下、 PATEと略記する)を用いることが
試みられたがpATW単独では、封止材に要求される特
性、すなわち、成形加工時に加工機械等に粘も・するこ
となく高流動性を示すこと、及びそれから(、hられる
封止材が潰れ′fe、機械的強度を有すること、を同時
に満たすことは困難であり、PATEにガラス繊維、ガ
ラスピーズ、シリカ等を充を材として混入した成形物が
提案されている(特公昭56−2790.、%υ1」昭
53−22363.特開昭55−22816、特開昭5
6−81953等)。
Conventional electronic components, such as ICs, LSIs, diodes, converters, etc., are sealed with resin for the purpose of maintaining electrical insulation, mechanical crushing, and preventing changes in characteristics due to external atmosphere. It is widely practiced. Conventional resin sealing uses thermosetting resins such as epoxy resin and silicone resin.
It was common to perform transfer molding using thermosetting resin, but since thermosetting resin was used, the molding time was long, storage management was difficult due to the pot life of the resin, and problems such as sluggishness and runners occurred. It has drawbacks such as the inability to reuse scrap. Attempts have been made to use polyarylene thioethe A/(hereinafter abbreviated as PATE), a thermoplastic resin that solves these problems, but pATW alone does not have the characteristics required for a sealing material. In other words, it is difficult to simultaneously satisfy the requirements of exhibiting high fluidity without causing viscosity in processing machines during molding, and ensuring that the encapsulant is crushed and has mechanical strength. A molded product made by mixing PATE with glass fiber, glass beads, silica, etc. as a filler material has been proposed. Kaisho 5
6-81953 etc.).

しかし、これ痔のPATE成形物は、必要な機械的強度
を得るために、ガラス■維%を充分量混入すると、七〇
酊融粘度が著しく高くftす、コンデンサー索子、IC
素子等の封止時に素子がずれ(変位)を起こしたF)+
fンデイングワイヤーが変形もしくは切断したりする欠
点及び、封止電子部品を260″Cに10秒間加熱した
場合にクラックを多発し耐ノ1ンダ性がないという欠点
がある。
However, if a sufficient amount of glass fiber is mixed in to obtain the necessary mechanical strength, the melt viscosity of the PATE molded product becomes extremely high.
F) + where the element shifted (displaced) when it was sealed
There are disadvantages that the bonding wire may be deformed or cut, and that cracks occur frequently when the sealed electronic component is heated to 260''C for 10 seconds, resulting in lack of dust resistance.

これら従来の封止材の欠点を解決するため従来の充填材
よシも細く且つ短かいチタン酸カリウム繊維を充填材と
して用いることが提案されている(特開1)fj59−
20910.%開昭59−20911゜特開昭59−2
15353等)、シかしながら特開昭59−20910
;特開昭59−20911及び特開昭59−21535
3において具体的に使用されているチタン酸カリウム繊
維は、平径繊維径が0.2〜0.5μm、平均幹給長が
10〜20μmであり、このような形状のチタン酸カリ
ウム繊維をPATEに充分縫充填、すると、金属への粘
着性が異常に高まり溶融成形時にスクリューとシリング
−に封止材が粘着して一体となって回転してしまい成形
が不可能になる。これを避けるためにチタン酸カリウム
繊維の充tBB、1を少なくすると充分な機械的強直を
有する封止材を得ることが困!!トになる。又、特開昭
59−20910及び特開昭59−20911において
使用されている珪酸カルシウム繊維(フォラストナイト
)は繊m径が1〜3μm、RL維長が20μrn程度で
その形状から封止材の良好な充填材として期待されたが
、繊維自体の強度が低いために、封止材の機械的強腿を
改善する効果ばあまυ認められない。
In order to solve these drawbacks of conventional sealing materials, it has been proposed to use potassium titanate fibers as a filler, which are thinner and shorter than conventional fillers (Japanese Patent Laid-Open No. 1) fj59-
20910. % 1985-20911゜ 1987-2
15353, etc.), JP-A-59-20910
; JP-A-59-20911 and JP-A-59-21535
The potassium titanate fibers specifically used in 3 have a flat fiber diameter of 0.2 to 0.5 μm and an average stem length of 10 to 20 μm, and the potassium titanate fibers having such a shape are PATE If the sealing material is sufficiently filled, the adhesion to the metal will increase abnormally, and during melt molding, the sealing material will stick to the screw and sill and rotate as one, making molding impossible. In order to avoid this, if the filling tBB, 1 of the potassium titanate fibers is reduced, it will be difficult to obtain a sealing material with sufficient mechanical toughness! ! Becomes In addition, the calcium silicate fiber (forastonite) used in JP-A-59-20910 and JP-A-59-20911 has a fiber diameter of 1 to 3 μm and an RL fiber length of about 20 μrn, and is suitable for sealing materials due to its shape. However, due to the low strength of the fiber itself, it has not been found to be very effective in improving the mechanical strength of the encapsulant.

更に、特開昭59−215353の実施例において使用
されているPATEは、高溶融粘度を示す架橋ポリマー
である。このような高溶融精良の架橋ポリマーを用匹た
場合、封止時に素子ずれやデンディングワイヤーの変形
及び切断を起こし易く又、粘度上昇を起こし易いばかり
でなく、得られた封止材は機械的に極めて脆いという欠
点を有している。
Furthermore, PATE used in the examples of JP-A-59-215353 is a crosslinked polymer exhibiting high melt viscosity. If such a high melting quality cross-linked polymer is used, it is easy to cause element displacement, deformation and breakage of the dending wire during sealing, and increase in viscosity. It has the disadvantage of being extremely fragile.

本発明者等は、上述した問題を解決すべく、鋭意研究を
行なった結果、平均繊維径0.8〜4.0μm平均繊維
長20〜70μmのチタン酸カリウム繊維を未架橋FA
TE K混入した成形物は成形加工時に高流動性を示し
且つ加工機械に粘着することもなく、従来の熱硬化性樹
脂から得られた封止材に匹敵する機械的強度を有するこ
とを見出しこの知見に基づき本発明を成すに至った。
In order to solve the above-mentioned problems, the present inventors conducted intensive research and found that potassium titanate fibers with an average fiber diameter of 0.8 to 4.0 μm and an average fiber length of 20 to 70 μm were made into uncrosslinked FA.
We discovered that molded products containing TE K exhibit high fluidity during molding, do not stick to processing machines, and have mechanical strength comparable to sealants obtained from conventional thermosetting resins. Based on this knowledge, the present invention has been accomplished.

発明の構成 本発明の成形物は、310”O1剪断速度10,000
Cs1で測定しfcfd融粘度fbg 10〜200 
pol saテである未架橋PATE 100重量部、
及び平均繊維径0.8〜4〃m、平均繊維長20〜70
μmのチタン酸カリウム繊維40〜250重創部からな
り、その溶融粘度が10 (1〜400 poi@e 
(310”O1剪断速度10,000(秒νで測定)で
且つ曲げ強度が10kg/−以上、引張り強度が6kg
/mm2以上、Izod強度が7kg・確/ぼ以上であ
るポリアリーレンチオエーテル成形物である。
Structure of the Invention The molded article of the present invention has a 310" O1 shear rate of 10,000
Measured with Cs1 fcfd melt viscosity fbg 10-200
100 parts by weight of uncrosslinked PATE, which is pol sate;
and average fiber diameter 0.8-4〃m, average fiber length 20-70
It consists of 40 to 250 μm potassium titanate fibers, and its melt viscosity is 10 (1 to 400 poi@e
(310"O1 shear rate 10,000 (measured in seconds ν), bending strength 10kg/- or more, tensile strength 6kg
/mm2 or more, and the Izod strength is 7 kg/mm2 or more.

本発明の成形物のPATE#:を実質的に、線状に重合
されたポリアリーレンチオエーテルである。
PATE#: of the molded product of the present invention is substantially a linearly polymerized polyarylene thioether.

ここで、FAT Ilmとは、繰返し単位+Ar−8+
Here, FAT Ilm is repeating unit +Ar-8+
.

(Ar :アリーレン基)を主要構成要素としたものを
意味する。
(Ar: arylene group) as a main constituent.

アリーレン基としてはノ9ラフエニレン基からなるもの
またはl?ラフエニレン基を主成分とするものが、耐熱
性、成形性1機械的特性等の物性上の点から好ましい。
The arylene group is one consisting of a 9 rough enylene group or 1? Those containing rough ethylene groups as a main component are preferable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.

ノ9ラフエニレン基以外のアリーレン基としては、(R
:アルキル基(好ましくは低級アルキル基)、nU1〜
+O整数)、p、p’−ノフエニレンースルフオン基(
−CリーSO2〒(D−)、pe P’−ビフェニレン
基(++)、I)+P’−ソフエニレンエーテル基c(
トリ−0→C)−)、p 、 p’−ジ7工二しン力ル
ゲニル基(−@−co−@−)  す7タレ本発明に使
用するPATEの310’O1剪断速度t o、 o 
o Oにvf’で測定した溶融粘度は、10〜200 
pois@、好ましくは20〜100 polIIsで
ある。  10 pots・未満の溶融粘度を示すI’
ATEからなる成形物は溶融加工性が悪く、又200p
oisのを超える溶融粘度を示すPATEを用いた場合
、成形物の溶融粘度が高くなシ過ぎて封止時に高流動性
を示さず素子のずれ(変位)やビンディングワイヤーの
変形及び切断等の不都合が生じるので好ましくない。
As the arylene group other than the rough enylene group, (R
: alkyl group (preferably lower alkyl group), nU1~
+O integer), p, p'-nophenylene-sulfonate group (
-C Lee SO2 (D-), pe P'-biphenylene group (++), I) + P'-sophenylene ether group c (
tri-0→C)-), p, p'-di7-dioxygenyl group (-@-co-@-) 310'O1 shear rate of PATE used in the present invention, o
o Melt viscosity measured in vf' in O is 10-200
pois@, preferably 20 to 100 pol IIs. I' exhibiting a melt viscosity of less than 10 pots.
Molded products made of ATE have poor melt processability, and
When PATE, which has a melt viscosity exceeding that of OIS, is used, the melt viscosity of the molded product is too high and does not exhibit high fluidity during sealing, resulting in inconveniences such as element displacement (displacement) and binding wire deformation and breakage. This is not preferable because it causes

≠X本発明に使用するPATEは、実質的に線状構造で
あるものが好ましい。例えば、重合時に有効量の架橋剤
(例えば1.2.4− トリハロベンゼン)を用いて得
次架橋PATE、あるいは線状?リマーを02存在下等
で高温処理して効果的に架橋させただ架橋f’ATEは
、本発明のPATEとしては好ましくない。これらの架
橋PATEを用いて得た成形物は、加工時の溶融粘度が
大きくて加工性の面から好ましくないばかうでなく、得
られる成形物も通常、機械的に極めて脆弱であり、物性
の面からも好ましくない。
≠X The PATE used in the present invention preferably has a substantially linear structure. For example, using an effective amount of a crosslinking agent (e.g., 1,2,4-trihalobenzene) during polymerization can result in subsequent crosslinking of PATE, or linear polymerization. Crosslinked f'ATE obtained by effectively crosslinking a remer by high temperature treatment in the presence of 02 or the like is not preferred as the PATE of the present invention. Molded products obtained using these crosslinked PATEs have a high melt viscosity during processing, which is not only unfavorable from the viewpoint of processability, but also the resulting molded products are usually extremely mechanically fragile and have poor physical properties. I don't like it from any aspect.

上記のような線状PATEI’j、たとえば、本発明者
等の出願にかかわる特開昭61−7332号公報等に記
載の方法によシ経済的に製造することが可能である。そ
の他に、特公昭52−12240号公報記載のカルメン
酸を重合系に多量に添加して、高分子量の線状PATE
を得る方法なども用いることができる。
The above-mentioned linear PATEI'j can be economically produced by, for example, the method described in Japanese Patent Application Laid-open No. 7332/1983 filed by the present inventors. In addition, a large amount of carmenic acid described in Japanese Patent Publication No. 52-12240 is added to the polymerization system to form high molecular weight linear PATE.
A method for obtaining , etc. can also be used.

本発明において充填材として用いるチタン酸カリウム繊
維は一般式に2O−nTlo2(n’=;6)で表わさ
れる単結晶繊維で平均繊維径が0.8〜4.0μm1好
ましくは1.01〜2.0μmであり、平均繊維長は2
0〜70μm、好ましくは30〜60μmである。
The potassium titanate fiber used as a filler in the present invention is a single crystal fiber represented by the general formula 2O-nTlo2 (n'=;6), and has an average fiber diameter of 0.8 to 4.0 μm, preferably 1.01 to 2 .0 μm, and the average fiber length is 2
It is 0 to 70 μm, preferably 30 to 60 μm.

従来入手′5J能であった平均繊維径が0.8μm未満
のチタン酸カリウム繊維から成る成形物は、金属面への
粘着性が著しく高くなり成形加工時に加工機械のシリン
ダー及びスクリュー等に粘着してスクリューと一体とな
って回転し、成形が不可能になる。
Molded products made of potassium titanate fibers with an average fiber diameter of less than 0.8 μm, which were conventionally available, have significantly increased adhesion to metal surfaces, causing them to stick to the cylinders, screws, etc. of processing machines during molding. The screw rotates in unison with the screw, making molding impossible.

又粘着性を減少させる念めにチタン酸カリウム#I1.
維の充填量を少なくすると成形物の機械的強度も同時に
低下してし1い実用に適さなくなる。
Also, to reduce stickiness, potassium titanate #I1.
If the filling amount of fibers is reduced, the mechanical strength of the molded product also decreases, making it unsuitable for practical use.

一方、平均繊維径4.0μm以上のチタン酸カリウム繊
維を用いて得たPATE成形物に機械的強度が不充分な
ものである。
On the other hand, PATE molded products obtained using potassium titanate fibers having an average fiber diameter of 4.0 μm or more have insufficient mechanical strength.

更に、チタン酸カリウム繊維の平均繊維長が20μm未
満である場合には、機械的強度が充分な封止材を得るこ
とが困難になる。70μmを超える場合に框成形物の溶
融粘度が著しく高くなり。
Furthermore, if the average fiber length of the potassium titanate fibers is less than 20 μm, it becomes difficult to obtain a sealing material with sufficient mechanical strength. When it exceeds 70 μm, the melt viscosity of the frame molded product becomes significantly high.

封止時にコンデンサー等の素子をずれ(変位)させた、
p、IC等のがンデイングワイヤーを変形もしくは切断
するなどの不都合が生じる。又、平均繊維長が70μm
を超えるチタン酸カリウム繊維を工業的に製造すること
は容易でないので実用的でない。
When an element such as a capacitor is shifted (displaced) during sealing,
This causes inconveniences such as deforming or cutting the binding wires of PCs, ICs, etc. In addition, the average fiber length is 70 μm
It is not easy to industrially produce potassium titanate fibers exceeding 100%, so it is not practical.

すなわち、平均繊維径0.8〜4.0μm、平均繊維長
20〜70μmのチタン酸カリウム繊維をPAT Eの
充填材として用いることにより、後述するように封止に
適した流動性、すなわち100〜400polseの溶
融粘度を示し、しかも従来の熱硬化性樹脂から得られ念
封止材に匹敵する機械的強度を有する制止材を得ること
が可能になる。
That is, by using potassium titanate fibers with an average fiber diameter of 0.8 to 4.0 μm and an average fiber length of 20 to 70 μm as a filler for PATE, fluidity suitable for sealing, i.e., 100 to It becomes possible to obtain a restraining material which exhibits a melt viscosity of 400 polse and has a mechanical strength comparable to that of a magnetic sealing material obtained from a conventional thermosetting resin.

なお、上述のチタン酸カリウム繊維は、そのままPAT
EK混入して使用することもできるが、I’ATEとの
親和性を高めるためにアミノシラン、アルコキシシラン
、エポキシクラン、メルカグトシラ/、アクリル7ラン
等のシランカッシリング剤、有機チタネートカップリン
グ剤あるいはステアリン酸等の脂肪酸等で表面処理され
たチタン酸カリウム繊維を使用することもできる。しか
し、耐熱性が低い又は沸点が低い表面処理剤は、溶融混
合時や成形加工時に分解しあるいは発泡したりして、封
止材の物性を低下せしめるので好ましくない。
In addition, the above-mentioned potassium titanate fiber can be directly used as PAT.
Although it can be used by mixing EK, in order to increase the affinity with I'ATE, silane cassilling agents such as aminosilane, alkoxysilane, epoxyclane, mercagtosilane/acrylic 7rane, organic titanate coupling agents, or stearin are used. Potassium titanate fibers surface-treated with fatty acids such as acids can also be used. However, a surface treatment agent with low heat resistance or a low boiling point is undesirable because it decomposes or foams during melt-mixing or molding, thereby degrading the physical properties of the sealant.

封止材は、封止時にコンデンサー素子及びIC素子など
のずれ(変位)、ダンディングワイヤーの変形及び切断
などを生じないことが重要である。
It is important that the sealing material does not cause displacement (displacement) of the capacitor element, IC element, etc., deformation or cutting of the dangling wire, etc. during sealing.

この之めには、封止材は成形加工時に高流動性を示すこ
とが重要であり310℃、剪断速度10,000(げ1
で測定し比溶融粘度が100〜400 poiseであ
ることが必要である。100 pots・未満の場合に
は溶融時にドローダウンを起こし易く、ペレット等に成
形するのが困難となるので好ましくない。又、 400
 polmsを超える場合には溶融時に高流動性を示さ
ず封止時に素子のずれ(変位)やメンディングワイヤー
の変形又は断線を起こす恐れがあるので好ましくない。
For this purpose, it is important that the encapsulant exhibits high fluidity during molding.
It is necessary that the specific melt viscosity is 100 to 400 poise. If it is less than 100 pots, drawdown is likely to occur during melting, making it difficult to form into pellets or the like, which is not preferable. Also, 400
polms is not preferable because it does not exhibit high fluidity when melted and may cause displacement of the element or deformation or breakage of the mending wire during sealing.

更に封止電子部品は%にノ1ンダ付は時あるいは使用時
に応力や温度変化等によってクラック等を発生しないこ
とが要求される。このためには当該成形物が曲げ強11
0kg/−以上好ましくは12kl?/−以上、引張シ
強度6ゆ/−以上好ましくは7kg/mm2以上、X5
od強反7時・17口以上好ましくは8ゆ・口/α以上
の機械的強度を有することが望ましい。
Furthermore, sealed electronic components are required to not generate cracks or the like due to stress, temperature changes, etc. during soldering or use. For this purpose, the molded product must have a bending strength of 11
0kg/- or more preferably 12kl? /- or more, tensile strength 6 Y/- or more, preferably 7 kg/mm2 or more, X5
It is desirable to have a mechanical strength of 7 o'clock/17 mouths or more, preferably 8 o'clock/α or more.

上述の如き溶融粘度及び物性を示す本発明の成形物は、
上述の未架&FATE 100重量部当り、上述のチタ
ン酸カリウム繊維を40〜250重景部好ま重量は55
〜190重伊部充填することにより得られる。チタン酸
カリウム繊維の充填量が40重量部未満の場合には、機
械的強度が不充分で好ましくなく、又250重量部を超
える場合には得らnる成形物の溶融粘度が著しく高くな
シ、封止時に素子のずれ(変位)、ダンディングワイヤ
一本発明の組試物は未架橋PATEとチタン酸カリウム
繊維をそれらの溶融を伴う方法によって混合し、所謂「
(レット」化することによって得ることがふつうである
が、両成分の粉末をトライブレンドして得ることもでき
る。
The molded article of the present invention exhibiting the melt viscosity and physical properties as described above is
Per 100 parts by weight of the above-mentioned unframed & FATE, the above-mentioned potassium titanate fiber should be added at 40 to 250 parts by weight.The preferred weight is 55 parts by weight.
Obtained by filling up to 190 layers. If the amount of potassium titanate fibers is less than 40 parts by weight, the mechanical strength will be insufficient, and if it exceeds 250 parts by weight, the resulting molded product will have a significantly high melt viscosity. , Displacement (displacement) of the element during sealing, dangling wire 1. The composite sample of the present invention is made by mixing uncrosslinked PATE and potassium titanate fibers by a method that involves melting them, and forming a so-called "
Although it is usually obtained by converting the powder into a powder, it can also be obtained by tri-blending the powders of both components.

PATEは本質的には熱可塑性樹脂でおシ、従って本発
明によって得られるFATE成形物に熱可塑性樹脂に慣
用されているところに従って種々の添加物を配合するこ
とができる。具体的には、たとえば、マイカ、TlO2
,810□、人t203、CaCO3、カーボン黒、タ
ルク、Ca5i02、MgC0,、ガラスなどの粉末状
無機充填材などを溶融混合して成形物とすることができ
る。また、PEゴム、水添SB8ゴム、フッ素ゴム、ポ
リエステルエラストマー、ポリイミP1 ポリアミド、
ポリーフ邸1ルエーテルケトン、ポリスルホン、ポリエ
ーテルスルホン、ポリエーテルイミド、ポリアリーレン
、?リフエニレンエーテル、ポリカー〆ネート、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
?リアセタール、ぼりプロピレン、?リエチレン、AB
C,ポリ塩化ビニル、ポリメチルメタクリレート、Iリ
スチレン、4す7フ化ビニリデン、ポリテトラフルオル
エチレン、テトラフルオルエチレンコポリマー、などと
ブレンドして成形物とすることもできる。これらの充填
材の他に、少量の安定剤、核剤、滑剤、防錆剤、カップ
リング材、離型剤、撥水剤、抗酸化剤、着色料、その他
等も用いることができる。
PATE is essentially a thermoplastic resin, and therefore, various additives can be added to the FATE molded product obtained according to the present invention according to those customary for thermoplastic resins. Specifically, for example, mica, TlO2
, 810 □, human t203, CaCO3, carbon black, talc, Ca5i02, MgC0, and powdered inorganic fillers such as glass can be melted and mixed to form a molded product. In addition, PE rubber, hydrogenated SB8 rubber, fluororubber, polyester elastomer, polyimide P1 polyamide,
Polif House 1 Etherketone, polysulfone, polyethersulfone, polyetherimide, polyarylene,? Lifuenylene ether, polycarbonate, polyethylene terephthalate, polybutylene terephthalate,
? Reacetal, propylene, ? Liethylene, AB
It can also be blended with C, polyvinyl chloride, polymethyl methacrylate, I-listyrene, vinylidene tetrafluoride, polytetrafluoroethylene, tetrafluoroethylene copolymer, etc. to form a molded product. In addition to these fillers, small amounts of stabilizers, nucleating agents, lubricants, rust preventives, coupling agents, mold release agents, water repellents, antioxidants, colorants, and the like can also be used.

従って、本発明の成形物は、PATE及びチタン酸カリ
ウム繊維のみからなる成形物の外に、上記のような各種
の添加剤を配合した成形物をも包含する。
Therefore, the molded product of the present invention includes not only a molded product made only of PATE and potassium titanate fibers, but also a molded product containing the various additives described above.

本発明の成形物は通常の成形法、すなわち射出成形法、
圧縮成形法、押出成形法、特に射出成形法により好まし
く成形加工され、曲げ強度が10馳/−以上、引張り強
度6に&!/−以上、工寡od強肛7睦・an/cs以
上の機械的強度及び優れた耐ハンダ性(260℃のハン
ダ浴に10秒間浸漬してもクラックの発生が実質的に認
められない)を示す成形物である。
The molded product of the present invention can be produced using a normal molding method, that is, an injection molding method,
It is preferably molded by compression molding, extrusion molding, and especially injection molding, and has a bending strength of 10/- or more and a tensile strength of 6 &! Mechanical strength of /- or higher, mechanical strength of OD 7, AN/CS or higher, and excellent solder resistance (substantially no cracking is observed even when immersed in a 260°C solder bath for 10 seconds) This is a molded product showing the following.

従って本発明の成形物は電子部品、例えばコンデンサー
素子、IC素子、L8I素子、トラ/シスター素子、ダ
イオード素子など、特にコンデンサー2子の封正に好ま
しく用いられる。
Therefore, the molded product of the present invention is preferably used for sealing electronic components, such as capacitor elements, IC elements, L8I elements, transistor/sister elements, diode elements, etc., especially two capacitor elements.

発明の効果 本発明の成形物は、溶融粘度が低いため、コンデンサー
素子やIC素子などの電子部品の刺止時に素子のずれ(
変位)やデンディングワイヤーの変形又は切断を起こし
難く、且つ従来のエポキシ樹脂等の熱硬化性樹脂を用い
た成形物に匹敵する機械的強度を有する成形物である。
Effects of the Invention Since the molded product of the present invention has a low melt viscosity, it is possible to prevent element displacement (
It is a molded product that is resistant to displacement (displacement), deformation or cutting of the bending wire, and has mechanical strength comparable to conventional molded products using thermosetting resins such as epoxy resins.

又、本発明の成形物は従来の熱硬化性樹脂成形物の欠点
であった成形時間が長いこと、?ットライフに起因する
保存管理の難しさ、スクラップの再利用の困難性などを
解決すると共に、従来提案されていたFAT IC及び
チタン酸カリウム繊維から成る成形物の金属への高い粘
着性を低減し、成形加工時の生産性を高めることができ
る。
Also, the molded product of the present invention has a long molding time, which is a drawback of conventional thermosetting resin molded products. In addition to solving the difficulties in storage management and reuse of scraps caused by long lifespans, this method also reduces the high adhesion of molded products made from FAT IC and potassium titanate fibers to metals, which had been proposed in the past. Productivity during molding can be increased.

更に本発明の成形物から得られた封止電子部品は優れた
機械的強度及び耐/Sンダ性を有する。
Furthermore, the sealed electronic component obtained from the molded product of the present invention has excellent mechanical strength and anti-sunder resistance.

以下本発明を実施例に基づいてさらに詳しく説明するが
、本発明はかかる実施例のみに限定されるものではない
The present invention will be described in more detail below based on Examples, but the present invention is not limited to these Examples.

実施例1 ?リアリーレンチオエーテル(PATH)の製造2 m
sのチタンライニングのオートクレーブに、N−メチル
ピロリドン1,0OOkF、硫化ソーダ(固形分45.
93%) 2.2 kmotを仕込み約200℃まで昇
温し水分を留出させた。次いでp−ジクロルベンゼン2
.45 kmol 及ヒN−メチルピロリドン250階
を仕込み210℃で2時間、更に220℃で4時間反応
させた。次いで純水7.45 kmolを加えて、26
3℃で1,5時間反応させた。反応後スクリーンを用い
て反応混合物を濾過し、50℃の1.2%塩化アンモニ
ウム水溶液で数回洗浄した後、脱水乾燥してPATHを
得た。得られたPATE(ポリマー人)の溶融粘度は4
0 poise (310℃、剪断速度to、oooぽ
1で測定)であった。
Example 1? Production of Really Lenthioether (PATH) 2 m
In a titanium-lined autoclave, 1.0 OOkF of N-methylpyrrolidone and sodium sulfide (solid content 45.
93%) 2.2 kmot was charged and the temperature was raised to about 200°C to distill off water. Then p-dichlorobenzene 2
.. 45 kmol and 250 hN-methylpyrrolidone were charged and reacted at 210°C for 2 hours and then at 220°C for 4 hours. Next, add 7.45 kmol of pure water to make 26
The reaction was carried out at 3°C for 1.5 hours. After the reaction, the reaction mixture was filtered using a screen, washed several times with a 1.2% ammonium chloride aqueous solution at 50° C., and then dehydrated and dried to obtain PATH. The melt viscosity of the obtained PATE (polymer) was 4
0 poise (measured at 310° C., shear rate to, ooopo1).

ポリマーA40重量部、無機充填材として表1に記載の
チタン酸カリクム繊維A60重世部、水酸化カルシウム
0.1重量部及び3−グリシドキシプロビルトリメトキ
ンシラン0.1重量部をミキサーで均一にした後、同方
向2軸押出機を用い、溶融混合し、ベレット状のPAT
E成形物を得た。得られたPATE成形物の溶融粘度は
170 polio (310°C1剪断速度10,0
00ば1で測定)であった。
40 parts by weight of Polymer A, 60 parts by weight of potassium titanate fiber A listed in Table 1 as an inorganic filler, 0.1 part by weight of calcium hydroxide, and 0.1 part by weight of 3-glycidoxypropyltrimethochynesilane were mixed in a mixer. After making it homogeneous, it is melt-mixed using a twin-screw extruder in the same direction to form a pellet-shaped PAT.
A molded product E was obtained. The melt viscosity of the obtained PATE molding was 170 polio (310°C1 shear rate 10.0
00ba1).

上述のようにして得られたベレット状PATE成形物を
用いて曲げ試験、引張試験及びIr;od衝撃試験用の
各試験片を下に示した条件でそれぞれ成形した。
Using the pellet-shaped PATE molded product obtained as described above, test pieces for a bending test, a tensile test, and an Ir;od impact test were molded under the conditions shown below.

なお、曲げ試験はASTM D−790、引張試験はA
STM D−638、IT、odlllj撃試験(ノツ
チなし)は。
The bending test is based on ASTM D-790, and the tensile test is based on A.
STM D-638, IT, odllj impact test (no notch).

人STM D−256にそれぞれ準拠して行なつ危。Each test shall be carried out in accordance with Human STM D-256.

各試験の結果は表2に示した。The results of each test are shown in Table 2.

成形機:日本製鋼所製射出成形機(JT−4O8)成形
条件 シリンダ一温度 :300−325−・31. O″C
金!4り温度      :135”0スクリユ一回転
i: 15 O〜200 rpm射出土     :1
100〜1200に9メゴ保圧  :30〜90に9〜 射出時間    : 5 s@e 上述のようにして得たベレット状PATE成形物を用い
て耐熱性ポリフェニレンチオエーテルフィルムコ/テン
サー素子(図1)を下記の条件で封止して封止成形物を
得た。
Molding machine: Injection molding machine manufactured by Japan Steel Works (JT-4O8) Molding conditions Cylinder temperature: 300-325-31. O″C
Money! 4. Temperature: 135" 0 screw per rotation i: 15 O~200 rpm Injection soil: 1
Holding pressure: 9 to 100 to 1200: 9 to 30 to 90 Injection time: 5 s@e The pellet-shaped PATE molded product obtained as described above was used to make a heat-resistant polyphenylene thioether film co/tensor element (Figure 1). was sealed under the following conditions to obtain a sealed molded product.

上記コンデンサー素子は図2に示したように正常に封止
され図3に示した如き素子のズレ、ビンディングワイヤ
ーの断線、クラックなどはVめられなかった。
The capacitor element was sealed normally as shown in FIG. 2, and no deviation of the element, disconnection of the binding wire, or cracks as shown in FIG. 3 were observed.

封止成形機二日本製鋼所製射出成形機(JT−408)
シリンダ一温度:270−310−310”0全型温度
 :150’0 スクリュー回転数:150rpm 射出圧 ニア50ゆ/d 保圧: 80kg/1ffl 射出時間: 5δlle 冷却時間:5sae 更に、上述のようにして得られた封止成形物について耐
ハンダ性試験を行なった。
Sealing molding machine 2 Injection molding machine manufactured by Japan Steel Works (JT-408)
Cylinder temperature: 270-310-310"0 Whole mold temperature: 150'0 Screw rotation speed: 150 rpm Injection pressure Near 50 Yu/d Holding pressure: 80 kg/1ffl Injection time: 5 δlle Cooling time: 5 sae Further, as described above. A solder resistance test was conducted on the encapsulated molded product obtained.

封止成形物を260”Oのハンダ浴に10秒間浸漬し九
後、クラックの有無を観察したがクラックの発生は認め
られなかった。
The molded product was immersed in a 260" O solder bath for 10 seconds and then observed for cracks, but no cracks were observed.

実施例2及び3 F’ATE (ポリマーA)とチタン酸カリクム繊維人
を表2に記載のように混合することを除いてtよ実施例
1と同様にして、溶融粘度150 pois@、220
 poiseの各ベレット状FATE成形物を得た。
Examples 2 and 3 Melt viscosities of 150 pois and 220 pois were prepared as in Example 1 except that F'ATE (polymer A) and potassium titanate fibers were mixed as shown in Table 2.
Each poise pellet-shaped FATE molded product was obtained.

更に、各ベレット状PAT E成形物を用いて、実施例
1と同様にして、曲げ試験、引張試験、1zod衝撃試
験、封止試験及び耐ハンダ性試験をそれぞれ行なった。
Furthermore, using each pellet-shaped PATE molded product, a bending test, a tensile test, a 1zod impact test, a sealing test, and a solder resistance test were conducted in the same manner as in Example 1.

結果を表2に示した。The results are shown in Table 2.

比較例1 p−ジクロルベンゼンを2.27 kmol仕込むこと
以外は実施例1と同様にして260 polsaの溶融
粘度(310℃、剪断速度11)、000眞1で測定)
を示すPATE (yNリマーB)を得た。
Comparative Example 1 Melt viscosity of 260 polsa (measured at 310°C, shear rate 11, 000 shin 1) was prepared in the same manner as in Example 1 except that 2.27 kmol of p-dichlorobenzene was charged.
PATE (yN remer B) was obtained.

ポリマー870重量部、チタン酸カリウム繊維人30重
旬゛部、水酸化カルシウム0.1重両1部及び3−グリ
シドキシプロビルトリメトキンシラン0.1車量部を用
いて実施例1と同杆にしてペレット状のPATE成形物
を得た。
Example 1 was prepared using 870 parts by weight of polymer, 30 parts by weight of potassium titanate fiber, 1 part by weight of calcium hydroxide, and 0.1 part by weight of 3-glycidoxypropyltrimethochynesilane. A pellet-shaped PATE molded product was obtained using the same rod.

このPAT E成形物の溶融精良は650 poise
(310’C,n断連i10,000(!j)”’テm
ll定)!?あった。
The melting quality of this PAT E molding is 650 poise
(310'C, n disconnection i10,000(!j)'''tem
ll fixed)! ? there were.

上記ペレット状のPAT E成形物を用いて、実施例1
と同様にして曲げ試験、引張試験、l5od衝撃試験、
コンデンサー封止試験及び耐ハンダ性試験を行なった。
Example 1 Using the above pellet-shaped PAT E molded product,
Similarly, bending test, tensile test, l5od impact test,
A capacitor sealing test and a solder resistance test were conducted.

結果を表2に示した。The results are shown in Table 2.

比較例2 27FLsのチク/ライニングのオートクレーブにN−
メチルピロリドンi、oooゆ、硫化ソーダ(固形分4
5.9:4%)2.2krnolを仕込み約200℃ま
で昇温し、水分を留出させ友。次いでp−ジクロルベン
ゼン2.45 kmol及びN−メチルピロリドン25
0klFを仕込み210℃で2時間、更に220℃で4
時間反応させた。反応後、スクリーンを用いて反応混合
物をP遇し、50℃の1.2チ塩化アンモニクム水溶液
で数回洗浄した後脱水乾燥してPATEを得た。
Comparative Example 2 N- in the chiku/lining autoclave of 27FLs
Methylpyrrolidone I, oooyu, soda sulfide (solid content 4
5.9:4%) 2.2 krnol was heated to about 200°C, water was distilled off, and the water was distilled off. Then 2.45 kmol of p-dichlorobenzene and 25 kmol of N-methylpyrrolidone
Prepare 0 klF and heat at 210℃ for 2 hours, then at 220℃ for 4 hours.
Allowed time to react. After the reaction, the reaction mixture was treated with Pate using a screen, washed several times with an aqueous solution of 1.2% ammonium chloride at 50°C, and then dehydrated and dried to obtain PATE.

得られたPA’rg (ポリマーC)の溶融粘度は2p
oise (310℃、剪断速度1o、 o o o韓
’で測定)であった。
The melt viscosity of the obtained PA'rg (polymer C) was 2p
oise (measured at 310°C, shear rate 1o, o o o han').

ポリマー〇30重量部、チタン酸カリウム繊維人701
i量部、水酸化カル7940.1重量部及び3−グリシ
ドキンプロピルトリメトキシシラン0.1重量部を実施
例1と同様にして溶融混合し、ペレット状のPATE成
形物を得ようとしたが、ドローダウンがひどくベレット
化が困難であつ九九め塊状のFATE成形物として得次
。溶融粘度は35 poia@(310℃、剪断速rt
 10. OOo@’で測定)であった。
30 parts by weight of polymer, potassium titanate fiber 701
I part by weight, 7940.1 part by weight of cal hydroxide, and 0.1 part by weight of 3-glycidquinpropyltrimethoxysilane were melt-mixed in the same manner as in Example 1 to obtain a pellet-shaped PATE molded product. However, the drawdown was severe and it was difficult to make into pellets, and it was produced as a FATE molded product in the form of a block. The melt viscosity was 35 poia @ (310°C, shear rate rt
10. OOo@').

上記の塊状のPATE成形物を粉砕した後、実施例1と
同様にして、各試験片及びコンデンサー封止成形物を得
ようとしたが、極めて脆いため各成形物を成形機から取
シ出す際に破損してしまい、正常な成形物は得られなか
った。
After pulverizing the above-mentioned lumpy PATE moldings, attempts were made to obtain test pieces and condenser encapsulation moldings in the same manner as in Example 1, but because they were extremely brittle, it was difficult to take out the molded products from the molding machine. The molded product was damaged and a normal molded product could not be obtained.

比較例3〜17 実施例1で得たポリマー人と、表1に示し九充填材を表
2に示した割合で混合する以外は、実施例1と同様にし
て各PATE成形物を製造し、各試験を行なつ±。結果
な我2に示しな。
Comparative Examples 3 to 17 Each PATE molded product was produced in the same manner as in Example 1, except that the polymer obtained in Example 1 and the nine fillers shown in Table 1 were mixed in the proportions shown in Table 2. Perform each test±. Show me the results.

表1無機充填材 注:fクスamはカタログ記載の値によ〕、他の緻膳に
ついては、電顕法によ〕求めた値によった。
Table 1 Inorganic filler Note: fxam is based on the value listed in the catalog], and other fine fillers are based on the values determined by electron microscopy.

在車x  A:実質的に無発生 B:若干発生C:多発 在車2 人:実質的にクラック無発生 B:クラック若
干発生 C:り2ツク多発 *3 成形が困難であったため測定不能
Vehicle presence

【図面の簡単な説明】 第1図はフィルムコンデンサー素子、第2図は第1図の
フィルムコンデンサー素子が正常罠封止された状態、第
3図は、第1図のフィルムコンデンサー素子が封止時に
ずれ(変位)を起こして封止された状態をそれぞれ示す
概略図である。 手続補正書 昭和61年12月S日 ”′7?jijt l El 1191 Ji R回1
、事件の表示   昭和61年特許願第98488号2
、発明の名称   ポリアリーレンチオエーテル成形物
3、補正をする者 事件との関係  特許出願人 名 称  (110)呉羽化学工業株式会社4、代 理
 人   東京都新宿区新宿1丁目1番14号 山田ビ
ル(郵便番号160)電話(03)  354−862
35、補正命令の日付   自 発 6、補正により増加する発明の数 7、補正の対象   明Ill書 8、補正の内容 (1)明細書中、第14頁第9行目の「加工性上」を「
加工上」と補正する。 ■明@書中、第15頁第4行目のrPEゴム、」をrP
Eゴム、ポリイソブチレン、」と補正する。 C)明細書中、第15頁第6乃至7行目の「ポリエーテ
ルケトン」を「ポリエーテルエーテルケトン」と補正す
る。
[Brief explanation of the drawings] Figure 1 shows the film capacitor element, Figure 2 shows the film capacitor element in Figure 1 in a normally sealed state, and Figure 3 shows the film capacitor element in Figure 1 in its sealed state. FIG. 4 is a schematic diagram showing a state in which the parts are sealed with occasional deviations (displacements). Procedural amendment December S, 1986"'7?jijt l El 1191 Ji R times 1
, Incident Display 1986 Patent Application No. 98488 2
, Title of the invention Polyarylene lentioether molded product 3, Relationship to the amended person's case Patent applicant name (110) Kureha Chemical Industry Co., Ltd. 4, Agent Yamada Building, 1-1-14 Shinjuku, Shinjuku-ku, Tokyo ( Postal code 160) Telephone (03) 354-862
35. Date of amendment order Proprietor 6. Number of inventions increased by amendment 7. Subject of amendment 8. Contents of amendment (1) "Processability" on page 14, line 9 in the specification. of"
Corrected as "Due to processing." ■ Ming@Shochu, page 15, line 4, rPE rubber,” rP
E-rubber, polyisobutylene,'' is corrected. C) In the specification, "polyetherketone" in lines 6 and 7 on page 15 is amended to "polyetheretherketone."

Claims (2)

【特許請求の範囲】[Claims] (1)溶融粘度が10〜200poise(310℃剪
断速度10,000(秒)^−^1で測定)の未架橋ポ
リアリーレンチオエーテル100重量部及び平均繊維径
0.8〜4.0μm、平均繊維長20〜70μmのチタ
ン酸カリウム繊維40〜250重量部から成る溶融粘度
が100〜400poise(310℃、剪断速度10
,000(秒)^−^1で測定)で、且つ、曲げ強度が
10kg/mm^2以上、引張り強度が6kg/mm^
2以上及びIzod強度が7kg・cm/cm以上であ
るポリアリーレンチオエーテル成形物。
(1) 100 parts by weight of uncrosslinked polyarylene thioether with a melt viscosity of 10 to 200 poise (measured at a shear rate of 10,000 (seconds) at 310°C), an average fiber diameter of 0.8 to 4.0 μm, and an average fiber The melt viscosity is 100 to 400 poise (310°C, shear rate 10
,000 (seconds)^-^1), and the bending strength is 10kg/mm^2 or more, and the tensile strength is 6kg/mm^
2 or more and an Izod strength of 7 kg·cm/cm or more.
(2)溶融粘度が10〜200poise(310℃、
剪断速度10,000(秒)^−^1で測定)の未架橋
ポリアリーレンチオエーテル100重量部、及び平のチ
タン酸カリウム繊維40〜250重量部から成る溶融粘
度が100〜400poise(310℃、剪断速度1
0,000(秒)^−^1で測定)であり、且つ、曲げ
強度が12kg/mm^2以上、引張り強度が7kg/
mm^2以上及びIzod強度が8kg・cm/cm以
上であるポリアリーレンチオエーテル成形物から成る電
子部品封止材。
(2) Melt viscosity is 10 to 200 poise (310℃,
A melt viscosity of 100 to 400 poise (measured at 310 °C, shear speed 1
0,000 (seconds)^-^1), and the bending strength is 12kg/mm^2 or more, and the tensile strength is 7kg/mm^2 or more.
An electronic component encapsulant made of a polyarylene thiolether molded product having a diameter of mm^2 or more and an Izod strength of 8 kg/cm/cm or more.
JP9848886A 1986-04-28 1986-04-28 Molded polyarylene thioether article Pending JPS62253656A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9848886A JPS62253656A (en) 1986-04-28 1986-04-28 Molded polyarylene thioether article
DE19873781011 DE3781011T2 (en) 1986-04-28 1987-04-27 POLYARYLENTHIOAETHER MOLDING.
EP19870303709 EP0244188B1 (en) 1986-04-28 1987-04-27 Polyarylene thioether molding product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9848886A JPS62253656A (en) 1986-04-28 1986-04-28 Molded polyarylene thioether article

Publications (1)

Publication Number Publication Date
JPS62253656A true JPS62253656A (en) 1987-11-05

Family

ID=14221038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9848886A Pending JPS62253656A (en) 1986-04-28 1986-04-28 Molded polyarylene thioether article

Country Status (3)

Country Link
EP (1) EP0244188B1 (en)
JP (1) JPS62253656A (en)
DE (1) DE3781011T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529238A (en) * 2001-04-06 2004-09-24 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Low-density encapsulant, base material and method for its production and use

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146963A (en) * 1986-12-10 1988-06-18 Kureha Chem Ind Co Ltd Poly(arylene thioether) composition for sealing and molded products therefrom
US5160786A (en) * 1989-12-27 1992-11-03 Polyplastics Co. Ltd. Resin material for inserting lead frame and molded component thereof
DE4017243A1 (en) * 1990-05-29 1991-12-05 Bayer Ag POLYARYL SULFIDES FOR THE PRODUCTION OF REFLECTORS
GB0322598D0 (en) 2003-09-26 2003-10-29 Victrex Mfg Ltd Polymeric material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215353A (en) * 1983-05-23 1984-12-05 Otsuka Chem Co Ltd Polyphenylene sulfide resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529238A (en) * 2001-04-06 2004-09-24 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Low-density encapsulant, base material and method for its production and use

Also Published As

Publication number Publication date
DE3781011T2 (en) 1993-01-07
DE3781011D1 (en) 1992-09-17
EP0244188B1 (en) 1992-08-12
EP0244188A2 (en) 1987-11-04
EP0244188A3 (en) 1988-12-21

Similar Documents

Publication Publication Date Title
JP3588539B2 (en) Polyphenylene sulfide resin composition and resin-encapsulated semiconductor device using the same
US4749598A (en) Poly(arylene sulfide) composition and process
KR930003696B1 (en) Resin composition for encapsulating electronic parts
CN104974475A (en) Chip packaging material for computer
JPS62253656A (en) Molded polyarylene thioether article
US4810590A (en) Poly(arylene sulfide) encapsulation process and article
JP2511282B2 (en) Epoxy resin composition
JPS63146963A (en) Poly(arylene thioether) composition for sealing and molded products therefrom
EP0330488A1 (en) Internal lubricant for glass reinforced polyarylene sulfide
JPS6155148A (en) Composition for sealing electronic part and use thereof
JP3237757B2 (en) Resin composition for sealing electronic parts and sealed electronic parts
JP2787463B2 (en) Electronic parts molding
JPH02292362A (en) Resin composition and electronic component
JPH02209966A (en) Polyarylene sulfide resin composition and molded article thereof
JP2560469B2 (en) Epoxy resin composition
JPH04255757A (en) Polyphenylene sulfide resin composition
JPH0812746A (en) Epoxy resin composition and curing agent
JP2002097344A (en) Epoxy resin composition and semiconductor device
JPS6310660A (en) Polyarylene sulfide resin composition and production thereof
JPH0578556A (en) Thermoplastic resin composition and sealed electronic component molding
JP3494227B2 (en) Polyarylene sulfide resin composition
JPH0350277A (en) Resin composition for sealing electronic part
JP3484772B2 (en) Polyphenylene sulfide resin composition
JP2001310930A (en) Epoxy resin composition and semiconductor device
JPH08253555A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith