JPS62244378A - Device for pretreatment of filtration membrane - Google Patents

Device for pretreatment of filtration membrane

Info

Publication number
JPS62244378A
JPS62244378A JP8981886A JP8981886A JPS62244378A JP S62244378 A JPS62244378 A JP S62244378A JP 8981886 A JP8981886 A JP 8981886A JP 8981886 A JP8981886 A JP 8981886A JP S62244378 A JPS62244378 A JP S62244378A
Authority
JP
Japan
Prior art keywords
membrane
fermentation
gas
tank
membrane unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8981886A
Other languages
Japanese (ja)
Inventor
Takeshi Hibino
健 日比野
Keisuke Nakagome
中込 敬祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP8981886A priority Critical patent/JPS62244378A/en
Publication of JPS62244378A publication Critical patent/JPS62244378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M39/00Means for cleaning the apparatus or avoiding unwanted deposits of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:When an anaerobic microorganism is fermented in a tank and the fermentation mixture is recovered by filtration through a membrane unit, a nonoxygen gas is jetted into the fermentation tank to generate a gas-liquid mixture flow to clean the membrane surface whereby the fermentation efficiency is increased. CONSTITUTION:The tightly closed fermentation tank 1 is provided with a membrane unit 3 inside and the filtrate side of the membrane unit is evacuated with vacuum pump 4. The substrate is continuously sent with pump 6 into the fermentation tank 1 where the fermentation of an anaerobic microorganism is effected. The fermentation mixture is taken out, passed through the membrane unit 3 and the filtrate is taken out with vacuum pump 4. Further, the fermentation tank is equipped with an gas distributor 2 on the bottom and a nonoxygen gas is jetted out into the tank 1 to circulate the fermentation mixture and simultaneously to bring the circulating flow into contact with the membrane surface whereby excessive concentration polarization and membrane contamination are prevented to conduct smooth fermentation operations.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は嫌気性微生物による発酵を効率よく行い得る膜
処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a membrane treatment device that can efficiently carry out fermentation using anaerobic microorganisms.

〈先行技術と問題点〉 嫌気性微生物を用いる発酵プロセスは、有機物質を含む
原液からメタンガスを回収する最終グロセスとしてのメ
タン発酵を初め、嫌気条件でのアルコール発酵など有用
な微生物利用法として注目されている。
<Prior art and problems> Fermentation processes using anaerobic microorganisms have attracted attention as useful microbial utilization methods, including methane fermentation as a final process for recovering methane gas from raw solutions containing organic substances, and alcohol fermentation under anaerobic conditions. ing.

しかしながら、従来においては嫌気発酵を回分式によっ
て行っており、微生物の生育速度が遅いために、反応に
長期間を要し、大規模な発酵槽設備が不可欠である。
However, conventionally, anaerobic fermentation has been carried out in a batch manner, and due to the slow growth rate of microorganisms, the reaction requires a long period of time, and large-scale fermentor equipment is indispensable.

最近においては、高分子に包括または無機担体に吸着さ
せた微生物を用いて、嫌気発酵を連続的に高速下で行う
ことが試みられているが、微生物の固定が困難であって
当該微生物の処理液中への混合が不可避的に発生し、そ
の分離操作が必要となり、やっかいである。
Recently, attempts have been made to perform anaerobic fermentation continuously at high speed using microorganisms entrapped in polymers or adsorbed on inorganic carriers, but it is difficult to immobilize the microorganisms and the processing of the microorganisms is difficult. Mixing into the liquid inevitably occurs, and a separation operation is required, which is troublesome.

〈発明の目的〉 本発明の目的は、精密p過膜、限外濾過膜や逆浸透膜を
用いて、嫌気性微生物の高濃度での連続培養を可能なら
しめることにより、反応時間の短縮化、発酵槽の小型化
を図ることにある。
<Objective of the Invention> The object of the present invention is to shorten reaction time by enabling continuous cultivation of anaerobic microorganisms at high concentrations using precision p-filtration membranes, ultrafiltration membranes, and reverse osmosis membranes. The aim is to downsize the fermenter.

〈発明の構成〉 本発明に係る膜処理装置は、嫌気性微生物を含む発酵槽
内に膜装置と、噴出非酸素性ガスにより膜面に気液混合
流を接触させるためのガス噴出手段とを設け、膜装置に
対し膜面に差圧を作用させるための差圧手段を設けたこ
とを特徴とする構成である。
<Configuration of the Invention> The membrane treatment device according to the present invention includes a membrane device in a fermenter containing anaerobic microorganisms, and a gas jetting means for bringing a gas-liquid mixed flow into contact with the membrane surface using jetted non-oxygen gas. This configuration is characterized in that a differential pressure means is provided for applying a differential pressure to the membrane surface of the membrane device.

上記において、発酵槽内の菌体濃度を高濃度にしても、
膜面上での濃度分極、膜汚損を膜面上での気液混合流の
ために効果的に防止できる。
In the above, even if the bacterial cell concentration in the fermenter is made high,
Concentration polarization on the membrane surface and membrane fouling can be effectively prevented due to the gas-liquid mixed flow on the membrane surface.

従って、膜の透過作用を効率よく行なわせることができ
、これにより菌体濃度を高濃度にでき、この菌体の高濃
度下、発酵を高速度にて行なわせることができる。
Therefore, the permeation effect of the membrane can be carried out efficiently, and thereby the bacterial cell concentration can be increased, and fermentation can be carried out at a high speed under the high bacterial cell concentration.

かかる反応の高速度下では、嫌気性菌によるガスの産出
量が犬であり、このガスを上記気液混合流を得るための
ガス源として利用できる。
Under such high rates of reaction, the anaerobic bacteria produce a large amount of gas, which can be used as a gas source to obtain the gas-liquid mixed stream.

〈実施例の説明〉 以下、図面により本発明を説明する。<Explanation of Examples> The present invention will be explained below with reference to the drawings.

第2図において、1は密閉型発酵槽であり、ガス噴出手
段例えば、散気管2(多孔パイプ)を設けである。この
散気管2に送気管21により非酸素性気体例えばN2ガ
スを圧送し、散気管から気泡を散出させ、その散気流(
気・液混合液)Kよって処理液を循環させると共に液中
の嫌気性微生物により発酵を行う。
In FIG. 2, reference numeral 1 denotes a closed fermentation tank, which is equipped with gas ejection means, for example, an aeration pipe 2 (porous pipe). A non-oxygen gas, such as N2 gas, is force-fed through the air diffuser pipe 21 through the air diffuser pipe 21, air bubbles are dispersed from the air diffuser pipe, and the air diffuser flow (
The treatment liquid is circulated by the gas/liquid mixture) and fermentation is carried out by the anaerobic microorganisms in the liquid.

3は膜装置であり、上記散気管2の直上に配設しである
。この膜装置は、散気管2からの気・液混合流を通過さ
せる鉛直方向通路31.31・・・ を有しており、こ
の通路において気・液混合流が膜面に接触し、膜面上で
の有機物質の濃度分極、膜面の嫌気性微生物による汚損
を防止できる。4は膜装置3の透過水側を減圧し、移送
するための真空引きポンプであり、これにより透過水を
膜装置3から取出すことができる。
Reference numeral 3 denotes a membrane device, which is disposed directly above the aeration pipe 2. This membrane device has vertical passages 31, 31... through which the gas/liquid mixed flow from the aeration tube 2 passes, and in these passages, the gas/liquid mixed flow contacts the membrane surface, and the membrane surface Concentration polarization of organic substances on the membrane surface and contamination of the membrane surface by anaerobic microorganisms can be prevented. Reference numeral 4 denotes a vacuum pump for reducing the pressure on the permeated water side of the membrane device 3 and transferring it, so that the permeated water can be taken out from the membrane device 3.

膜装置3の透過水側を減圧する代りに、発酵槽を大気圧
以上に加圧して膜間差圧を得ることもできる。これらの
減圧・加圧を併用することもできる。6はポンプであり
、連続的に被処理液を供給して、連続反応を行う場合に
使用する。
Instead of reducing the pressure on the permeated water side of the membrane device 3, it is also possible to pressurize the fermenter above atmospheric pressure to obtain a transmembrane pressure difference. These depressurization and pressurization can also be used together. Reference numeral 6 denotes a pump, which is used to continuously supply the liquid to be treated and perform continuous reactions.

上記において、得られる透過水は被処理液により異なる
が、通常の発酵プロセスにおいては有用な低分子有機物
質の溶液であり、汚水処理においては、浄水である。
In the above, the obtained permeated water differs depending on the liquid to be treated, but in normal fermentation processes it is a solution of useful low-molecular organic substances, and in sewage treatment it is purified water.

上記発酵に伴い発生する非酸素性ガスは排ガス管により
一部を抜き皐りつつ、または抜き取ることなく全部をポ
ンプ7により散気装置に循環させ得る。この非酸素性ガ
ス、すなわち、嫌気性微生物の産生気体が発酵促進に及
ぼす度合に応じ、上記抜き取り量を調整すればよい。
The non-oxygen gas generated during the fermentation can be partly extracted through the exhaust gas pipe, or the whole can be circulated to the air diffuser by the pump 7 without being extracted. The amount to be extracted may be adjusted depending on the degree to which this non-oxygen gas, that is, the gas produced by anaerobic microorganisms, affects fermentation promotion.

産生ガスがメタンの場合、他のガス(N2ガス)と分離
しエネルギー源として回収することが有効である。
When the produced gas is methane, it is effective to separate it from other gases (N2 gas) and recover it as an energy source.

上記膜分離装置3には、ノズル2からの噴出ガスにより
濃度分極・膜汚損等を防止できるものであれば、適宜の
ものを使用できる。例えば、内径約1ON以上の管状膜
を複数本並べた、いわゆるパラレル型流路の膜モジュー
ル、あるいは任意の巾の平膜型(例えば、スパイラル型
、プリーツ型)あるいは平板型の膜エレメントを上記鉛
直通路を確保するように組立てた膜モジュールを使用で
きる。かかる膜モジュールの鉛直方向の長さは発酵槽の
深さによって異るが、通常は発酵槽の深さから0.3m
を減じた長さであり、一般に0.5m以上である。これ
らは敷部に分割した型式で使用することもできる。
Any suitable membrane separator 3 can be used as long as it can prevent concentration polarization, membrane fouling, etc. caused by the gas ejected from the nozzle 2. For example, a membrane module with a so-called parallel flow path in which a plurality of tubular membranes with an inner diameter of about 1ON or more are lined up, or a flat membrane type (for example, spiral type, pleated type) or flat plate type membrane element of any width can be connected to the above-mentioned vertical line. Membrane modules assembled to ensure passage can be used. The vertical length of such a membrane module varies depending on the depth of the fermenter, but is usually 0.3 m from the depth of the fermenter.
It is generally 0.5 m or more. These can also be used in a divided form.

上記スパイラル型等の平膜型の膜エレメントにおいては
、上記した鉛直通路中に流路スペーサを設けないことが
望ましい。何れの膜エレメントにおいても、鉛直通路の
厚みは10寵以上とすることが望ましい。しかし、その
厚みを余り大きくすると、設置できる膜面積が減少する
ので好ましくない。
In a flat membrane type membrane element such as the spiral type described above, it is desirable that no flow path spacer is provided in the above-mentioned vertical passage. In any membrane element, it is desirable that the thickness of the vertical passage be 10 cm or more. However, if the thickness is too large, the area of the membrane that can be installed will be reduced, which is not preferable.

第2図Aは本発明において使用する膜装置の一例を示し
、不織布等の多孔支持管32上に膜33を設けた管状膜
30を数本、外筒34内に納め(第2図B参照)、両端
をエンドプレート35.35または注型樹脂によって封
止した構成であり上記の気・液混合流は管状膜内を流動
し、透過水は外筒内より透過木取出口を経て取出される
。膜には、精密濾過膜、半透膜、特に限外濾過膜あるい
は食塩除去率の低い、いわゆるル−ズ逆浸透膜を用いる
FIG. 2A shows an example of a membrane device used in the present invention, in which several tubular membranes 30, each having a membrane 33 provided on a porous support tube 32 made of non-woven fabric, are housed in an outer cylinder 34 (see FIG. 2B). ), both ends are sealed with end plates 35, 35 or casting resin, the above-mentioned gas/liquid mixed flow flows within the tubular membrane, and permeated water is taken out from the outer cylinder through the permeable wood outlet. Ru. The membrane used is a microfiltration membrane, a semipermeable membrane, especially an ultrafiltration membrane, or a so-called loose reverse osmosis membrane with a low salt removal rate.

第3図Aは本発明において使用する膜装置の別例を示し
、一対の透過水集水管35.35に第3図Bにも示すよ
うに平板型膜(平膜33.33間に透過水路用スペーサ
36を介在させたもの)を連通し、これをユニットとし
てホルダーにより一定の間隔で並設しである。この膜エ
レメントの場合、ユニット間に散気管を配設することが
できる。
FIG. 3A shows another example of the membrane device used in the present invention, in which a pair of permeate water collecting pipes 35, 35 are connected to a flat plate type membrane (a permeate channel between the flat membranes 33, 33) as shown in FIG. 3B. (with a spacer 36 interposed) are communicated, and the units are arranged side by side at regular intervals by a holder. In the case of this membrane element, diffuser pipes can be arranged between the units.

本発明に係る膜処理装置においては、上記した通り発酵
槽内の菌体濃度を高濃度になし得、その濃度は通常、2
0〜200 fy#である。この結果、被処理液の反応
滞留時間を4〜6時間といった短時間になし得、発酵槽
の容量を従来の1/3〜1/10に縮小できる。ががる
発酵槽の小型化のもとでは、濃度分極防水のための気液
混合流を得るのに必要なガス量(1〜1.5 rn/ 
s )を相当に小量化でき、時間肖り発酵槽容量の約2
倍量のガスを供給すれば充分である。
In the membrane treatment apparatus according to the present invention, as described above, the bacterial cell concentration in the fermenter can be made high, and the concentration is usually 2.
0 to 200 fy#. As a result, the reaction residence time of the liquid to be treated can be shortened to 4 to 6 hours, and the capacity of the fermenter can be reduced to 1/3 to 1/10 of the conventional capacity. With the miniaturization of the Gagaru fermenter, the amount of gas required to obtain a gas-liquid mixed flow for concentration polarization waterproofing (1~1.5 rn/
s) can be considerably reduced, and approximately 2 times the fermenter capacity
It is sufficient to supply double the amount of gas.

実施例1 有効容積501の発酵槽内に、内径12mm01長さ4
0 crn、管状限外a・!過膜30本(膜面積0.4
5m1 )からなる膜装置を設置し、下水処理場から採
取した消化汚泥を加えて、3000ppmの低級脂肪酸
を含む処理液をlQl/hr  で通液した。
Example 1 In a fermenter with effective volume 501, inner diameter 12 mm01 length 4
0 crn, tubular limit a・! 30 membranes (membrane area 0.4
A membrane device consisting of 5 m1) was installed, digested sludge collected from a sewage treatment plant was added, and a treatment solution containing 3000 ppm of lower fatty acids was passed through at a rate of 1 Ql/hr.

膜装置の下部に設けた散気装置から非酸素性ガスを10
01/hrで吹き込み、0.5 kg/dの加圧下で排
出されるガスの50%を再び発酵構内に戻して培養を行
ったところ、3日後には約101/hr  で得られる
膜透過水の低級脂肪酸濃度は50PPm以下となり、l
 7 l/hrで生成されるメタンガスが得られた。こ
のときの汚泥の濃度は22y/lであった。
10% of non-oxygen gas is supplied from the air diffuser installed at the bottom of the membrane device.
When 50% of the gas discharged under a pressure of 0.5 kg/d was returned to the fermentation premises and cultured, after 3 days, membrane permeated water obtained at a rate of about 101/hr was obtained. The lower fatty acid concentration of is less than 50PPm, and l
Methane gas produced at 7 l/hr was obtained. The concentration of sludge at this time was 22 y/l.

実施例2 上記の発酵槽内に、10αX 40crnの平膜型限外
(′濃過モジュール(平膜26枚、膜面積約1m′)を
設置し、酵母培養によるアルコール発酵を行った。20
%グルコース溶液の滞留時間を4時間とし、発生するC
O2ガスの50%を散気装置から循環させ、連続培養を
行ったところ、2週間にわたって7〜8%のアルコール
溶液が得られた。
Example 2 A 10αX 40 crn flat membrane type ultra-filtration module (26 flat membranes, membrane area approximately 1 m) was installed in the above fermenter, and alcoholic fermentation by yeast culture was carried out.20
% glucose solution residence time was 4 hours, and the generated C
When 50% of O2 gas was circulated through the air diffuser and continuous culture was performed, a 7-8% alcohol solution was obtained over two weeks.

〈発明の効果〉 本発明に係る膜処理装置は上述した通りの構成であり、
発酵槽内の菌体濃度を高くしても発酵を円滑に行なわせ
ることができ、嫌気性微生物の高濃度培養による発酵時
間の短縮(或いは処理景の増大、生成物量の増加)、設
備の簡易化(装置の小型化、運転動力の低減)を図るこ
とができる。
<Effects of the Invention> The membrane treatment apparatus according to the present invention has the configuration as described above,
Fermentation can be carried out smoothly even if the bacterial cell concentration in the fermenter is increased, and by culturing anaerobic microorganisms at a high concentration, the fermentation time can be shortened (or the processing environment can be increased, or the amount of product can be increased), and the equipment can be simplified. (miniaturization of the device, reduction of operating power).

【図面の簡単な説明】[Brief explanation of drawings]

第2図は本発明に係る膜処理装置を示す説明図、第2図
Aは本発明において使用する膜装置を示す説明図、第2
図Bは第2図Aにおけるb−b断面説明図、第3図Aは
本発明において使用する膜装置の別例を示す説明図、第
3図Bは第3図Aにおけるb−b断面説明図である。 図において、1は発酵槽、2は散気装置、3は膜装置、
7は送気ポンプである。 ?
FIG. 2 is an explanatory diagram showing a membrane treatment apparatus according to the present invention, FIG. 2A is an explanatory diagram showing a membrane apparatus used in the present invention, and FIG.
Figure B is an explanatory diagram of the bb cross section in Figure 2 A, Figure 3 A is an explanatory diagram showing another example of the membrane device used in the present invention, and Figure 3 B is an explanatory diagram of the bb cross section in Figure 3 A. It is a diagram. In the figure, 1 is a fermenter, 2 is an aeration device, 3 is a membrane device,
7 is an air pump. ?

Claims (2)

【特許請求の範囲】[Claims] (1)嫌気性微生物を含む発酵槽内に膜装置と、噴出非
酸素性ガスにより膜面に気液混合流を接触させるための
ガス噴出手段を設け、膜装置に対し膜面に差圧を作用さ
せるための差圧手段を設けたことを特徴とする膜処理装
置。
(1) A membrane device is provided in a fermenter containing anaerobic microorganisms, and a gas jetting means for bringing a gas-liquid mixed flow into contact with the membrane surface using jetted non-oxygen gas is provided, and a differential pressure is applied to the membrane surface with respect to the membrane device. A membrane processing device characterized by being provided with differential pressure means for applying pressure.
(2)嫌気性微生物により産出されたガスの一部または
全部を非酸性ガスとして使用し得る手段を、ガス噴出手
段に具備させたことを特徴とする特許請求の範囲第2項
記載の膜処理装置。
(2) The membrane treatment according to claim 2, characterized in that the gas ejection means is equipped with a means for using part or all of the gas produced by the anaerobic microorganisms as a non-acidic gas. Device.
JP8981886A 1986-04-17 1986-04-17 Device for pretreatment of filtration membrane Pending JPS62244378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8981886A JPS62244378A (en) 1986-04-17 1986-04-17 Device for pretreatment of filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8981886A JPS62244378A (en) 1986-04-17 1986-04-17 Device for pretreatment of filtration membrane

Publications (1)

Publication Number Publication Date
JPS62244378A true JPS62244378A (en) 1987-10-24

Family

ID=13981328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8981886A Pending JPS62244378A (en) 1986-04-17 1986-04-17 Device for pretreatment of filtration membrane

Country Status (1)

Country Link
JP (1) JPS62244378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2714885A4 (en) * 2011-04-26 2015-05-27 Therapeutic Proteins Internat Llc Concentrator filter
CN108866133A (en) * 2018-07-12 2018-11-23 天津科技大学 Pressure difference pretreatment collaboration high density fermentation wheat bran produces wheat bran oligopeptide method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2714885A4 (en) * 2011-04-26 2015-05-27 Therapeutic Proteins Internat Llc Concentrator filter
US9364776B2 (en) 2011-04-26 2016-06-14 Sarfaraz K. Niazi Concentrator filter
CN108866133A (en) * 2018-07-12 2018-11-23 天津科技大学 Pressure difference pretreatment collaboration high density fermentation wheat bran produces wheat bran oligopeptide method
CN108866133B (en) * 2018-07-12 2022-03-04 天津科技大学 Method for producing wheat bran oligopeptide by virtue of synergistic high-density fermentation of wheat bran through differential pressure pretreatment

Similar Documents

Publication Publication Date Title
Bilad et al. Membrane technology in microalgae cultivation and harvesting: a review
Zhang et al. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges
CN103865792B (en) A kind of circulating fermentable reaction and feed liquid isolation integral equipment
CN101503707B (en) Method and device for continuous fermentation and separation coupling of biomacromolecule product
JPS62181772A (en) Bioreactor
JPH0470958B2 (en)
Michaels Membrane technology and biotechnology
JP2661716B2 (en) Method for separating biotechnologically useful substances from culture solution
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
CN114262052A (en) Anaerobic membrane bioreactor and organic sewage treatment method
JP4006011B2 (en) Method and apparatus for treating organic waste
JPH012567A (en) biological reactor
JP2019146514A (en) Continuous culture method and continuous culture apparatus
JPH0789902B2 (en) Bioreactor
JPS62244378A (en) Device for pretreatment of filtration membrane
KR20200000056A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane
CN203820791U (en) Integrated circulating-type microbial fermentation reaction and feed liquid separation device
JPS62168598A (en) Methane fermenting device
Michaels Fifteen years of ultrafiltration: problems and future promises of an adolescent technology
KR20200101663A (en) Equipment capable of filtering of livestock wastewater and cleaning of membrane
WO2001058501A1 (en) Apparatus and process for removal of carbon dioxide in a bioreactor system
CN2622190Y (en) Inorganic membrane biological reaction device
CN216273634U (en) MBR pretreatment system for sea water desalination
JP2008206430A (en) Flat membrane element and biological reactor
JP3494053B2 (en) Apparatus and method for separating bacterial cells