JPS62251482A - Check valve for delivery port of compressor - Google Patents

Check valve for delivery port of compressor

Info

Publication number
JPS62251482A
JPS62251482A JP9337286A JP9337286A JPS62251482A JP S62251482 A JPS62251482 A JP S62251482A JP 9337286 A JP9337286 A JP 9337286A JP 9337286 A JP9337286 A JP 9337286A JP S62251482 A JPS62251482 A JP S62251482A
Authority
JP
Japan
Prior art keywords
valve
check valve
passage
discharge port
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9337286A
Other languages
Japanese (ja)
Inventor
Mutsuo Sugizaki
杉崎 六雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP9337286A priority Critical patent/JPS62251482A/en
Publication of JPS62251482A publication Critical patent/JPS62251482A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Check Valves (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve the efficiency of a compressor by constructing a check valve for allowing flow-out through a delivery port to a delivery path with two check valves having different setting levels of differential pressure. CONSTITUTION:A check valve 21 for allowing flow-out through a delivery port 18 to a delivery path 20 is constructed with first and second check valves 22, 23. The spring force of a first spring member 71 is determined according to a primary setting pressure while the spring force of a second spring member 74 is determined according to a secondary setting pressure. Consequently, the first check valve 22 is suitable for small flow where the residual volume can be reduced by the small path of the check valve 22 thereby the efficiency of compressor can be improved.

Description

【発明の詳細な説明】 A9発明の目的 (1)産業上の利用分野 本発明は、圧縮機に関し、更に詳しくは、容量おける吐
出ポート部の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION A9 Object of the Invention (1) Field of Industrial Application The present invention relates to a compressor, and more particularly to an improvement in a discharge port section in terms of capacity.

(2)従来の技術 従来の圧縮機においては、圧縮室と吐出通路とを連通ず
る吐出ポート(一般に複数個ある。)にリードバルブ等
の逆止弁が配され、吐出通路側の圧縮ガスが圧縮室側へ
逆流するのを防止している。
(2) Conventional technology In conventional compressors, a check valve such as a reed valve is arranged at the discharge port (generally there are several) that communicates the compression chamber and the discharge passage, and the compressed gas on the discharge passage side is This prevents backflow to the compression chamber side.

そして、この逆止弁は圧縮室と吐出通路との圧力差によ
り自動的に開閉し、逆止弁を通過する流量により適当な
開度となるものである。
This check valve automatically opens and closes depending on the pressure difference between the compression chamber and the discharge passage, and has an appropriate opening degree depending on the flow rate passing through the check valve.

しかしながら、このような従来の吐出ポートの逆止弁構
造においては、逆止弁と圧縮機構との間に吐出ポート通
路の無視できないだけの体積いわゆる残留体積が残り、
圧縮機の効率を落す要因となっている。
However, in such a conventional discharge port check valve structure, a non-ignorable volume of the discharge port passage, so-called residual volume, remains between the check valve and the compression mechanism.
This is a factor that reduces the efficiency of the compressor.

このため、吐出ポート通路の径を縮小してこの残留体積
を小さくする方策が採られるが、単に通路を縮径しただ
けでは、小流量時には良いとしても大流量時には通路抵
抗が増大し、圧縮仕事を増やし、却って効率の悪いもの
となる。
For this reason, measures are taken to reduce this residual volume by reducing the diameter of the discharge port passage, but simply reducing the diameter of the passage may be good at small flow rates, but at large flow rates, the passage resistance will increase and the compression work will increase. This increases the efficiency, and on the contrary becomes inefficient.

(3)発明が解決しようとする問題点 本発明は上記の問題点を解決しようとするものであり、
圧lii機の効率を落とす要因となっている吐出ポート
通路の残留体積の存在に着目し、この残留体積を減らす
とともに圧縮機の効率を向上させうる吐出ポートの逆止
弁構造を提供することを目的とする。
(3) Problems to be solved by the invention The present invention aims to solve the above problems.
Focusing on the presence of residual volume in the discharge port passage, which is a factor in reducing the efficiency of compressor compressors, the present invention aims to provide a check valve structure for the discharge port that can reduce this residual volume and improve the efficiency of the compressor. purpose.

B0発明の構成及び作用 (+)問題点を解決するための手段 本発明によれば、圧縮室に開口する吐出ポートに、その
吐出ポートから吐出通路への流出を許容する逆止弁を設
けてなる圧縮機において、逆止弁は、その逆止弁の前後
における圧力差が予め定めた1次設定圧力Piよりも大
となったとき、吐出ポー6トから吐出通路への小流量の
流出を許容する第1の小流量逆止弁と、その圧力差が1
次設定圧力Plよりも大なる2次設定圧力P2よりも大
となったとき、吐出ポートから吐出通路への大流量の流
出を許容する第2の大流量逆止弁とを含む。
B0 Structure and operation of the invention (+) Means for solving the problems According to the invention, the discharge port opening into the compression chamber is provided with a check valve that allows outflow from the discharge port to the discharge passage. In this compressor, the check valve prevents a small amount of flow from flowing out from the discharge port 6 to the discharge passage when the pressure difference before and after the check valve becomes larger than a predetermined primary setting pressure Pi. The first small flow check valve that allows and the pressure difference is 1
It includes a second large flow rate check valve that allows a large flow rate to flow out from the discharge port to the discharge passage when the secondary set pressure P2 is higher than the next set pressure Pl.

(2)作用 圧縮室で圧縮されるガスの流量が小流量のとき、逆止弁
前後における圧力差は小さく、その圧力差が所定圧力P
iを越えるとその圧力差に見合った第1の小流量用逆止
弁が開く、これにより、圧縮ガスは第1の逆止弁用の小
通路を通って吐出通路に吐出される。そして、圧力差が
所定圧力P1とこの所定圧力P1よりも大きい所定圧力
P2に至るまでの間においては第1の小流量用逆止弁が
対処することになる。
(2) Operation When the flow rate of gas compressed in the compression chamber is small, the pressure difference before and after the check valve is small, and the pressure difference is the predetermined pressure P
When the pressure difference exceeds i, the first small flow check valve commensurate with the pressure difference opens, and the compressed gas is thereby discharged into the discharge passage through the small passage for the first check valve. The first small flow rate check valve takes care of the pressure difference between the predetermined pressure P1 and the predetermined pressure P2, which is larger than the predetermined pressure P1.

圧縮室で圧縮される気体の流量が増大すると。When the flow rate of the gas being compressed in the compression chamber increases.

オリフィスの機構によりこの流量の増大に見合った圧力
の差圧も増大し、この圧力差が所定圧力P2を越えると
その圧力差に見合った第2の大流量用逆止弁が開く、こ
れにより、圧縮ガスは第2の逆止弁用の大通路を通って
吐出通路に吐出される。
Due to the orifice mechanism, the pressure difference corresponding to this increase in flow rate also increases, and when this pressure difference exceeds a predetermined pressure P2, the second large flow rate check valve corresponding to the pressure difference opens. The compressed gas is discharged into the discharge passage through the large passage for the second check valve.

(3)実施例 以下、図面によって本発明の詳細な説明する。(3) Examples Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明が適用される車輌用冷媒圧縮機装置を示
す。
FIG. 1 shows a vehicular refrigerant compressor device to which the present invention is applied.

この圧縮機装置は、圧縮111と、この圧縮mlの一対
と、この開閉弁2.3を開閉制御するための制御装置4
とを含む。
This compressor device includes a compression 111, a pair of compression ml, and a control device 4 for controlling the opening and closing of the on-off valve 2.3.
including.

圧縮機lは、いわゆるベーン式回転圧縮機であって、外
周に複数のベー75を有するロータ6と、そのロータ6
が収納されるハウジング7とを含む。
The compressor 1 is a so-called vane type rotary compressor, and includes a rotor 6 having a plurality of bays 75 on the outer periphery, and the rotor 6.
and a housing 7 in which is housed.

ロータ6は回転軸8によって回転自在に軸支されたロー
タ本体9を有し、そのロータ本体9の外周には前記ベー
ン5が遊嵌されている複数のベーン溝10が形成される
。なお回転軸8は、図示しないTLN1クラッチを介し
て車輌エンジンの出力軸に連結される。
The rotor 6 has a rotor body 9 rotatably supported by a rotating shaft 8, and a plurality of vane grooves 10 into which the vanes 5 are loosely fitted are formed on the outer periphery of the rotor body 9. Note that the rotating shaft 8 is connected to the output shaft of the vehicle engine via a TLN1 clutch (not shown).

ハウジング7は、ハウジング本体11と、ハウジング本
体11の上部に取り付けられた上部ハウジング12と、
ハウジング本体11の側部に取り付けられた側部ハウジ
ング13とを含む、なお。
The housing 7 includes a housing body 11, an upper housing 12 attached to the upper part of the housing body 11,
and a side housing 13 attached to the side of the housing body 11.

側部ハウジング13は、第1図の紙面においてハウジン
グ本体11の背面側及び手前側に取り付けられる。
The side housing 13 is attached to the back side and the front side of the housing body 11 in the paper of FIG.

ハウジング本体ll内には、側部ハウジングlンダ室1
4の内周壁面15には、ロータ6の回転方向16に沿う
始端側に吸入ポート17が、終端側に吐出ポート18が
それぞれ開口される。なお、吸入ボー)17はロータ6
の回転方向16に沿って延びるよう凹設される。/\ウ
ジング本体11及び上部ハウジング12には、各ポート
17.18に連通ずる吸入通路19及び吐出通路20が
それぞれ形成される。なお、吐出通路20は、ハウジン
グ本体11に形成された通路部分(吐出ポート通路部)
20aと、上部ハウジング12に形成された通路部分2
0bとを含み、これらの通路部分20a、20b間には
逆止弁21が介装される。
Inside the housing body 1, there is a side housing chamber 1.
In the inner peripheral wall surface 15 of the rotor 6, a suction port 17 is opened on the starting end side along the rotational direction 16 of the rotor 6, and a discharge port 18 is opened on the terminal end side. In addition, suction bow) 17 is the rotor 6
It is recessed so as to extend along the rotational direction 16 of. /\The housing body 11 and the upper housing 12 are respectively formed with a suction passage 19 and a discharge passage 20 that communicate with each port 17,18. Note that the discharge passage 20 is a passage portion (discharge port passage portion) formed in the housing body 11.
20a and a passage portion 2 formed in the upper housing 12.
0b, and a check valve 21 is interposed between these passage portions 20a and 20b.

この逆止弁21は二連に形成され、第1の逆止弁22と
第2の逆止弁23とを含み、通路部分20aから通路部
分20bへの冷媒ガスの流通を許容するように構成され
る。上部ハウジング12には、逆止弁21を収容するた
めの弁室24が、l\ウジング本体11とによって画成
される。
This check valve 21 is formed in two series, includes a first check valve 22 and a second check valve 23, and is configured to allow refrigerant gas to flow from the passage portion 20a to the passage portion 20b. be done. In the upper housing 12, a valve chamber 24 for accommodating the check valve 21 is defined by the housing body 11.

また、シリンダ室14の内周壁面15には、吐出ポート
18の近傍にアンロードポート25が開口される。この
アンロードポート25は吸入通路19にアンロード通路
26を介して連通される。
Further, an unload port 25 is opened in the inner circumferential wall surface 15 of the cylinder chamber 14 near the discharge port 18 . This unload port 25 communicates with the suction passage 19 via an unload passage 26.

このアンロード通路26はハウジング本体11及び側部
ハウジング13に形成され、このアンロード通路26の
途中には前記第1の開閉弁2が介装される。この第1の
開閉弁2によってアンロード通路26は、吸入通路19
に連通ずる通路部分26aと、アンロードポート25に
連通ずる通路部分26bとに区分され、この通路部分2
6bの途中には、逆比弁27が介装される。この逆止弁
27は、アンロードポート25から第1の開閉弁z側へ
の冷媒ガスの流通を許容するよう、前記逆止弁21と同
様にリード弁27aと規制板27bとによって構成され
る。また、ハウジング本体11には、逆止弁27を収納
するための弁室28が形成される。
This unloading passage 26 is formed in the housing body 11 and the side housing 13, and the first on-off valve 2 is interposed in the middle of this unloading passage 26. By this first on-off valve 2, the unload passage 26 is connected to the suction passage 19.
The passage portion 26a is divided into a passage portion 26a that communicates with the unload port 25, and the passage portion 26b that communicates with the unload port 25.
A reverse ratio valve 27 is interposed in the middle of 6b. This check valve 27 is configured by a reed valve 27a and a regulating plate 27b, similarly to the check valve 21, so as to allow the flow of refrigerant gas from the unload port 25 to the first on-off valve z side. . Further, a valve chamber 28 for accommodating a check valve 27 is formed in the housing body 11.

シリンダ室14の内側面壁30すなわち側部ハウジング
13の側面には、ロータ6の回転方向16における吸入
ポー)17よりも前方側、すなわち吸入ポート17と吐
出ボー)18との中間位置に位置するように、バイパス
ポート31が開口される。このバイパスポート31は、
第2図に示すように、回転するベーン5の側面と整合可
能(二点鎖線の状態)なようにベーン5の位相に合致す
る長手方向に延びる長孔形状とされる。更に、バイパス
ポー)31の長手方向に直角な幅方向の寸法d2は、ベ
ーン5の板厚d1より小さくされる。
On the inner side wall 30 of the cylinder chamber 14, that is, on the side surface of the side housing 13, there is a space located on the front side of the suction port 17 in the rotational direction 16 of the rotor 6, that is, at an intermediate position between the suction port 17 and the discharge port 18. Then, the bypass port 31 is opened. This bypass port 31 is
As shown in FIG. 2, the hole has a long hole shape extending in the longitudinal direction that matches the phase of the vane 5 so that it can be aligned with the side surface of the rotating vane 5 (indicated by the two-dot chain line). Furthermore, the dimension d2 in the width direction perpendicular to the longitudinal direction of the bypass port 31 is made smaller than the plate thickness d1 of the vane 5.

このバイパスポート31はバイパス通路32を介して吸
入ポート17に連通される。このバイパス通路32はハ
ウジング本体11及び側部ハウジング13に形成され、
このバイパス通路32の途中には前記第2の開閉弁3が
介装される。この開閉弁3によってバイパス通路32は
、吸入ポート17に連通ずる通路部分32aと、バイパ
スポート31に連通ずる通路部分32bとに区分され、
この通路部分32bの途中には逆止弁33が介装される
。この逆止弁33は、バイパスポート31から第2の開
閉弁3側への冷媒ガスの流通を許容するよう、逆止弁2
1と同様にリード弁33aとハウジング13には、逆止
弁33を収容するための弁室34が形成される。
This bypass port 31 is communicated with the suction port 17 via a bypass passage 32. This bypass passage 32 is formed in the housing body 11 and the side housing 13,
The second on-off valve 3 is interposed in the middle of this bypass passage 32. By this on-off valve 3, the bypass passage 32 is divided into a passage part 32a communicating with the suction port 17 and a passage part 32b communicating with the bypass port 31,
A check valve 33 is interposed in the middle of this passage portion 32b. The check valve 33 is configured to allow the flow of refrigerant gas from the bypass port 31 to the second on-off valve 3 side.
1, a valve chamber 34 for accommodating the check valve 33 is formed in the reed valve 33a and the housing 13.

バイパスポート31と同様に、シリンダ室14の内側面
壁30には、複数の副吐出ポート35゜36が開口され
る。これらの副吐出ポート35゜36は、ロータ6の回
転方向16におけるバイパスポート31よりも前方側、
すなわちバイパスポー)31と吐出ポート1Bとの中間
位置に位置するように、前記回転方向16に沿って間隔
をあけて開口される。これらの副吐出ポート35 、3
6と回転するベーン5との関係は前述したバイパスポー
ト31との関係に準じる。すなわち、副吐出ポート35
.36はベー75の側面と整合可能なようにベーン5の
長手方向に延びる長孔形状とされる。更に、副吐出ボー
)35.36の長手方向に直角な幅方向の寸法d3は、
ベーン5の板厚d1より小さくされる。
Similar to the bypass port 31, a plurality of sub-discharge ports 35 and 36 are opened in the inner side wall 30 of the cylinder chamber 14. These sub-discharge ports 35° 36 are located on the front side of the bypass port 31 in the rotational direction 16 of the rotor 6,
That is, they are opened at intervals along the rotational direction 16 so as to be located at an intermediate position between the bypass port 31 and the discharge port 1B. These sub-discharge ports 35, 3
The relationship between the vane 6 and the rotating vane 5 is similar to the relationship with the bypass port 31 described above. That is, the sub-discharge port 35
.. 36 has an elongated hole shape extending in the longitudinal direction of the vane 5 so as to be aligned with the side surface of the vane 75. Furthermore, the dimension d3 in the width direction perpendicular to the longitudinal direction of the sub-discharge bow) 35.36 is:
It is made smaller than the plate thickness d1 of the vane 5.

これらの副吐出ポー)35.36は、1吐出通路37を
介して弁室24に連通される。この1吐出通路37は側
部ハウジング13に形成され、この1吐出通路37の途
中には各副吐出ポート35゜36に対応して一対の逆止
弁38.39が介装される。これらの逆止弁38.39
によって1吐出通路37は、各副吐出ポート35.36
に連通ずる通路部分37a 、37bと、弁室24に連
通ずる通路部分37cとに区分される。これらの逆止弁
38,39は、各副吐出ポート35.36から弁室24
側への冷媒ガスの流通を許容するよう、逆止弁21と同
様にリード弁38a、39aと規制板38b、39bと
によって構成される。また、側部ハウジング13には、
逆止弁38.39を収容するための弁室40が形成され
る。
These sub-discharge ports (35, 36) are communicated with the valve chamber 24 via one discharge passage 37. This one discharge passage 37 is formed in the side housing 13, and a pair of check valves 38 and 39 are interposed in the middle of this one discharge passage 37 corresponding to each of the sub-discharge ports 35 and 36. These check valves 38.39
By one discharge passage 37, each sub-discharge port 35.36
It is divided into passage portions 37a and 37b communicating with the valve chamber 24, and passage portion 37c communicating with the valve chamber 24. These check valves 38, 39 are connected to the valve chamber 24 from each sub-discharge port 35, 36.
Like the check valve 21, it is configured by reed valves 38a, 39a and regulation plates 38b, 39b to allow the flow of refrigerant gas to the side. In addition, the side housing 13 includes
A valve chamber 40 is formed for accommodating a check valve 38,39.

第1の開閉弁2はいわゆる電磁弁であって、ソレノイド
50と、そのソレノイドの電力付勢によって固定コア5
1に磁気吸引される可動コア52と、その可動コア52
と一体的に作動する弁体53と、この弁体53を閉鎖状
態に付勢するコイルばね54とを含む、なお、開閉弁2
には、通路部分26a、26b間の冷媒ガスの前後圧力
差によって前記磁気吸引力に不所望な抗力が作用しな、
いようにするために、圧力補正用のベローズ55が装着
される。また、弁体53に形成された連通孔53aはア
ンロード通路26の圧力をベローズ55内に導き等圧と
なし、弁体53の開閉を容易にする。コイルばね54は
調整ねじM2Sにより付勢力を調整される。
The first on-off valve 2 is a so-called electromagnetic valve, and includes a solenoid 50 and a fixed core 5 which is activated by electric power of the solenoid 50.
a movable core 52 that is magnetically attracted to the movable core 52;
The on-off valve 2 includes a valve body 53 that operates integrally with the on-off valve 2, and a coil spring 54 that biases the valve body 53 to the closed state.
In order to prevent an undesired drag force from acting on the magnetic attraction force due to a pressure difference in the refrigerant gas between the passage portions 26a and 26b,
A bellows 55 for pressure compensation is installed to prevent this from occurring. Further, the communication hole 53a formed in the valve body 53 guides the pressure in the unload passage 26 into the bellows 55 to equalize the pressure, thereby making it easy to open and close the valve body 53. The biasing force of the coil spring 54 is adjusted by an adjustment screw M2S.

このようにして構成された第1の開閉弁2は、制御装置
4によるソレノイド50の電力付勢によって、全閉また
は全開のオン・オフ制御が行われる。
The first on-off valve 2 configured in this manner is controlled to be fully closed or fully opened on and off by power activation of the solenoid 50 by the control device 4.

第2の開閉弁3は、第1の開閉弁2と同様に構成され、
ソレノイド60、固定コア61.可動コア62.弁体6
3.コイルばね64及びベローズ65を含む、連通孔6
3a及び調整ねじM6Sも同様である。
The second on-off valve 3 is configured similarly to the first on-off valve 2,
Solenoid 60, fixed core 61. Movable core 62. Valve body 6
3. Communication hole 6 including coil spring 64 and bellows 65
3a and adjustment screw M6S are also the same.

この第2の開閉弁3は、制御装置4によるソレノイド6
0の電力付勢、もっと詳しくは付勢電力の変化によって
全閉から全開までの自由な開度制御、すなわち線形的な
開度制御が行われる。
This second on-off valve 3 is operated by a solenoid 6 controlled by a control device 4.
The opening degree is freely controlled from fully closed to fully open, that is, linear opening degree control is performed by applying zero electric power, more specifically, by changing the applied electric power.

第3図を参照して、逆止弁21の詳細構造を説明すると
、木逆止弁21は第1の逆止弁22と第2の逆止弁23
とを含むことは前述したが、第1の逆止弁22は弁座当
接面を平面とした第1の弁体70とこの弁体70を第2
の弁体72に設けた弁孔73に付勢閉塞する第1のばね
部材71とからなる。第1のばね部材71の一端は第2
の弁体72の円筒部72a内の天井部に係止され、その
他端は第1の弁体70の鍔部に係止されている。
The detailed structure of the check valve 21 will be explained with reference to FIG. 3. The wooden check valve 21 has a first check valve 22 and a second check valve 23.
As mentioned above, the first check valve 22 includes a first valve body 70 whose valve seat contact surface is a flat surface, and a second valve body 70 which has a flat valve seat contact surface.
and a first spring member 71 that biases and closes a valve hole 73 provided in a valve body 72. One end of the first spring member 71
The other end of the valve body 72 is engaged with the ceiling within the cylindrical portion 72a of the first valve body 72, and the other end thereof is engaged with the flange of the first valve body 70.

第2の逆止弁は第2の弁体72とこの弁体72を吐出ポ
ート通路部20aに付勢閉塞する第2のばね部材74と
を含み、第2の連体72は弁座当接面を平面にされ、第
2のばね部材74の一端は弁座24の天井面に係止され
、その他端は第2の弁体72の鍔部に係止されている。
The second check valve includes a second valve body 72 and a second spring member 74 that urges and closes the valve body 72 to the discharge port passage portion 20a, and the second connecting body 72 has a valve seat contact surface. is made flat, one end of the second spring member 74 is locked to the ceiling surface of the valve seat 24, and the other end is locked to the flange of the second valve body 72.

第2の弁体72の円筒部72aには適宜間隔に窓部75
が穿設されている。
The cylindrical portion 72a of the second valve body 72 has window portions 75 at appropriate intervals.
is drilled.

この態様において、弁孔73の大きさ及び長さすなわち
容積は吐出ポート通路部20aの容積も見込んで圧縮ガ
スの流量が小流量の状態に合わせて可及的小さく決定さ
れる。また、第1のばね部材81のばね力に1は1次設
定圧力に合わせて決められる。第2のばね部材84のば
ね力に2は2次設定圧力に合わせて決められる。
In this embodiment, the size and length of the valve hole 73, that is, the volume, are determined to be as small as possible in consideration of the volume of the discharge port passage section 20a and in accordance with the state where the flow rate of the compressed gas is small. Further, the spring force of the first spring member 81 is determined to be 1 in accordance with the primary setting pressure. The spring force of the second spring member 84 is determined in accordance with the secondary set pressure.

第4図に別な逆止弁の態様を示す、第1の逆止弁22は
弁座当接面がテーパ形状とされた第1の弁体80とこの
弁体80を第2の弁体82に設けた弁孔83に付勢閉塞
する第1のばね部材81とを含む、従って、第1の弁体
80は第2の弁体82に形成されたテーパ状の弁座に当
接されている。
FIG. 4 shows another aspect of the check valve. The first check valve 22 has a first valve body 80 with a tapered valve seat abutting surface, and a second valve body that connects this valve body 80 with a tapered valve seat contact surface. 82. Therefore, the first valve body 80 is brought into contact with the tapered valve seat formed in the second valve body 82. ing.

第2の逆止弁23は弁座当接面がテーパ形状をなす第2
の弁体82とこの弁体82を吐出ポート通路i’fB2
0aに付勢閉塞する第2のばね部材84とを含む。従っ
て、この第2の弁体82も吐出ポート通路部20aに形
成されたテーパ状の弁座に当接されている。
The second check valve 23 has a valve seat contact surface that is tapered.
The valve body 82 and this valve body 82 are connected to the discharge port passage i'fB2.
0a and a second spring member 84 that is biased to close. Therefore, this second valve body 82 also comes into contact with a tapered valve seat formed in the discharge port passage section 20a.

この態様における弁孔83の大きさ、並びに第1及び第
2のばね部材81.84のばね力kl。
The size of the valve hole 83 and the spring force kl of the first and second spring members 81.84 in this embodiment.

k2の大きさは、第3図の態様のものに準じて決められ
るが、この態様においては大流量用の吐出ポート通路2
0a及び小流量用の弁孔83の長さが極力小さく採れる
ことが特徴となっている・第5図に更に別な逆止弁へ態
様を示す、第1の逆止弁22はいわゆるリードバルブよ
りなる第1の弁体90とこの弁体90の開度を規制する
規制板91とを含む、この第1の弁体90は第2の弁体
92に設けた弁孔93を閉塞する。第2の逆止弁23は
弁座当接面がテーパ形状をなす第2の弁体92とこの弁
体92を吐出ポート通路20aには付勢閉塞する第2の
ばね部材94とを含む、従って、この第2の弁体92は
吐出ポート通路部20aに形成されたテーパ状の弁座に
当接されている。
The size of k2 is determined according to the embodiment shown in FIG. 3, but in this embodiment, the discharge port passage 2 for large flow rate is
The first check valve 22 is a so-called reed valve, which shows another check valve configuration in Fig. 5. The first valve body 90 includes a first valve body 90 and a regulating plate 91 that regulates the opening degree of the valve body 90. The first valve body 90 closes a valve hole 93 provided in a second valve body 92. The second check valve 23 includes a second valve body 92 having a tapered valve seat contacting surface, and a second spring member 94 that biases and closes the valve body 92 to the discharge port passage 20a. Therefore, this second valve body 92 is in contact with a tapered valve seat formed in the discharge port passage section 20a.

この態様における弁孔93の大きさ、第1の弁体90の
ばね力kl並びに第2のばね部材94のばね力に2の大
きさは先の態様のものに準じて決められるが、この態様
においては小流量用の逆止弁22がリードパルプであっ
てその構成が簡単なこと、及び大流量用の吐出ポート通
路20aが極力小さく採れることが特徴となっている。
In this embodiment, the size of the valve hole 93, the spring force kl of the first valve body 90, and the spring force 2 of the second spring member 94 are determined according to the previous embodiment. This is characterized in that the check valve 22 for small flow rates is made of reed pulp and has a simple structure, and that the discharge port passage 20a for large flow rates can be made as small as possible.

以上のように構成された車輌用冷媒圧縮機装置において
、シリンダ室14は、各ベーン5によって複数の容積室
に区分される。すなわち、吸入ポート17が開口された
吸入室14a、吐出ポート18の近傍に位置する高圧縮
室14c、並びに吸入室14a及び高圧縮室14c間に
位置する圧縮室14bとに区分される(第2図参照)、
更に詳細に言えば、各容積室14a〜14cは、偏心し
たロータ6の回転に伴ってその容積が漸次増加から減少
へと変化し、圧縮室14bよりも高圧縮室14cが高圧
縮となる。これによって本圧縮機lは冷媒ガスに対する
吸入−圧縮のポンプ作用を発揮する。
In the vehicle refrigerant compressor device configured as described above, the cylinder chamber 14 is divided into a plurality of volume chambers by each vane 5. That is, it is divided into a suction chamber 14a in which the suction port 17 is open, a high compression chamber 14c located near the discharge port 18, and a compression chamber 14b located between the suction chamber 14a and the high compression chamber 14c (second (see figure),
More specifically, the volume of each of the volume chambers 14a to 14c gradually changes from increasing to decreasing as the eccentric rotor 6 rotates, and the high compression chamber 14c has higher compression than the compression chamber 14b. As a result, the compressor 1 exerts a suction-compression pumping action on the refrigerant gas.

このようなポンプ作用において、第1及び第2の開閉弁
2.3が閉じられた状態では、圧縮された冷媒ガスはそ
の全てが吐出ポート18から吐出通路20へと吐出され
、圧縮411はその圧縮能力が100%発揮される。ま
た、第1の開閉弁2が開かれた状態では、圧縮された冷
媒ガスはその殆どがアンロードポート25からアンロー
ド通路26を経て吸入通路19へと戻され、圧縮Ia1
はその圧縮能力が殆ど抑制される。更に、第1の開閉弁
2が閉じられ、第2の開閉弁3が開かれた状態では、比
較的低圧に圧縮された冷媒ガスの一部がバイパスポー)
31からバイパス通路32を経て吸入ポート17へと戻
され、圧縮alは第2の開閉弁2の開度に応じてその圧
縮能力の一部が抑制される。なお、第1の開閉弁2が開
かれた状態では、第2の開閉弁3もまた全開状態とされ
、これによって、E記から明らかなように圧縮機1は更
にその圧縮能力が確実に抑制される。
In such a pump action, when the first and second on-off valves 2.3 are closed, all of the compressed refrigerant gas is discharged from the discharge port 18 to the discharge passage 20, and the compression 411 is 100% compression capacity is achieved. Moreover, when the first on-off valve 2 is opened, most of the compressed refrigerant gas is returned from the unload port 25 to the suction passage 19 via the unload passage 26, and the compressed refrigerant gas is
is largely suppressed in its compression capacity. Furthermore, when the first on-off valve 2 is closed and the second on-off valve 3 is opened, a portion of the refrigerant gas compressed to a relatively low pressure flows into the bypass port).
31 and returns to the suction port 17 via the bypass passage 32, and a portion of the compression capacity of the compressed al is suppressed depending on the opening degree of the second on-off valve 2. Note that when the first on-off valve 2 is opened, the second on-off valve 3 is also fully opened, and as a result, as is clear from section E, the compression capacity of the compressor 1 is further reliably suppressed. be done.

こうして、第1及び第2の開閉弁2.3の開閉制御を行
うことによって圧縮機1の圧縮容積が高精度かつ高範囲
にわたって可変とされる。
In this way, by controlling the opening and closing of the first and second on-off valves 2.3, the compression volume of the compressor 1 is made variable with high accuracy and over a wide range.

この行程において、逆止弁21は次のように機能する。In this stroke, the check valve 21 functions as follows.

圧縮機lが第1の開閉弁2が閉じられ、第2の開閉弁3
の開度を大きくして運転されているとき、圧縮室内での
冷媒ガスの圧力は全圧縮能力の場合に比べて低減された
ものとなり、逆止弁21の前銅らL! 訟 t+ ス 
0: + 呈に 士 ギこ4訊ウ 店 こ 栖 に 1
 蜘1)τi圧力P1よりも大となったとき、第1のば
ね部材71のばね力klに抗して第1の弁体70が開き
、弁孔73を通って低圧縮ガスが弁室24を介して吐出
通路20へ吐出することとなる。吐出が終れば第1の弁
体70は第1のばね部材71の付勢力により直ちに弁孔
73を閉じ逆止弁の機能を果す。
When the compressor l is closed, the first on-off valve 2 is closed and the second on-off valve 3 is closed.
When operating with a large opening, the pressure of refrigerant gas in the compression chamber is reduced compared to the case of full compression capacity, and the front copper of the check valve 21 L! litigation t+ su
0: + 1
Spider 1) When the pressure τi becomes higher than P1, the first valve body 70 opens against the spring force kl of the first spring member 71, and the low compressed gas passes through the valve hole 73 and flows into the valve chamber 24. It will be discharged to the discharge passage 20 via. When the discharge is finished, the first valve body 70 immediately closes the valve hole 73 due to the biasing force of the first spring member 71 and functions as a check valve.

圧縮allが第2の開閉弁3の開度を絞って、あるいは
第1及び第2の開閉弁2.3を閉じて高負荷で運転され
ているとき、圧縮室内での冷媒ガスは高圧に圧縮され、
流量は前記小流量のときより増大する。流量が増大する
と第1の逆止弁22では対処できなくなり、通路抵抗が
増し、その結果圧縮室14c内の圧力が高まり、弁室2
4と、圧縮室14c内及び吐出ポート通路部20a間と
の圧力差が生じる。
When the compression all is operated under high load by reducing the opening of the second on-off valve 3 or closing the first and second on-off valves 2.3, the refrigerant gas in the compression chamber is compressed to a high pressure. is,
The flow rate increases compared to the small flow rate. When the flow rate increases, the first check valve 22 can no longer handle the problem, passage resistance increases, and as a result, the pressure inside the compression chamber 14c increases, causing the valve chamber 2
4, and a pressure difference between the inside of the compression chamber 14c and the discharge port passage section 20a.

その圧力差が前述の1次設定圧力ptよりも大きい2次
設定圧力P2よりも大となったとき第2の弁体72が第
2のばね部材74のばね力に2に抗して開き、吐出ポー
ト通路部20aより高圧縮ガスが弁室24を介して吐出
通路20へ吐出することとなる、吐出が終れば第2の弁
体72は第2のばね部材74の付勢力により直ちに吐出
ポート通路部20aを閉じ、逆止弁の機走を果す。
When the pressure difference becomes larger than the secondary set pressure P2, which is larger than the above-mentioned primary set pressure pt, the second valve body 72 opens against the spring force of the second spring member 74, Highly compressed gas is discharged from the discharge port passage section 20a through the valve chamber 24 to the discharge passage 20. When the discharge is finished, the second valve body 72 is immediately moved to the discharge port by the biasing force of the second spring member 74. The passage portion 20a is closed and the check valve operates.

バイパスポート31及び副吐出ポート35.36は、そ
れぞれベーン5の側面と整合可能なようにベーン5の長
手方向に延びる長孔形状とされ。
The bypass port 31 and the sub-discharge ports 35 and 36 each have an elongated hole shape extending in the longitudinal direction of the vane 5 so as to be aligned with the side surface of the vane 5.

その長手方向に直角な幅方向の寸法d2 、d3はベー
ン5の板厚dlより小さくされるので、圧縮された冷媒
ガスがこれらのポート31,35.36を介してベー7
5の回転方向後方側の容積室に漏れることはない。
Since the dimensions d2 and d3 in the width direction perpendicular to the longitudinal direction are made smaller than the plate thickness dl of the vane 5, the compressed refrigerant gas flows through the ports 31, 35 and 36 to the vane 7.
There is no leakage to the volume chamber on the rear side in the rotational direction of No. 5.

更に、副吐出ポー) 35.36を設けたので、高圧縮
室14c内の冷媒ガスの圧縮圧が予め定められた圧力よ
りも大となったとき、この圧縮された冷媒ガスは1吐出
通路37を介して吐出ポート18の弁室24内に流入さ
れるので、冷媒ガスは過度に圧縮されることがなく、従
って圧縮機lを駆動するためのエンジン出力も節約する
ことができる。更に、各副吐出ポー)35.36はロー
タ6の回転方向に沿って相互に間隔をあけて配置される
ので、その位置に応じた圧縮圧が得られる。
Furthermore, since the sub-discharge ports 35 and 36 are provided, when the compression pressure of the refrigerant gas in the high compression chamber 14c becomes higher than a predetermined pressure, this compressed refrigerant gas flows through the 1-discharge passage 37. Since the refrigerant gas flows into the valve chamber 24 of the discharge port 18 through the refrigerant gas, the refrigerant gas is not excessively compressed, and therefore, the engine power for driving the compressor I can also be saved. Furthermore, since the sub-discharge ports (35, 36) are arranged at intervals from each other along the rotational direction of the rotor 6, compression pressures corresponding to their positions can be obtained.

換言すれば、冷媒ガスの吐出圧は副吐出ポートの数及び
位置によって任意に設定することができる。
In other words, the discharge pressure of the refrigerant gas can be arbitrarily set depending on the number and position of the sub-discharge ports.

第3図を参照して、制御装置4は複数のメモリMl、M
2.M3・・・を有する処理装置100と。
Referring to FIG. 3, the control device 4 includes a plurality of memories Ml, M
2. A processing device 100 having M3...

その処理装置iooからの信号に応じて第1及び第2の
開閉弁2,3を開閉駆動するための駆動回路71とを含
む、処理装置100には、車輌エンジンの運転条件、車
輌室内外の環境及び操作者の設定条件によって第1及び
第2の開閉弁2.3を制御すべく、これらの条件を表わ
すパラメータとしての信号が入力される。
The processing device 100 includes a drive circuit 71 for opening and closing the first and second on-off valves 2 and 3 in accordance with signals from the processing device ioo. In order to control the first and second on-off valves 2.3 according to the environment and the conditions set by the operator, signals as parameters representing these conditions are input.

上記運転条件を表わすパラメータとして1例えば車輌エ
ンジンへ混合気を供給するための手段に具備されたスロ
ットル弁(図示せず)の開度Th、並びに車輌に搭載さ
れるバッテリーの電圧vbが選ばれる。また車輌室内外
の環境条件を表わすパラメータとして1例えば車輌室内
温度Tr、 日射量Sr及び外気温度Toが選ばれる。
For example, the opening Th of a throttle valve (not shown) provided in a means for supplying air-fuel mixture to the vehicle engine and the voltage vb of a battery mounted on the vehicle are selected as parameters representing the above-mentioned operating conditions. Further, as parameters representing the environmental conditions inside and outside the vehicle, for example, the vehicle interior temperature Tr, the amount of solar radiation Sr, and the outside air temperature To are selected.

更に操作者の設定条件を表わすパラメータとして1例え
ば車輌室内の設定温度Tsが選ばれる。
Furthermore, one parameter representing the operator's setting conditions, for example, the set temperature Ts in the vehicle interior is selected.

処理装置100はこれらのパラメータTh、Vb、Tr
、Sr、To、Tsry)入力信号ニ従ッテ。
The processing device 100 processes these parameters Th, Vb, Tr.
, Sr, To, Tsry) Follow the input signal.

駆動回路101を介して第1及び第2の開閉弁2゜3を
開閉制御する。
The opening and closing of the first and second on-off valves 2.3 is controlled via the drive circuit 101.

処理装giooの働きを、以下の動作態様に従って説明
する。
The function of the processing unit gioo will be explained according to the following operational modes.

(A)バッテリー電圧vbが基準値よりも低いときこの
態様(A)では、第1及び第2の開閉弁2゜3は開かれ
、これによって圧縮alの駆動力に関する車輌エンジン
への負荷が軽減される。
(A) When the battery voltage vb is lower than the reference value In this mode (A), the first and second on-off valves 2゜3 are opened, thereby reducing the load on the vehicle engine related to the driving force of the compressed Al. be done.

このような・態様(A)は、バッテリーの消費電圧が大
である場合またはバッテリーの起電力が低下している場
合を想定しており、このような場合には車輌エンジンへ
の負荷を可及的に軽減させて。
This mode (A) assumes a case where the voltage consumption of the battery is high or the electromotive force of the battery is low, and in such a case, the load on the vehicle engine is reduced as much as possible. Let me reduce it.

すなわち冷房能力を抑制して、エンジンの出力軸に連結
された発電機がバッテリーを充分に充電できるように発
電能力が高められる。
In other words, the cooling capacity is suppressed and the power generating capacity of the generator connected to the output shaft of the engine is increased so that the battery can be sufficiently charged.

(B)車輌が加速状態であるとき 、+rrs  t#、lt/口)  慴 l斗   曲
:k M fil’ it /m)   b  rii
l  1?  +w  21及び第2の開閉弁2,3は
開かれ、これによって圧縮機lの駆動力に関する車輌エ
ンジンへの負荷が軽減される。これによって、加速のた
めの充分な車輌エンジンの出力が得られる。
(B) When the vehicle is accelerating, +rrs t#, lt/mouth) 慴 l斗 Song: k M fil' it /m) b rii
l 1? +w 21 and the second on-off valves 2 and 3 are opened, thereby reducing the load on the vehicle engine related to the driving force of the compressor l. This provides sufficient vehicle engine power for acceleration.

(C)加速状態が終了したとき この態様(C)では、第1の開閉弁2が閉じられ第2の
開閉弁3が成る一定時間、成る一定開度例えば局の開度
で開かれた状態とされる。これによって加速状態が終了
したときには、圧Wallの圧縮能力が一部復活されて
冷房作用が開始される。
(C) When the acceleration state ends In this mode (C), the first on-off valve 2 is closed and the second on-off valve 3 is opened for a certain period of time at a certain opening, for example, the opening of the station. It is said that As a result, when the acceleration state ends, the compression capacity of the pressure wall is partially restored and the cooling action is started.

第2の開閉弁3を釉開度状態としたのは加速状態が終了
したときに、圧縮機lを制御するための種々の条件が変
化しているためであって、いわゆる見込み制御を行うよ
うにするためである。
The reason why the second on-off valve 3 is set to the glazed opening state is because various conditions for controlling the compressor l change when the acceleration state ends, and so-called prospective control is performed. This is for the purpose of

CD)車室内温度に関連して制御するときこの態様(I
))では、車室内の設定温度Tsと実際の車室内温度T
rとの温度差の程度に応じて第1及び第2の開閉弁2,
3を制御し、これによって必要な冷房能力に応じた圧縮
機lの圧縮能力を得ようとするものである。なお、実際
的な車室内体感温度は、日射量Sr等の車室内外の環境
条件に影響されるので、設定温度Tsはこれらの条件に
よって補正される。
CD) When controlling in relation to the vehicle interior temperature, this aspect (I
)), the set temperature Ts in the vehicle interior and the actual temperature T in the vehicle interior.
The first and second on-off valves 2,
3, thereby obtaining the compression capacity of the compressor l in accordance with the required cooling capacity. Note that since the actual sensible temperature inside the vehicle is affected by environmental conditions inside and outside the vehicle interior, such as the amount of solar radiation Sr, the set temperature Ts is corrected based on these conditions.

上述の温度差は、車室内の設定温度Ts、外気温度To
、日射isr、車室内温度Trをそれぞれ測定し、その
データを処理装置70のメモリ内へ読み込む0次いで、
車室内の設定温度Tsを外気温度To及び日射量Srに
より補正し、補正設定温度Ts”を計算して出す、この
温度差を実験値又は経験値により3つの値に分けて制御
する。すなわち、非常に大きい値をa、次の値をb、あ
まり差がない値をCと設定し、各々の温度差に応じて圧
縮I!lの容量を変えるものである。また、補正設定温
度Ts’以下に車室内温度Trが下がった場合も−dと
定義し、この値によっても圧縮機1の容量が制御される
The above temperature difference is the set temperature Ts inside the vehicle and the outside temperature To.
, solar radiation isr, and vehicle interior temperature Tr are respectively measured, and the data is read into the memory of the processing device 70. Then,
The set temperature Ts in the vehicle interior is corrected by the outside air temperature To and the amount of solar radiation Sr, and the corrected set temperature Ts is calculated and obtained. This temperature difference is controlled by dividing it into three values based on experimental or empirical values. That is, A very large value is set as a, the next value is set as b, and a value with little difference is set as C, and the capacity of the compression I!l is changed according to each temperature difference.In addition, the correction set temperature Ts' A case where the vehicle interior temperature Tr falls below is also defined as -d, and the capacity of the compressor 1 is also controlled by this value.

このようにして、態様(D)は更に以下の状態に分けて
制御される。
In this way, mode (D) is controlled further divided into the following states.

(D−1)補正設定温度Ts”と車室内温度がほぼ同じ
場合 こノ態様(D−1) テは、−d≦T r −Ts’<
 b (7)関係にある場合であって、この場合には第
2の開閉弁3の開度をいわゆるマツプ制御して、比較的
微小の温度制御を行う。
(D-1) In this case (D-1) when the corrected set temperature Ts' and the vehicle interior temperature are almost the same, -d≦T r -Ts'<
b (7) In this case, the opening degree of the second on-off valve 3 is subjected to so-called map control to perform relatively minute temperature control.

(D−2)圧縮機lの始動時、車室内温度Trが補正設
定温度Ts”よりも予め定めた温度差す以上に高く、ク
ールダウンのための温度差aよりも低いとき(b≦T 
r −Ts’< a) この態様(D−2)では、車室内温度Trと補正設定温
度Ts”との間に比較的大きな温度差があり、短時間に
車室内の温度を下げる必要があるので、始動初期には圧
縮機1は100%の圧縮能力を発揮し、温度差すになる
と第2の開閉弁3の開度をわずかに開いて急冷状態より
壱や緩和し過度に冷房されることが防がれる。しかる後
、所定温度内に入れば前述の態様(D−1)と同様に運
転される。
(D-2) When starting the compressor l, when the vehicle interior temperature Tr is higher than the corrected set temperature Ts by more than a predetermined temperature difference and lower than the temperature difference a for cooling down (b≦T
r −Ts'< a) In this mode (D-2), there is a relatively large temperature difference between the vehicle interior temperature Tr and the corrected set temperature Ts'', and it is necessary to lower the temperature in the vehicle interior in a short time. Therefore, at the beginning of startup, the compressor 1 exerts 100% compression capacity, and when the temperature drops, the opening of the second on-off valve 3 is slightly opened to relieve the rapid cooling state and prevent excessive cooling. Thereafter, if the temperature falls within the predetermined temperature range, the operation is performed in the same manner as in the above embodiment (D-1).

この態様(D−2)では、温度差の段階に応じて最適に
制御されるため、従来方式に比して、過度に冷房するこ
とも無く、圧縮機1の駆動力が無駄に消費されることも
ない。
In this mode (D-2), since the temperature is optimally controlled according to the stage of the temperature difference, there is no excessive cooling compared to the conventional method, and the driving force of the compressor 1 is wasted. Not at all.

(D−3)圧縮#llの始動時、車室内温度Trが補正
設定温度Ts”よりも予め定めた温度差a以上に高いと
き(a≦T r −Ts’) この態様(D−3)は、車室内温度Trと補正設定温度
Ts’との温度差が非常に大きい場合であって、意識的
に設定温度Ts以下の急速な冷却状態へと制御する。温
度差が非常に大きいことにより、車室内温度Trが高く
熱容量も大きくなっており、これを設定温度Ts以下に
急冷する、すなわちクールダウンすることにより、人体
の皮膚に感じる温度も快適な涼しさを感じることになる
(D-3) At the start of compression #ll, when the vehicle interior temperature Tr is higher than the corrected set temperature Ts'' by a predetermined temperature difference a (a≦Tr −Ts') This mode (D-3) This is a case where the temperature difference between the vehicle interior temperature Tr and the corrected set temperature Ts' is very large, and the temperature is intentionally controlled to a rapid cooling state below the set temperature Ts. , the vehicle interior temperature Tr is high and the heat capacity is large, and by rapidly cooling it to below the set temperature Ts, that is, cooling it down, the temperature felt on the skin of the human body will feel comfortable and cool.

この態様(D−3)では、真夏日などで車室内の温度が
非常に高くなっているとき、人体の皮膚感覚を考慮して
一旦設定温度Tsよりも低い過冷却状態とし、次いで圧
縮機lをほぼ100%容量制御する。その後温度上昇を
まってエンジンへの負荷を掛けずに通常の冷房状態へと
接続する。
In this embodiment (D-3), when the temperature inside the vehicle is extremely high, such as on a midsummer day, the supercooling state is first set lower than the set temperature Ts, taking into consideration the skin sensation of the human body, and then the compressor is turned on. almost 100% capacity control. After that, the temperature rises and the system returns to normal cooling mode without putting any load on the engine.

(D−4)圧縮alの始動時、車室内温度Trが補正設
定温度Ts’よりも予め定めた温度差−d以上に低いと
き(Tr−Ts’<−d) この態様(D−4)では、最初から予め定めた温度差−
d以上に低いので、圧縮機1を運転する必要がなく10
0%の容量制御とする。温度が上昇してくると、第2の
開閉弁2を作動させマツプ制御により温度制御する。
(D-4) At the time of starting compression AL, when the vehicle interior temperature Tr is lower than the corrected set temperature Ts' by a predetermined temperature difference -d (Tr-Ts'<-d) This aspect (D-4) Now, let's start with the predetermined temperature difference -
Since it is lower than d, there is no need to operate compressor 1 and
0% capacity control. When the temperature rises, the second on-off valve 2 is operated to control the temperature by map control.

この態様(D−0では初めから冷房をする必要のないと
きには、圧縮411はほぼ100%容量制御されて、無
駄にエンジン出力が消費されることが防がれる。
In this mode (D-0), when there is no need to perform air conditioning from the beginning, the compression 411 is almost 100% capacity controlled to prevent engine output from being wasted.

以上述べたように、車輌エンジンの運転条件、車輌室内
外の環境及び操作者の設定条件によって第1及び第2の
開閉弁2.3が適宜に制御され、エンジンへの負担を極
力軽減するとともに効果的な冷房作用を達成できる。
As described above, the first and second on-off valves 2.3 are appropriately controlled depending on the operating conditions of the vehicle engine, the environment inside and outside the vehicle, and the conditions set by the operator, thereby reducing the load on the engine as much as possible. Effective cooling effect can be achieved.

上述の実施例は本発明の一態様を示したものであって、
本発明の基本的技術思想のもとに種々の設計的改変をな
し得る。以下の態様は本発明の技術的範囲に包含される
ものである。
The above embodiment illustrates one embodiment of the present invention, and
Various design modifications can be made based on the basic technical idea of the present invention. The following embodiments are included within the technical scope of the present invention.

■ 上述の実施例ではいずれも第1の逆止弁22と第2
の逆止弁23とを直列に配した態様を示したが、これら
を並列に配してもよい。
■ In each of the above embodiments, the first check valve 22 and the second check valve
Although a mode has been shown in which the check valves 23 and the check valves 23 are arranged in series, they may be arranged in parallel.

lリ  圧縮機はベーン弐回転圧縮機に限らず、その他
の容積式圧縮4m(レンプロ式、アキシャル式、及びラ
ジアル式のもの)を含むものである争【■ 第1及び第
2の開閉弁2,3はオン番オフ型もしくは比例制御型の
電磁弁に限られず、フリークエンシ型の電磁弁を採用す
ることができる。
The compressor is not limited to the two-vane rotary compressor, but also includes other positive displacement 4m compressors (Rempro type, axial type, and radial type). is not limited to an on/off type or proportional control type solenoid valve, but may also be a frequency type solenoid valve.

■ 第1及び第2の開閉弁2,3は電磁弁でなくてもよ
く、圧力によって制御されるダイヤプラム弁を適用する
ことができる。
(2) The first and second on-off valves 2 and 3 do not need to be electromagnetic valves, and diaphragm valves controlled by pressure can be used.

■ 更に圧縮機lにおけるベーン5の枚数は実施例で示
すように3枚のものでなくてもよい。
(2) Further, the number of vanes 5 in the compressor 1 does not have to be three as shown in the embodiment.

C1発明の効果 以上のように本発明によれば、圧縮室に開口する吐出ポ
ートに、その吐出ポートから吐出通路への流出を許容す
る逆止弁を設けてなる圧縮機において、逆止弁は、その
逆止弁の前後における圧力差が予め定めた1次設定圧力
P1よりも大となったとき、吐出ポートから吐出通路へ
の小流量の流出を許容する第1の逆止弁と、圧力差が前
記1次設定圧力P1よりも大なる2次設定圧力P2より
も大となったとき、吐出ポートから前記吐出通路への大
流量の流出を許容する第2の逆止弁とを含む構成を採る
ので、小流量のときに適した第1の逆止弁の小通路によ
り残留体積を小さくすることができ、このため、圧縮機
の小流量運転のとき圧縮ガスが吐出通路側に吐出される
量を増大させることができ、圧縮機の効率が向上する。
C1 Effects of the Invention As described above, according to the present invention, in a compressor in which a discharge port opening into a compression chamber is provided with a check valve that allows outflow from the discharge port to a discharge passage, the check valve is , a first check valve that allows a small flow rate to flow from the discharge port to the discharge passage when the pressure difference before and after the check valve becomes larger than a predetermined primary set pressure P1; a second check valve that allows a large flow rate to flow from the discharge port to the discharge passage when the difference is greater than the secondary set pressure P2, which is greater than the primary set pressure P1; Therefore, the residual volume can be reduced by the small passage of the first check valve, which is suitable for small flow rates, and for this reason, compressed gas is discharged to the discharge passage side when the compressor is operating at a small flow rate. This increases the amount of fuel that can be used, improving the efficiency of the compressor.

また、大流量のときには、吐出通路側と圧縮室との差圧
が大きくなって残留体積を可及的小さくした第2の逆止
弁の大通路が開くので、吐出抵抗を減らすことができ、
この結果、圧縮仕事を増やさずこの場合においても圧縮
機の効率が向上する。
In addition, when the flow rate is large, the pressure difference between the discharge passage side and the compression chamber becomes large, and the large passage of the second check valve that reduces the residual volume as much as possible opens, so the discharge resistance can be reduced.
As a result, the efficiency of the compressor is improved even in this case without increasing the compression work.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の圧縮機の実施例を示し、第°1図はその
一実施例の一部展開縦断面図、第2図はその一部拡大断
面図、第3図はその要部の吐出ポート部における逆止弁
の拡大断面図であり、第4図は他の実施例の要部拡大断
面図、第5図は更に他の実施例の要部拡大断面図、第6
図は水圧mmの制御系統図である。
The drawings show an embodiment of the compressor of the present invention; Fig. 1 is a partially expanded vertical sectional view of one embodiment, Fig. 2 is a partially enlarged sectional view, and Fig. 3 is a discharge diagram of the main part. FIG. 4 is an enlarged sectional view of the main part of another embodiment, FIG. 5 is an enlarged sectional view of the main part of another embodiment, and FIG.
The figure is a control system diagram for water pressure mm.

Claims (1)

【特許請求の範囲】 1)圧縮室に開口する吐出ポートに、その吐出ポートか
ら吐出通路への流出を許容する逆止弁を設けてなる圧縮
機において、 前記逆止弁は、その逆止弁の前後における圧力差が予め
定めた1次設定圧力P1よりも大となったとき、前記吐
出ポートから前記吐出通路への小流量の流出を許容する
第1の逆止弁と、前記圧力差が前記1次設定圧力P1よ
りも大なる2次設定圧力P2よりも大となったとき、前
記吐出ポートから前記吐出通路への大流量の流出を許容
する第2の逆止弁とを含むことを特徴とする圧縮機。 2)第2の逆止弁は2次設定圧力P2に対応するばね力
k2を有する第2のばね部材と、その第2のばね部材に
よって吐出ポートを弾発的に閉止する第2の弁体とから
なり、第1の逆止弁は1次設定圧力P1に対応するばね
力k1を有する第1のばね部材と、前記第2の弁体に前
記吐出ポートに連通するようにして形成された弁孔を前
記第1のばね部材によって弾発的に閉止する第1の弁体
とからなる特許請求の範囲第1項に記載の圧縮機。 3)第2の逆止弁は2次設定圧力P2に対応するばね力
k2を有する第2のばね部材と、その第2のばね部材に
よって吐出ポートを弾発的に閉止する第2の弁体とから
なり、第1の逆止弁は1次設定圧力P1に対応するばね
力k1を有するとともに前記第2の弁体に前記吐出ポー
トに連通するようにして形成された弁孔をそのばね力k
1によって弾発的に閉止する第1の弁体からなる特許請
求の範囲第1項に記載の圧縮機。
[Scope of Claims] 1) A compressor in which a discharge port opening into a compression chamber is provided with a check valve that allows outflow from the discharge port to a discharge passage, the check valve comprising: a first check valve that allows a small flow rate to flow from the discharge port to the discharge passage when the pressure difference before and after becomes larger than a predetermined primary set pressure P1; and a second check valve that allows a large flow rate to flow from the discharge port to the discharge passage when the secondary set pressure P2 is higher than the primary set pressure P1. Compressor features. 2) The second check valve includes a second spring member having a spring force k2 corresponding to the secondary set pressure P2, and a second valve body that elastically closes the discharge port with the second spring member. The first check valve is formed of a first spring member having a spring force k1 corresponding to the primary set pressure P1, and the second valve body so as to communicate with the discharge port. The compressor according to claim 1, further comprising a first valve body that elastically closes a valve hole by the first spring member. 3) The second check valve includes a second spring member having a spring force k2 corresponding to the secondary set pressure P2, and a second valve body that elastically closes the discharge port with the second spring member. The first check valve has a spring force k1 corresponding to the primary set pressure P1, and the valve hole formed in the second valve body so as to communicate with the discharge port has the spring force. k
1. The compressor according to claim 1, comprising a first valve body which is elastically closed by a first valve body.
JP9337286A 1986-04-24 1986-04-24 Check valve for delivery port of compressor Pending JPS62251482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9337286A JPS62251482A (en) 1986-04-24 1986-04-24 Check valve for delivery port of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9337286A JPS62251482A (en) 1986-04-24 1986-04-24 Check valve for delivery port of compressor

Publications (1)

Publication Number Publication Date
JPS62251482A true JPS62251482A (en) 1987-11-02

Family

ID=14080468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9337286A Pending JPS62251482A (en) 1986-04-24 1986-04-24 Check valve for delivery port of compressor

Country Status (1)

Country Link
JP (1) JPS62251482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220384A (en) * 1997-02-05 1998-08-18 Sanyo Electric Co Ltd Pressure regulation device for scroll compressor
JP4823381B1 (en) * 2010-10-18 2011-11-24 清治 布施 Gas compression transfer device
CN109072924A (en) * 2016-10-25 2018-12-21 恩泰克尼亚咨询有限公司 vacuum pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220384A (en) * 1997-02-05 1998-08-18 Sanyo Electric Co Ltd Pressure regulation device for scroll compressor
JP4823381B1 (en) * 2010-10-18 2011-11-24 清治 布施 Gas compression transfer device
CN109072924A (en) * 2016-10-25 2018-12-21 恩泰克尼亚咨询有限公司 vacuum pump

Similar Documents

Publication Publication Date Title
CN111928504B (en) Refrigerant circulation system and control method
KR900004616B1 (en) Scroll compressro with displacement adjusting mechanism
AU607746B2 (en) Scroll type compressor with displacement adjusting mechanism
JPH0249994A (en) Rotary compressor
KR100665052B1 (en) Controlling method of air conditioning system for vehicles
CA1314031C (en) Variable capacity compressor
JPS62251482A (en) Check valve for delivery port of compressor
JPS60249694A (en) Starting unloader device for compressor
JPS62247194A (en) Vane type rotary compressor
JPS62247195A (en) Vane type rotary compressor
JPS62255212A (en) Refrigerant compression device for vehicle
JPS62255210A (en) Refrigerant compression device for vehicle
JPS62251491A (en) Opening/closing valve fixing structure for vane type rotary compressor
JP6612412B1 (en) Compressor
JPS62243985A (en) Rotary type compressor
JPS62255211A (en) Refrigerant compression device for vehicle
JPS62247199A (en) Check valve structure in vane type rotary compressor
JPS6229779A (en) Compressor for vehicle air conditioner
JPH10274180A (en) Screw compressor
JPH03294687A (en) Capacity control method of capacity variable type compressor
JPS58138288A (en) Rotary compressor
JPH08301132A (en) Flow rate controller in power steering device
JPH02227590A (en) Variable capacity compressor
JPS5939195Y2 (en) Rotary compressor capacity control device
JPH11230053A (en) Control circuit of compressor