JPS62250320A - Thermopile - Google Patents

Thermopile

Info

Publication number
JPS62250320A
JPS62250320A JP61094158A JP9415886A JPS62250320A JP S62250320 A JPS62250320 A JP S62250320A JP 61094158 A JP61094158 A JP 61094158A JP 9415886 A JP9415886 A JP 9415886A JP S62250320 A JPS62250320 A JP S62250320A
Authority
JP
Japan
Prior art keywords
black
optical fiber
film
thermocouple
thermopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61094158A
Other languages
Japanese (ja)
Inventor
Jiro Shinkai
次郎 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP61094158A priority Critical patent/JPS62250320A/en
Publication of JPS62250320A publication Critical patent/JPS62250320A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples

Abstract

PURPOSE:To receive infrared rays emitted from the end surface of an infrared ray fiber with good efficiency, by downwardly curving a flat gold black on a thermopile chip in a semi-spherical shape. CONSTITUTION:A thermocouple 4 is provided on the SiO2 film 5 formed on an insulating substrate and gold black 2 is formed thereon in a film form through an Si3N4 film 3. In this constitution, a surface receiving infrared rays from the end surface of an infrared ray optical fiber 1 is formed on a semi- spherical gold black 2. By this method, the hot contact of the thermocouple 4 is provided along the surface of the gold black 2 and, therefore, the heat from the fiber 1 can be received efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーモパイルに係り、特に赤外線光ファイバ端
面とサーモパイルチップ上の吸熱体である全黒面との空
間的な光学的結合をする時に効率よく集光することので
きるサーモパイルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thermopile, and particularly improves efficiency when spatially optically coupling the end face of an infrared optical fiber to the all-black surface, which is a heat absorber on a thermopile chip. Concerning thermopiles that can focus light well.

〔従来の技術〕[Conventional technology]

赤外線検出器としてのサーモパイルは、従来、絶縁基板
上にサーモカップルを多数形成し、この各サーモカップ
ルを直列接続させたものである。
Conventionally, a thermopile used as an infrared detector has a large number of thermocouples formed on an insulating substrate, and these thermocouples are connected in series.

しかし、その感度に直接関係する出力の増大を図るため
に、各サーモカップルの密度をできる限り大きくとって
いたものである。
However, in order to increase the output, which is directly related to the sensitivity, the density of each thermocouple was made as large as possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

また。平面状全黒サーモパイルと赤外線光ファイバ端面
との空間的な従来の光学的結合方法では、受光効率が良
くない。いま、第3図(A)において、完全拡散面光源
による照度の式より、点Pの照度をEとすれば、Eは、 但し R: 距離 θ : 放射面の法線となす角 ψ : 受光面の法線となす角 L : 輝度 となる。
Also. The conventional spatial optical coupling method of a planar all-black thermopile and the end face of an infrared optical fiber does not have good light receiving efficiency. Now, in Fig. 3 (A), from the equation for illuminance due to a completely diffused surface light source, if the illuminance at point P is E, then E is as follows: R: Distance θ: Angle with the normal to the emission surface ψ: Light reception Angle L with the normal line of the surface: Brightness.

そこで赤外線光ファイバ200の端面の面積をπγ”(
ds==πγ2)とすると、前記(1)式から点Pの照
度Eは、 =πLAcosOcosψ    ゛曲°″゛°°曲°
曲曲(2)γ2 但し A=− となる。そこで、いま、第3図(B)に示される平面状
全黒について考えてみる。第3図(B)における平面状
全黒100上の点Aでの照度EAはψもθもO(零)な
ので前記(2)式よりE^=πLAcosθ coaψ =xLAcosO” coso” 次に第3図(C)に示されるような赤外線光ファイバ2
00の垂直下点Aよりずれた点Bにおける照度EBは、
ψもθも存在するので前記(2)式より EB=πLBcosθcosψ γ2 但し B=− R′2 R’=Rcos  θ R’>R どなる。
Therefore, the area of the end face of the infrared optical fiber 200 is πγ”(
ds==πγ2), the illuminance E at point P from equation (1) is: =πLAcosOcosψ ゛°″゛°°°
Song (2) γ2 However, A=-. Therefore, let's now consider the planar all black shown in FIG. 3(B). Since the illuminance EA at point A on the planar completely black 100 in FIG. 3(B) is O (zero) for both ψ and θ, from the above equation (2), E^=πLAcosθ coaψ =xLAcosO"coso" Next, the third Infrared optical fiber 2 as shown in Figure (C)
The illuminance EB at a point B shifted from the vertical lower point A of 00 is:
Since both ψ and θ exist, from the above equation (2), EB=πLBcosθcosψ γ2 However, B=−R'2 R'=Rcos θ R'>R.

また、赤外線光ファイバ200の端面と平面状全黒面1
00は平行となっているので、各々法線n、n’は平行
条件よりψ=0となる。したがって点Bにおける照度E
Bは Ee=πLBcos”ll+ γ2 A>B となる。
In addition, the end face of the infrared optical fiber 200 and the planar fully black surface 1
Since 00 is parallel, each normal line n and n' becomes ψ=0 from the parallel condition. Therefore, the illuminance E at point B
B becomes Ee=πLBcos''ll+ γ2 A>B.

このことから点Bの照度8日は点Aにおける照度よりB
とQOB”θを乗じた分だけ弱くなる。
From this, the illuminance at point B on the 8th is greater than the illuminance at point A.
It becomes weaker by the amount multiplied by QOB"θ.

さらに、ある広がり角を持つ赤外線光ファイバ端面の微
小な位置変化により、サーモパイルチップ上の平面上全
黒以外の他の場所(例えば熱電対の冷接点)を赤外線で
暖めてしまうことも生じる。
Furthermore, due to minute positional changes in the end face of an infrared optical fiber having a certain spread angle, infrared rays may warm up areas on the thermopile chip other than the completely black area on the plane (for example, the cold junction of a thermocouple).

また、サーモパイルの平面状全黒に赤外線光ファイバ端
面を直接結合させることはできない。
Furthermore, it is not possible to directly couple the end face of an infrared optical fiber to the entire planar surface of the thermopile.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、赤外線光ファイバ端面とサーモパイル
チップ上の全黒を空間的に効率良く結合することのでき
るサーモバイルを提供することにある。
An object of the present invention is to provide a thermomobile that can spatially efficiently couple the end face of an infrared optical fiber and the entire black on a thermopile chip.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の原理は次の如くである。すなわち、本発明は第
2図に示す如く赤外線光ファイバ5oの端面から出る赤
外線の受光面である全黒6oを半球状に形成している。
The principle of the present invention is as follows. That is, in the present invention, as shown in FIG. 2, a completely black 6o, which is a receiving surface for infrared rays emitted from an end face of an infrared optical fiber 5o, is formed in a hemispherical shape.

したがって、いま第2図(A)に示される半球状全黒6
0面上の点A′での照度EA′はθもψも零なので前述
(2)式より EA’=πLAcosO’ coso’ =zLAγ2 但しA==− R” となる。
Therefore, the hemispherical full black 6 shown in FIG. 2(A) now
Since both θ and ψ of illumination intensity EA' at point A' on plane 0 are zero, EA'=πLAcosO'coso'=zLAγ2 where A==−R” from equation (2).

また、第2図(B)に示される半球状全黒6゜面上の点
B′の照度EB′は0は存在するがψは零なので前記(
2)式より EB’ =sLAc o sθc o s O@=gL
Ac o sθ但し A == ’に となる。
Furthermore, the illuminance EB' at point B' on the hemispherical black 6° plane shown in FIG. 2(B) is 0, but ψ is zero, so
2) From the formula, EB' = sLAc o sθc o s O@=gL
Aco sθ However, A == '.

したがって、照度EB’は照度E^′よりcosoを乗
じた分だけ弱くなる。ところで平面状全黒の場合のE8
は、QOB”θとBを乗じた分だけ弱くなっている。し
かし1本発明のように、半球状全黒の場合のE B/は
aosf)を乗じた分だけ弱くなるだけであるため全体
として照度はE8′〉Ellとなる。それに、ある広が
り角を持つファイバ端面の微小な位置変化があっても、
サーモパイルチップ上の半球状全黒の曲率半径を適切に
決めれば、他の場所(例えば、熱電対の冷接点)を赤外
線で暖めることは生じない、また、サーモパイルチップ
上の熱電対の温接点を半球状全黒面にSi3N4膜をは
さんで沿わせているので、熱の受は取りの効率が良い。
Therefore, the illuminance EB' becomes weaker than the illuminance E^' by an amount multiplied by coso. By the way, E8 in the case of flat black
is weakened by the product of QOB"θ and B. However, as in the present invention, in the case of hemispherical full black, E B/ is weakened by the amount multiplied by aosf), so the overall The illuminance is E8'〉Ell.In addition, even if there is a slight change in the position of the fiber end face with a certain divergence angle,
If the radius of curvature of the hemispherical black on the thermopile chip is determined appropriately, heating of other places (for example, the cold junction of the thermocouple) with infrared rays will not occur, and the hot junction of the thermocouple on the thermopile chip will not be heated by infrared rays. Since the Si3N4 film is sandwiched and runs along the hemispherical black surface, heat is efficiently absorbed and removed.

このように1本発明は、サーモパイルチップ上の平面状
全黒を半球状に掘下げることにより、ファイバ端面から
の放射を効率良く集光することができるようにしようと
いうものである。
In this way, one aspect of the present invention is to make it possible to efficiently condense radiation from the fiber end face by digging down the planar black area on the thermopile chip in a hemispherical shape.

すなわち、本発明は、絶縁基板上に形成される酸化シリ
コン膜上に設けられた熱電対上に窒化シリコン膜を介し
て形成される全黒を膜状に形成してなるものにおいて、
上記赤外線光ファイバ端面からの赤外線を受光する面で
ある全黒を半球状に形成したことを特徴とするものであ
る。
That is, the present invention provides a device in which a full black film is formed on a thermocouple provided on a silicon oxide film formed on an insulating substrate with a silicon nitride film interposed therebetween.
The device is characterized in that the completely black surface that receives the infrared rays from the end face of the infrared optical fiber is formed into a hemispherical shape.

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

第1図には1本発明の実施例が示されている。FIG. 1 shows an embodiment of the invention.

図において、1は赤外線光ファイバ、2は半球状全黒、
3はSi、N4膜、4は熱電対、5はS i O2膜、
6はSi、N、膜、7はS i O,,8はSi、N、
膜、9はSi基板である。実施例において、S i O
2膜5の上に形成される熱電対4の温接点を半球状全黒
2面に沿わせて設けられているため1本実施例によれば
赤外線光ファイバ1からの熱を効率良く受は取れる。
In the figure, 1 is an infrared optical fiber, 2 is a hemispherical black,
3 is Si, N4 film, 4 is thermocouple, 5 is SiO2 film,
6 is Si, N, film, 7 is SiO, 8 is Si, N,
The film 9 is a Si substrate. In examples, S i O
Since the hot junction of the thermocouple 4 formed on the two membranes 5 is provided along the two hemispherical black surfaces, according to this embodiment, the heat from the infrared optical fiber 1 can be efficiently received. I can take it.

また1本実施例における半球状全黒2は、効率良く赤外
線光ファイバ1の端面から出射される赤外線を受光でき
るものである。
Further, the hemispherical fully black 2 in this embodiment can efficiently receive infrared rays emitted from the end face of the infrared optical fiber 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば赤外線光ファイバ端
面とサーモパイルチップ上の全黒を空間的に効率良く結
合することができる。
As explained above, according to the present invention, the end face of an infrared optical fiber and the entire black on the thermopile chip can be spatially and efficiently coupled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すサーモパイルの断面図、
第2図は本発明の詳細な説明するための図、第3図は従
来のサーモパイルの問題点を説明するための図である。 1・・・赤外線光ファイバ、 2・・・半球状全黒、 3・・・Si、N4膜。 4・・・熱電対。 5・・・S i O,膜。 6・・・Si3N、膜、 7・・・Sin、、 8・・・Si3N4膜。 9・・・Si基板。
FIG. 1 is a cross-sectional view of a thermopile showing an embodiment of the present invention;
FIG. 2 is a diagram for explaining the present invention in detail, and FIG. 3 is a diagram for explaining the problems of the conventional thermopile. 1... Infrared optical fiber, 2... Hemispherical black, 3... Si, N4 film. 4...Thermocouple. 5...S i O, membrane. 6...Si3N, film, 7...Sin, 8...Si3N4 film. 9...Si substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成される酸化シリコン膜上に設け
られた熱電対上に窒化シリコン膜を介して形成される金
黒を膜状に形成してなるものにおいて、上記赤外線光フ
ァイバ端面からの赤外線を受光する面を半球状に形成し
たことを特徴とするサーモパイル。
(1) A gold black film formed on a thermocouple provided on a silicon oxide film formed on an insulating substrate via a silicon nitride film, in which the end face of the infrared optical fiber is A thermopile characterized by having a hemispherical surface that receives infrared rays.
JP61094158A 1986-04-23 1986-04-23 Thermopile Pending JPS62250320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61094158A JPS62250320A (en) 1986-04-23 1986-04-23 Thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61094158A JPS62250320A (en) 1986-04-23 1986-04-23 Thermopile

Publications (1)

Publication Number Publication Date
JPS62250320A true JPS62250320A (en) 1987-10-31

Family

ID=14102568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61094158A Pending JPS62250320A (en) 1986-04-23 1986-04-23 Thermopile

Country Status (1)

Country Link
JP (1) JPS62250320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359836B1 (en) * 2000-02-21 2002-11-07 엘지전자 주식회사 thermopile sensor
US6898451B2 (en) * 2001-03-21 2005-05-24 Minformed, L.L.C. Non-invasive blood analyte measuring system and method utilizing optical absorption

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359836B1 (en) * 2000-02-21 2002-11-07 엘지전자 주식회사 thermopile sensor
US6898451B2 (en) * 2001-03-21 2005-05-24 Minformed, L.L.C. Non-invasive blood analyte measuring system and method utilizing optical absorption

Similar Documents

Publication Publication Date Title
TW384395B (en) Thermopile sensor, and radiation thermometer and motion detector with the thermopile sensor
US3902794A (en) Fresnell lens
JPH0249124A (en) Thermopile
JPS62250320A (en) Thermopile
US20050109940A1 (en) Radiation sensor
JPH10209414A (en) Thermal infrared image sensor
JP3309957B2 (en) Infrared detector
JPH10307237A (en) Integrated type semiconductor device for optical communication
JPH1183634A (en) Thermal infrared ray detector and method for manufacturing temperature sensing element used for it
JPH0271122A (en) Infrared image sensor
JPH0713237Y2 (en) Photo detector
JPS61278265A (en) Facsimile sensor unit
JPS6159884A (en) Solar battery module
JPH11326064A (en) Infrared image pickup element
JPH1019667A (en) Infrared ray sensor
JPS61212809A (en) Optical coupler
JPS58172839U (en) infrared radiation thermometer
JPH0642181Y2 (en) Thermal conversion type optical power measuring instrument
JPH05256695A (en) Optical detector
JPH011919A (en) Pyroelectric infrared detector
JPS6341412B2 (en)
JPS63146016A (en) Condenser type solar light transmission equipment
JPH09318450A (en) Microbolometer element
JPH10239527A (en) Diffused light reconverging device
JPS6284572A (en) Photosensor