JPS6225226A - Method for measuring shape of wave front - Google Patents

Method for measuring shape of wave front

Info

Publication number
JPS6225226A
JPS6225226A JP60164855A JP16485585A JPS6225226A JP S6225226 A JPS6225226 A JP S6225226A JP 60164855 A JP60164855 A JP 60164855A JP 16485585 A JP16485585 A JP 16485585A JP S6225226 A JPS6225226 A JP S6225226A
Authority
JP
Japan
Prior art keywords
light
measurement
beams
wavefront
area sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60164855A
Other languages
Japanese (ja)
Inventor
Makoto Hino
真 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60164855A priority Critical patent/JPS6225226A/en
Publication of JPS6225226A publication Critical patent/JPS6225226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Abstract

PURPOSE:To provide a common path for two beams so as to be hardly influenced by disturbance and to reduce size by using a double refractive polarizer for separating measuring light to two beams and making the two beams coherent with each other by using an analyzer. CONSTITUTION:The measuring light is made incident on the double refractive polarizer (Rochon prism) 100 by which normal light LN and abnormal light LA inclined at a slight angle theta0 from the normal light LN are made. The normal light LN and abnormal light LA are passed through the analyzer 200 disposed in such a manner that the crystal directions are made 45 deg. with the polarization direction of the respective light, by which the light are made coherent with each other. The wave fronts WA(x) and WB(x) made by these two beams are interfered with each other on a photodetection surface 300 of an area sensor. The interference fringes are subjected to Fourier transform and after the inclination components are removed therefrom, the fringes are subjected to reverse Fourier transform. The phase difference known from the result thereof is subjected to the prescribed calculation including the integration in the transverse shift direction, by which the wave front shape of the wave front to be measured is measured.

Description

【発明の詳細な説明】 (技術分野) 本発明は、波面形状測定方法、詳しくは、フーリエ変換
を利用しに波面形状測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a wavefront shape measuring method, and more particularly to a wavefront shape measuring method using Fourier transform.

(従来技術) レンズを透過した光束や、物体表面で反射した光束の波
面形状を知ることにより、レンズの性能や、物体の表面
形状を知ることが行なわれて(・るつこのような波面形
状測定方式のひとつとして。
(Prior art) It is possible to know the performance of a lens and the surface shape of an object by knowing the wavefront shape of the light flux transmitted through the lens and the light flux reflected on the object surface. As one of the measurement methods.

6i11定阪面を有する測定光を、進行光路が所定面内
で互いに微小角傾むいた2光束に分離し、これら2光束
を、上記所定面内で互いに微小距離横ずれした状態でエ
リアセンサーに入射せしめ、エリアセンサーにより測定
された干渉縞?フーリエ変換し、傾き成分を除去しfこ
のち、逆フーリエ変換し、その1結果から知られる位相
差に対し、横ずれ方向の積分?含む所定の演算を捲して
、波面形状を知るというものが提案されている(特願昭
60−56215号)。
The measurement light having a 6i11 constant slope plane is separated into two light beams whose traveling optical paths are inclined by a small angle to each other within a predetermined plane, and these two light beams are incident on the area sensor in a state where they are laterally shifted by a small distance from each other within the predetermined plane. Interference fringes measured by an area sensor? Fourier transform is performed, the tilt component is removed, f, then inverse Fourier transform is performed, and for the phase difference known from the first result, the integral in the lateral shift direction? It has been proposed (Japanese Patent Application No. 60-56215) to obtain the wavefront shape by performing predetermined calculations including the above.

本発明は、かかる波面形状測定方式の改良に係るもので
あるので、以下にまず、上記波面形状測定方式のあらま
しを簡単に説明し、あわせて、本発明により解決しよう
とする問題点を説明する。
Since the present invention relates to the improvement of such a wavefront shape measurement method, the outline of the above wavefront shape measurement method will be briefly explained below, and the problems to be solved by the present invention will also be explained. .

矛6図において、符号10はビームスプリッタ〜、符号
12.14は平面鏡、符号16はエリアセンサーを示し
ている。また、牙1図の図面内にX方向、X方向を図の
ように定める。平面鏡12の鏡面はX方向に直交してい
るが、平面鏡14の鏡面はX方向に対し、−〇たけ傾い
ている。
In Figure 6, reference numeral 10 indicates a beam splitter, reference numerals 12 and 14 indicate a plane mirror, and reference numeral 16 indicates an area sensor. Further, in the drawing of the fang 1, the X direction and the X direction are defined as shown in the figure. The mirror surface of the plane mirror 12 is perpendicular to the X direction, but the mirror surface of the plane mirror 14 is tilted by −0 degrees with respect to the X direction.

さて、測定波面Wを有する測定光が矛6図のごとく、ビ
ームスプリンター101Cx方向から入射すると、この
測定光は、ビームスグリツタ−10により2元路に分解
される。これらの光路のうち、平面鏡14に反射される
lf、路は、ビームスプリンター10  を透過したの
ち、平面鏡12により反射される光路に対し、xy而面
内微小角θだけ傾くことになる。
Now, when measurement light having a measurement wavefront W enters from the beam splinter 101Cx direction as shown in FIG. 6, this measurement light is decomposed into two paths by the beam splitter 10. Among these optical paths, the lf path reflected by the plane mirror 14 is inclined by a small angle θ in the xy plane with respect to the optical path reflected by the plane mirror 12 after passing through the beam splinter 10 .

換言すれば、ビームスプリッタ−10,平面鏡12.1
4 Vcよる光学系は、測定光を、その進行光路が所定
のxy而面内互(・に微小角θたけ傾むく2つり光束に
分割するっそして、これら2つの光束は、上記xy面内
で、微小距離Sたけ横ずれした状態でエリアセンサー1
6に入射する。平面鏡14とエリアセンサー16との間
の距離?図示のごとくLとすると、ずれ晴Sは、 S = L tanθ        (1)である。
In other words, beam splitter 10, plane mirror 12.1
The optical system based on 4 Vc splits the measurement light into two light beams whose traveling optical paths are tilted by a small angle θ to each other within a predetermined xy plane. Then, when the area sensor 1 is shifted horizontally by a small distance S,
6. Distance between plane mirror 14 and area sensor 16? Assuming L as shown in the figure, the deviation S is S = L tanθ (1).

平面鏡12.14で反射された光束の、エリアセンサー
16上におげろ波面形状f Xy而面内Xの関数とし、
WA(x)、WB(x)とする。
The wavefront shape f of the light beam reflected by the plane mirror 12.14 on the area sensor 16 is a function of Xy in the plane,
Let WA(x) and WB(x).

3・4図は、これらWA(x)、WB(x)を拡大して
示している。W B (x )は、WA(x)K対し、
X軸正方回へSだけ慣1゛れし、かつ微小角θだけ1頃
いている。角θが敵手であることを考えると、WB(x
)は、WA(x)を用(・て、WB(x) = WA(
x+S) + 2rcfox    (2)と否くこと
ができる。たたし、fOは、λを波長として、 fo = −tanθ        (3)λ である。
Figures 3 and 4 show enlarged views of WA(x) and WB(x). W B (x) is for WA(x)K,
It moves by S to the square rotation of the X axis, and moves by a minute angle θ to about 1. Considering that the angle θ is the opponent's hand, WB(x
) uses WA(x) (・te, WB(x) = WA(
x+S) + 2rcfox (2). However, fO is fo = -tanθ (3)λ, where λ is the wavelength.

ここで、波面WA(x)、WB(x)による干渉縞を表
すために、WA(x)、WB(x)の複素振幅分布を、
それぞれ リアセンサー16上における干渉縞の強度分布は、これ
をg(X)とすると1 、!i’(5:)= a(x)+ b(x)cos [
WB(X)−WA(X)) となり、これは、 と書くことができる。ここに、a(X) =α(X)+
β2(x) 、  D(X) = 2α(X)β(X)
  であり、である。△Wfi−(x )は、波面WA
(x)%7.1%の正方向へSだけ平行移動させた波面
と、波面WA(X)との位相差であり、このΔWA(x
)を、以下、位相差と称する。
Here, in order to express the interference fringes due to wavefronts WA(x) and WB(x), the complex amplitude distribution of WA(x) and WB(x) is expressed as
The intensity distribution of the interference fringes on the rear sensor 16 is 1,!, where g(X) is the intensity distribution. i'(5:)=a(x)+b(x)cos[
WB(X)-WA(X)), which can be written as. Here, a(X) = α(X)+
β2(x), D(X) = 2α(X)β(X)
It is and is. △Wfi-(x) is the wavefront WA
(x) It is the phase difference between the wavefront that has been translated by S in the positive direction of %7.1% and the wavefront WA(X), and this ΔWA(x
) is hereinafter referred to as phase difference.

(4)式の両辺をフーリエ変換し、その1.債果を、矢
のよ5に書く。
Perform Fourier transform on both sides of equation (4), and 1. Write the debt on the arrow number 5.

* G(、f) = Aけ) + C(、f−fo) + 
CCf+fO)さて、波面形状を知るには、位相差△W
A(x)?知る必安かある。すると(5)式において、
ΔWA(X)に関する情報を含んでいるの(工、c(f
−* fo )と、C(f + fO)  であり、このうち
の一方だけ2用いればよい。そこで、矛(5)式の矛1
項と3−6項をフィルターで除去すると、C(f−fo
 )  が得られる。ここで、fOは、(3)式から明
らかなように、傾き角θに関連してし・る。そこで、C
(f −fO)  を、振動数空間にお(・てf、  
たけずらしてC(、t)を得ると、CCf)においては
、傾き成分が除去されている。
* G(,f) = Aket) + C(,f-fo) +
CCf+fO) Now, to know the wavefront shape, the phase difference △W
A(x)? It's a must to know. Then, in equation (5),
Containing information about ΔWA(X), c(f
-* fo ) and C(f + fO), and it is sufficient to use two of only one of them. Therefore, spear 1 of spear (5) style
By filtering out the term and terms 3-6, we get C(f-fo
) is obtained. Here, fO is related to the tilt angle θ, as is clear from equation (3). Therefore, C
(f - fO) in the frequency space (・tef,
When C(, t) is obtained by shifting the angle, the slope component is removed in CCf).

そこで、このc<y)を逆フーリエ変換すると、C(x
)か得られるが、このC(x)の位相部分は、位相差Δ
WA (x )であり、 により、位相差へWA(x)l知ることができる。
Therefore, by performing inverse Fourier transform on this c<y), C(x
), but the phase part of this C(x) is the phase difference Δ
WA(x), and we can know the phase difference WA(x)l by.

位相差△WA(x)は、先にのべたように、ΔWA(x
) =WA (X + S ) −WA(x)であるか
ら、 S       Eix である。従って、求めろ波面形状WA(x)は、位相)
契△WA(x)に対して なる演算を捲すことによってうろことができる。
As stated earlier, the phase difference △WA(x) is ΔWA(x
) = WA (X + S) - WA(x), so S Eix. Therefore, the wavefront shape WA(x) to be determined is the phase)
This can be done by inverting the calculation for the contract ΔWA(x).

すなわち、位相差ΔWA(X)&、横すれ方向へ積分し
、これを、横ずれ量Sで割ればよい。次に、測定系全体
を、測定光の入射元軸のまわりに90度向回転せ、上記
のプロセスにより1ライ/分の波面形状を得、この形状
のうえに、先に得られている谷ラインの波面形状を上の
せすることによっτ、波面の2次元的形状を知ることが
できる。
That is, it is sufficient to integrate the phase difference ΔWA(X)& in the lateral deviation direction and divide this by the lateral deviation amount S. Next, the entire measurement system is rotated 90 degrees around the incident axis of the measurement light, a wavefront shape of 1 rai/min is obtained by the above process, and on top of this shape, the troughs obtained earlier are By superimposing the wavefront shape of the line, τ and the two-dimensional shape of the wavefront can be determined.

矛5図に、上記測定方式により実測された波面形状の1
例を示す。
Figure 5 shows the wavefront shape actually measured using the above measurement method.
Give an example.

さて、本発明により解決しようとする問題点とは、以下
の如きものである。
The problems to be solved by the present invention are as follows.

すなわち、オ6図に示す測定光学系では、測定光を、進
行光路が所定面内で互いに微小角部−・た2つの光束に
分離するのに、ビームスプリンターと2枚の平面鏡とを
用いている。このため、ビームスプリッタ−により分離
された2光束が、再びビームスプリッタ−にもどるまで
の光路が別光路となり、外乱による影響を受けやすい。
That is, in the measurement optical system shown in Fig. 6, a beam splinter and two plane mirrors are used to separate the measurement light into two light beams whose traveling optical paths are located at minute corners of each other within a predetermined plane. There is. For this reason, the optical paths of the two beams separated by the beam splitter until they return to the beam splitter are separate optical paths, which are susceptible to disturbances.

すなわち、ビームスプリッタ−および2枚の平面鏡の三
者の相tl的な位置関係が、温度変化や撮動等の外乱に
より変化しやすく、横ずれ量sやティルト蛋θに誤差を
生じやすい。
That is, the relative positional relationship between the beam splitter and the two plane mirrors is likely to change due to disturbances such as temperature changes and imaging, and errors are likely to occur in the lateral shift amount s and the tilt angle θ.

(目 的) 本発明は、上述した事情に鑑みてなされたものであって
、その目的とするところは、外乱の影響を受けにくい、
波面形状測定方法の提供にある。
(Purpose) The present invention has been made in view of the above-mentioned circumstances, and its purpose is to reduce the influence of external disturbances.
The object of the present invention is to provide a wavefront shape measurement method.

(構  成〕 以下、本発明を説明する。(composition〕 The present invention will be explained below.

本発明の!涛漱とするところは、以下にのべるところに
ある。
The invention! The parts that I am disappointed in are listed below.

すなわち、uノ定光を、進行光路が所定面内で互いに微
小角部むいた2つの光束に分離するのに、複屈折性偏光
子を用い、この複屈折性偏光子により分離された2″l
t、束を、検光子により、互いに可干渉にするのである
In other words, a birefringent polarizer is used to separate a constant light of u into two light beams whose traveling optical paths face each other at a small angle within a predetermined plane.
t, the bundles are made coherent with each other by an analyzer.

このようにすると、複屈折性偏光子により分離された2
光束の光路が所謂コモンパスとなる。
In this way, the two parts separated by the birefringent polarizer
The optical path of the light beam becomes a so-called common path.

以下、具体的な夷宛例に即して説明する。Hereinafter, explanation will be given based on a specific example of the address.

本発明の1実癩夕すを示す牙1図において、符号10口
は、複屈折性偏光子としてのロンヨンプリズムを、符号
200は検光子を、それぞれ示す。まL二符号300は
、エリアセンサーの受光面を示す。
In Fig. 1 showing a single-fruited tube of the present invention, the reference numeral 10 indicates a Longyong prism as a birefringent polarizer, and the reference numeral 200 indicates an analyzer. The reference numeral 300 indicates the light receiving surface of the area sensor.

測定光が、ロ/ヨ/ズリズム100に左方から入射する
と、Oジョンプリズム100の複屈折により、常光LN
 は、これを直進的に透過し、異常″/l、LAは、常
光LN  に対し、θ。たけ傾いた方向へ透過射出する
。従って、測定光は、所定面内(図面’irあられれ℃
いろ而)におい℃、所定の微小角θ。
When the measurement light enters the Ro/Yo/Zrism 100 from the left, the ordinary light LN due to the birefringence of the O-John prism 100
is transmitted straight through this, and the abnormal light LN is transmitted and emitted in a direction tilted by θ with respect to the ordinary light LN.
odor ℃, predetermined minute angle θ.

だけ互(・に1頃き、エリアセンサーの受光面5UO上
では、So  すなわちり。tanOoだけ横ずれする
。L。
When the area sensor's light-receiving surface 5UO shifts horizontally by an amount of So, that is, tanOo.L.

は、屑光L と異常元巳 との分岐点と受5を而600
との間の距離である。ただし、常光と異常光とは、その
ままでは干渉しないので、検光子200の結晶方向が常
光と異常光の偏光方向に対し45゜をなすように検光子
200を配置し、それぞれの偏元方向をそろえて、これ
ら2光束を干渉可能とする。
The branching point between Kuzuko L and the abnormal Motomi and Uke 5 are 600
is the distance between However, the ordinary light and the extraordinary light do not interfere with each other as they are, so the analyzer 200 is arranged so that the crystal direction of the analyzer 200 forms an angle of 45° with respect to the polarization direction of the ordinary light and the extraordinary light, and the polarization direction of each is adjusted. Together, these two beams of light can interfere with each other.

本発明の別実確例を示すオ・2図において、符号110
は、複屈折性偏光子としてのウォラストンプリズムを示
し、符号200と30qとは、矛1図におけると同じく
、検光子およびエリアセンサー受光面を示す。
In Fig. 2 showing another positive example of the present invention, reference numeral 110
indicates a Wollaston prism as a birefringent polarizer, and numerals 200 and 30q indicate an analyzer and an area sensor light-receiving surface, as in Figure 1.

測定光は、ウォラストンプリズム110により。The measurement light is provided by a Wollaston prism 110.

互いに微小角θ1 だけ傾いて分離し、検光子200で
互いに可干渉とされ、受光面600上で干渉する。
They are separated from each other by tilting by a small angle θ1, are made coherent with each other by the analyzer 200, and interfere on the light receiving surface 600.

このとき、波面WA1.(x) 、 WBI(x)の横
ずれ量S1  は、常光・異常光の分岐点と受光面30
tJとの間の距離なLl  として。
At this time, the wave surface WA1. (x), the lateral shift amount S1 of WBI(x) is determined by the branch point of ordinary light and extraordinary light and the light receiving surface 30.
As the distance between tJ and Ll.

θ1 S4 = 2 jan−であたえられる。なお、波面W
A1(X)は、本来の測定すべき波面WA(x)(矛1
図)が、元軸に対し、−θ1 だけ傾いたものであるが
、この傾きは、償稟過程で容易に補正でき、結局。
It is given by θ1 S4 = 2 jan-. In addition, the wave surface W
A1(X) is the original wave surface WA(x) to be measured.
(Fig.) is tilted by -θ1 with respect to the original axis, but this tilt can be easily corrected in the compensation process.

所望の波面形状WA(x)Y得ることができろ。It is possible to obtain the desired wavefront shape WA(x)Y.

また、波面WA の、5次元的な形状を測定するには、
〕・1図、矛2図において、横すれ?、図面に直交する
方向にお(・ても生じさせねばならないが、この目的α
つため(では、複屈折性偏光子たる口7ヨンプリズム1
00または、ウォラストンプリズム110のみを、光軸
のまわりに90度回転させるのみでたりる。もちろん、
光学系全体を回転させてもよ(・。なお、分離角0゜(
矛1図)、θ1(j・2図)は、プリズム角φ。(第1
図)、φ1 (第2図)θ)調整により、坊望の角に設
定できる。
In addition, to measure the five-dimensional shape of the wavefront WA,
]・Is it horizontal in Figure 1 and Figure 2? , in the direction perpendicular to the drawing (・), but for this purpose α
(The birefringent polarizer is a 7-yon prism 1.)
00 or only the Wollaston prism 110 can be rotated 90 degrees around the optical axis. of course,
You can also rotate the entire optical system (・. In addition, the separation angle is 0° (
(Figure 1) and θ1 (Figures J and 2) are the prism angles φ. (1st
By adjusting φ1 (Fig. 2) and θ), the angle can be set to a perfect angle.

さらに、常光と異常光の光凌を等しくするには、複屈折
性偏光子(τ入射する測定光ケ円・廂元とするか、ある
(・は、素子のプリズムの結晶方向と450の傾きをも
った直線偏光にすれば良い。
Furthermore, in order to equalize the optical power of the ordinary light and the extraordinary light, it is necessary to use a birefringent polarizer (τ), which is the angle of the incident measurement light, or to It is sufficient to use linearly polarized light with .

(効 果) 以上1本発明によれば、新税な波面形状測定方法を提供
できる。この方法では、迎[足元ケ分離して侍られる2
光束がコモンパスとなるので、外乱の影響?極めて受げ
にくい。また、測定光学系のコンパクト化が可能である
(Effects) According to the present invention as described above, a novel wavefront shape measuring method can be provided. In this method, the two feet are separated and served.
Since the luminous flux becomes a common path, is it affected by disturbance? Extremely difficult to accept. Furthermore, the measurement optical system can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

3・1図は、本発明の1実捲例を説明するための図、矛
2図は、本発明の別実捲例を説明するための図、1・6
図ないし矛5図は従来技術を説明するための図である。 100・・・口/ヨンプリズム、110・・・ウォラス
トンプリズム、200・・・検光子、600山エリアセ
ンサーの受光面、WA(x)・・・波面 篤4 因
Figure 3.1 is a diagram for explaining one example of winding of the present invention, Figure 2 is a diagram for explaining another example of winding of the present invention, 1.6
Figures 5 through 5 are diagrams for explaining the prior art. 100... Mouth/Yon prism, 110... Wollaston prism, 200... Analyzer, light receiving surface of 600 mountain area sensor, WA(x)... Wave surface Atsushi 4

Claims (1)

【特許請求の範囲】 測定波面を有する測定光を、進行光路が所定面内で互い
に微小角傾いた2つの光束に分離し、これら2光束を、
上記所定面内で互いに微小距離横ずれした状態でエリア
センサーに入射せしめ、上記エリアセンサーにより測定
された干渉縞をフーリエ変換し、傾き成分を除去したの
ち逆フーリエ変換し、逆フーリエ変換の結果から知られ
る位相差に対し、横ずれ方向の積分を含む所定の演算を
施して、測定波面の波面形状を得る波面形状測定方式に
おいて、 複屈折性偏光子を用いて、測定光を、進行光路が所定面
内で互いに微小角傾いた2つの光束に分離し、 このように分離した2光束を検光子によって互いに可干
渉とすることを特徴とする、波面形状測定方法。
[Claims] A measurement light beam having a measurement wavefront is separated into two light beams whose traveling optical paths are inclined at a small angle to each other within a predetermined plane, and these two light beams are
The interference fringes measured by the area sensor are made incident on the area sensor in a state in which they are shifted laterally by a small distance from each other within the predetermined plane, and the interference fringes measured by the area sensor are Fourier transformed, the tilt component is removed, and then the inverse Fourier transform is performed. In the wavefront shape measurement method, which obtains the wavefront shape of the measurement wavefront by performing predetermined calculations, including integration in the lateral shift direction, on the phase difference, a birefringent polarizer is used to direct the measurement light so that the traveling optical path A method for measuring a wavefront shape, which is characterized in that the two light beams are separated into two light beams tilted by a small angle to each other within the beam, and the thus separated two light beams are made coherent with each other by an analyzer.
JP60164855A 1985-07-25 1985-07-25 Method for measuring shape of wave front Pending JPS6225226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164855A JPS6225226A (en) 1985-07-25 1985-07-25 Method for measuring shape of wave front

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164855A JPS6225226A (en) 1985-07-25 1985-07-25 Method for measuring shape of wave front

Publications (1)

Publication Number Publication Date
JPS6225226A true JPS6225226A (en) 1987-02-03

Family

ID=15801194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164855A Pending JPS6225226A (en) 1985-07-25 1985-07-25 Method for measuring shape of wave front

Country Status (1)

Country Link
JP (1) JPS6225226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248414A (en) * 2005-03-11 2006-09-21 Recaro Kk Seat back frame for car seat
JP2006248415A (en) * 2005-03-11 2006-09-21 Recaro Kk Back rest frame of automobile seat
CN105148667A (en) * 2015-09-11 2015-12-16 永清环保股份有限公司 High-efficiency desulfuration and dedusting system for flue gas purification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248414A (en) * 2005-03-11 2006-09-21 Recaro Kk Seat back frame for car seat
JP2006248415A (en) * 2005-03-11 2006-09-21 Recaro Kk Back rest frame of automobile seat
CN105148667A (en) * 2015-09-11 2015-12-16 永清环保股份有限公司 High-efficiency desulfuration and dedusting system for flue gas purification

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US5569929A (en) Double-beam light source apparatus, position detecting apparatus and aligning apparatus
JPS62172203A (en) Method for measuring relative displacement
US5682239A (en) Apparatus for detecting positional deviation of diffraction gratings on a substrate by utilizing optical heterodyne interference of light beams incident on the gratings from first and second light emitters
CA1203398A (en) Dual differential interferometer
JPS6117921A (en) Real-time wave-head analyzing correcting device
US5953137A (en) Linear conoscopic holography
GB1287462A (en) Improvements in or relating to apparatus for measuring angular displacement about an axis
JP5588769B2 (en) Optical measuring device
EP0078931B1 (en) Angular rate sensor
JPS6225226A (en) Method for measuring shape of wave front
JPH0283428A (en) Automatic double refraction measuring apparatus
JPS58196416A (en) Optical fiber laser gyroscope
JPH08327453A (en) Polarization interferometer
JP4028428B2 (en) Compact beam retrace optics for eliminating beam walk-off in interferometers
JPS61130887A (en) Laser doppler speedometer
JPH02298804A (en) Interferometer
US20230349824A1 (en) Interferometric gas sensor
JPH06137814A (en) Minute displacement measuring method and its device
JPH10213486A (en) Polarization interferometer
JPH0625656B2 (en) Stripe scanning shearing interferometry
JPH05302810A (en) Heterodyne two wave lengths displacement interference meter
JPS626137A (en) Wave front shape measuring method
JPS61231401A (en) Shearing interference optical system in fringe scanning interference measuring system
JPH1123452A (en) Diffraction interference measuring device