JPS62235272A - Method and structure of joining sintered ceramic to metal - Google Patents

Method and structure of joining sintered ceramic to metal

Info

Publication number
JPS62235272A
JPS62235272A JP7728886A JP7728886A JPS62235272A JP S62235272 A JPS62235272 A JP S62235272A JP 7728886 A JP7728886 A JP 7728886A JP 7728886 A JP7728886 A JP 7728886A JP S62235272 A JPS62235272 A JP S62235272A
Authority
JP
Japan
Prior art keywords
metal
bonding
sintered ceramic
metal layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7728886A
Other languages
Japanese (ja)
Inventor
山田 武海
関口 英男
寛己 岡本
祥三 東
昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7728886A priority Critical patent/JPS62235272A/en
Publication of JPS62235272A publication Critical patent/JPS62235272A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結セラミックと金属との接合構造及び接合方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bonding structure and a bonding method between a sintered ceramic and a metal.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

セラミックは高温における強度、耐食性、耐摩耗性等に
優れているため、ガスタービンやディーゼルエンジン等
の内燃機関の高温部材として注目されている。しかし、
セラミックは脆いという根本的な欠点があり、このため
実用化に当っては、使用条件の厳しい部分のみをセラミ
ックとし、これを金属と接合させて使用する方法が有望
である。
Ceramics have excellent strength, corrosion resistance, wear resistance, etc. at high temperatures, and are therefore attracting attention as high-temperature components for internal combustion engines such as gas turbines and diesel engines. but,
Ceramics have a fundamental drawback of being brittle, and for this reason, a promising method for practical use is to use ceramics only in parts that require severe usage conditions and to use them by bonding them to metals.

内燃機関用セラミックとしてはs S I C+ S 
t sN4が最も有力であるが、これらは共有結合性和
室/ Δ艷り小槓八鴎m魯哨シッ 従来、高温使用を目的としたセラミックと金属の接合法
としては、■メタライジング法、■ろう付性、■同相拡
散接合法が知られている。
Ceramics for internal combustion engines include s S I C + S
tsN4 is the most promising, but these are covalent bonding methods. Brazing properties, ■In-phase diffusion bonding method is known.

しかし、これらのうち■の方法は工程が複雑でコストが
高くつく欠点がある。才た■の方法は現在最も広く研究
開発が行われているが、そのほとんどにおいてろう付温
度が900℃以上となり、金属側の強度が低下するおそ
れがあり、加えて接合時にろう材が液相となるため、接
合箇所が曲面の場合にはろう材が流れてしまい、うまく
接合できない。
However, among these methods, method (2) has the disadvantage of a complicated process and high cost. The method of Saita is currently the most widely researched and developed, but in most of these methods the brazing temperature is over 900°C, which may reduce the strength of the metal side, and in addition, the brazing metal enters a liquid phase during bonding. Therefore, if the joint is on a curved surface, the brazing material will flow and the joint will not be successful.

これに対し■の方法は、工程が簡単でしかも液相状態を
必要としないため、適当な中間層を選定することにより
接合温度を下げることが可能である。しかしこの方法で
も、SiCや5ix1%等のセラミックの熱膨張係数(
約4×10″″6/℃)が、内燃機関に使われるNi基
耐熱合金、耐熱鋼、耐熱鋳鋼等の金属材料の熱膨張係数
(約13 X 10−’/℃)に較べて著しく小さく、
このため接合後の冷却中や運転中に生じる熱応力により
セラミックに割れを生じてしまう。このような熱応力の
緩和方法としては、セラミックと金属の間に、中間層と
して両部材の中間の熱膨張係数を有する金属や塑性変形
能の大きな軟質金属を介在させるという方法も提案され
ているが、これだけでは十分な効果をあげることはでき
ない。
On the other hand, method (2) requires a simple process and does not require a liquid phase state, so it is possible to lower the bonding temperature by selecting an appropriate intermediate layer. However, even with this method, the thermal expansion coefficient (
The coefficient of thermal expansion (approximately 13 x 10-'/°C) is significantly smaller than that of metal materials such as Ni-based heat-resistant alloys, heat-resistant steel, and heat-resistant cast steel used in internal combustion engines (approximately 13 x 10-'/°C). ,
For this reason, cracks occur in the ceramic due to thermal stress generated during cooling after joining or during operation. As a method for alleviating such thermal stress, a method has also been proposed in which a metal with a coefficient of thermal expansion between the two materials or a soft metal with high plastic deformability is interposed as an intermediate layer between the ceramic and the metal. However, this alone cannot produce sufficient effects.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者等はこのような問題に対し検討を重ねたもので
あり、この結果金属母材と焼結セラミックとの間の介在
層として、接合用メタル層と熱応力緩和用の軟質金属層
とを設け、しかもこれらの部材の厚みを相対的に規制す
ることにより、熱応力が適切に軽減されしかも強同な接
合状態の接合構造が得られることを見い出した。
The present inventors have repeatedly investigated these problems, and as a result, they have developed a bonding metal layer and a soft metal layer for thermal stress relaxation as intervening layers between the metal base material and the sintered ceramic. It has been found that by providing a bonding structure and relatively regulating the thicknesses of these members, it is possible to appropriately reduce thermal stress and obtain a bonded structure in a strongly bonded state.

すなわち本発明は固相拡散接合により得られる金属母材
と焼結セラミックとの接合構造において、金属母材とセ
ラミックとの間に、台用メタル層とを有し、接合用メタ
ル層の厚さtBと軟質金属層の淳さtBとが、 tB/(tB+tg )≦0.5 を満足させるようにしたことをその基本的特徴とする。
That is, the present invention provides a bonding structure between a metal base material and a sintered ceramic obtained by solid-phase diffusion bonding, which includes a base metal layer between the metal base material and the ceramic, and has a thickness of the bonding metal layer. Its basic feature is that tB and the thickness tB of the soft metal layer satisfy the following relationship: tB/(tB+tg)≦0.5.

また本発明はこのような接合構造を得る方法として、接
合すべき金属母材と焼結セラミックとの間に、金属母材
側から軟質金属と接合用メタルとを介在させ、  ゛ 
   真空中または不活性ガス雰囲気中で、接合後の軟
質金属層厚tSと接合用メタル層浮tBとが、tB/ 
CtB +tS )≦0.5 を満足するよう、加熱しつつ÷→加圧し、固相拡散接合
するようにしたことを他の基本的特徴とする。
In addition, the present invention provides a method for obtaining such a joining structure by interposing a soft metal and a joining metal from the metal base material side between the metal base material to be joined and the sintered ceramic.
In vacuum or in an inert gas atmosphere, the soft metal layer thickness tS after bonding and the bonding metal layer float tB are tB/
Another basic feature is that solid-phase diffusion bonding is performed by applying pressure while heating so as to satisfy CtB +tS )≦0.5.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の接合構造の一例を示すもので、金属母
材(4)と焼結セラミック(3)との間金属層(1)と
、接合用メタル層(2)とが設けられている。
FIG. 1 shows an example of the bonding structure of the present invention, in which a metal layer (1) and a bonding metal layer (2) are provided between a metal base material (4) and a sintered ceramic (3). ing.

このような本発明の接合構造では、焼結セラミック(4
)に働く熱応力を軟質金属層(1)によって緩和し、こ
れによって焼結セラミック1こ働く熱応力を適切に抑え
ることができる。
In such a joint structure of the present invention, sintered ceramic (4
) can be alleviated by the soft metal layer (1), thereby appropriately suppressing the thermal stress acting on the sintered ceramic 1.

さらに1本発明では、熱応力緩和用の軟質金属層(1)
の厚さtSと接合用メタル層(2)の厚さtBとを下式
を滴定させるように規制する。
Furthermore, in the present invention, a soft metal layer (1) for relaxing thermal stress is provided.
The thickness tS of the bonding metal layer (2) and the thickness tB of the bonding metal layer (2) are regulated so as to titrate the following equation.

tB/(tB十tS )≦O15 第2図は第1図に示す接合構造におけるta / (t
B 十tB )と焼結セラミック(4)中lこ生ずる最
大熱応力σ8との関係を示すもので、1./(1,+1
.)が0.5以下の範囲においてσ8は小さい値を示し
ている。このように、接合用メタ/+4(2)と軟質金
属層(1)の厚さを相対的に規制することにより、焼結
セラミックに発生する熱応力を適切に緩和することがで
き、焼結セラミックの割れや焼結セラミックと金属との
肩1簾ん1幀2ど賭、Lナスrふ6(ア謳スー軟質金属
としては、接合用メタルよりも軟質(弾性係数が低く且
つ塑性変形能が大きい)の金属が用いられ、具体的には
鉛、銅をペースとした合金等が用いられる。
tB/(tB+tS)≦O15 FIG. 2 shows ta/(t
This shows the relationship between the maximum thermal stress σ8 generated in the sintered ceramic (4) and the relationship between 1. /(1,+1
.. ) is 0.5 or less, σ8 shows a small value. In this way, by relatively regulating the thickness of the bonding Meta/+4 (2) and the soft metal layer (1), the thermal stress generated in the sintered ceramic can be appropriately alleviated, and the sintered As a soft metal, it is softer (lower elastic modulus and has less plastic deformability) than the joining metal. A metal with a large diameter) is used, and specifically, an alloy containing lead or copper as a base is used.

前記接合用メタルは焼結セラミックをその下部部材、す
なわち上記熱応力緩和用部材番こ強固に接合するための
もので、活性金属から構成される。この接合用メタルと
しては、ニッケル、ニッケル合金、チタン、チタン合金
等が用いられる。
The bonding metal is for firmly bonding the sintered ceramic to its lower member, that is, the thermal stress relaxation member, and is made of an active metal. As this joining metal, nickel, nickel alloy, titanium, titanium alloy, etc. are used.

なお、焼結セラミックとしては、81CI 813N4
 +zro、 、 ZrB、 、 PSZ (部分安定
化ジルコニア)等の材質のものが用いられる。
In addition, as sintered ceramic, 81CI 813N4
Materials such as +zro, , ZrB, and PSZ (partially stabilized zirconia) are used.

次に本発明の接合方法について説明する。Next, the joining method of the present invention will be explained.

第3図は本発明法による接合工程を示すもので、接合す
べき金属母材(4)と焼結セラミック(3)との間に、
金属母材側から軟質金属(1)と接合用メタル(21と
を介在させ、真空中または不活性ガス雰囲気中で加熱し
つつ加圧し、各部材相互を固相拡散接合する。
FIG. 3 shows the joining process according to the method of the present invention, in which there is a
A soft metal (1) and a joining metal (21) are interposed from the metal base material side, and the members are solid phase diffusion bonded to each other by heating and pressurizing in a vacuum or an inert gas atmosphere.

このような加熱加圧工程において軟質金属(15及び接
合用メタル(2′)は圧縮荷重によってクリープ変形(
非弾性変形)するものであり、したがって、軟質金属(
1′)と接合用メタル(2′)は上記クリープ変形分を
見込んだ厚さのものを用い、接合ζζ尚っては、接合後
の接合用メタル層厚tBと軟質金属層厚tSとが、 tB/(tB+ tB、 ) < 0.5を満足するよ
う、加熱しつつ圧縮加圧する。
In such a heating and pressurizing process, the soft metal (15) and the joining metal (2') undergo creep deformation (
therefore, soft metals (
1') and the joining metal (2') have a thickness that takes into account the creep deformation described above, and for joining ζζ, the joining metal layer thickness tB and the soft metal layer thickness tS after joining are , tB/(tB+tB, ) < 0.5 while heating and compressing.

以上のような固相拡散接合の具体的方法としては、■各
部材を積層させて同時に固相拡散接合する方法、■介在
部材(接合用メタル及び軟質金属)の一部または全部を
焼結セラミック材に固相拡散接合した後、この中間接合
体を金属母材側に固相拡散接合する方法、■上記介在部
材の一部または全部を、プラズマ浴射や所謂CVD、P
VD等の公知の方法をこより、予め焼結セラミック等に
対し被膜として形成させておき、これと他の部材を固相
拡散接合する方法等を採ることができる。
Specific methods of solid-phase diffusion bonding as described above include: ■ Laminating each member and solid-phase diffusion bonding at the same time; ■ Using sintered ceramic for some or all of the intervening members (joining metal and soft metal). A method of solid-phase diffusion bonding this intermediate bonded body to the metal base material after solid-phase diffusion bonding to the metal base material.
It is also possible to form the film on a sintered ceramic or the like in advance using a known method such as VD, and then solid-phase diffusion bond the film to another member.

なお、上記■の方法の主たる態様としては、例えば、接
合用メタルのみを接合しておく方法や、接合用メタルと
軟質金属を接合しておく方法等が考えられる。このよう
な中間接合体(焼結セラミックとインサート材)は、接
合していない残余のインサート材がある場合番こはそれ
らを金属母材との間に介在させつつ、金属母材に対して
接合せしめられる。すなわち、残余のインサート材があ
る場合にはこれを挾んで上記中間接合体を金属母材に重
ね、真空または不活性ガス雰囲気中で加熱しつつ加圧し
、各部材間を固相拡散接合せしめる。
In addition, as a main aspect of the above-mentioned method (2), for example, a method in which only the joining metal is joined, a method in which the joining metal and the soft metal are joined, etc. can be considered. In such an intermediate joint (sintered ceramic and insert material), if there is any unjoined insert material, it is necessary to join it to the metal base material while interposing them between it and the metal base material. I am forced to do it. That is, if there is any remaining insert material, the above-mentioned intermediate joined body is placed on the metal base material with the remaining insert material in between, and the members are heated and pressurized in a vacuum or an inert gas atmosphere to form solid phase diffusion bonding between each member.

このような接合では、固相拡散接合面は常に金属間接合
となり、このため比較的低い加熱温度でも適切な接合状
態が得られ、これにより母材の過時効を防止することが
できる。
In such bonding, the solid-phase diffusion bonding surface always forms a metal-to-metal bond, so that an appropriate bonding state can be obtained even at a relatively low heating temperature, thereby making it possible to prevent over-aging of the base material.

また各インサート材としては板体に限らず粒体、粉体の
ものを用いることもできる。
In addition, each insert material is not limited to a plate, but granules or powder can also be used.

第3図において、(5)は高周波誘導コイルでネリ、各
部材はこの高周波誘ムコイル(5)で加熱されつつ荷重
負荷装置(図示せず)で圧縮加圧され、固相拡散接合さ
れる。このような加圧加熱処理を行う装置は、適宜な構
成のものを用いることができ、第3図に示すような高周
波誘導コイル(5)と荷重負荷装置を備えたもののほか
、例えば従来のホットプレス、所謂HIP等の装置を用
いることもできる。
In FIG. 3, (5) is a high-frequency induction coil, and each member is heated by this high-frequency induction coil (5) and compressed and pressurized by a load applying device (not shown) to be solid phase diffusion bonded. Apparatuses for performing such pressurized and heat treatment can be of any suitable configuration, including those equipped with a high-frequency induction coil (5) and a load loading device as shown in A device such as a press, so-called HIP, etc. can also be used.

なお、固相拡散接合は例えば以下のような条件で行われ
る。
Note that solid-phase diffusion bonding is performed, for example, under the following conditions.

雰囲気:真空中(I X 10−” torr程度)も
しくは不活性ガス雰囲気 接合温度=700〜1000℃ 接合圧カニ1〜10Kg/ll+/ 〔実施例〕 第5図に示す構造及び材質の接合体を、第3図に示すよ
うな加熱用の高周波誘導コイルと荷重負荷装置を備えた
設備により製造した。
Atmosphere: Vacuum (approximately IX 10-” torr) or inert gas atmosphere Bonding temperature: 700 to 1000°C Bonding pressure: 1 to 10 Kg/ll+/ [Example] A bonded body with the structure and materials shown in Fig. 5 was bonded. , was manufactured using equipment equipped with a high-frequency induction coil for heating and a load-bearing device as shown in FIG.

その接合条件は以下の通りである。The bonding conditions are as follows.

接合温度 950℃ 接合圧縮応力  1.5紛f /wr”接合時間  2
0 rnin 雰  囲  気    i、o X 10   tor
rこの接合体の室温における引張強度は4f:JK4f
/−であった。
Bonding temperature 950℃ Bonding compressive stress 1.5f/wr” Bonding time 2
0 rnin atmosphere i,o X 10 tor
rThe tensile strength of this joined body at room temperature is 4f: JK4f
It was /-.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、接合後の冷却時や使用時に
おける熱応力の発生が適切に軽減され、セラミック中に
生じる最大熱応力が5〜20Kyf/−程度1こ抑えら
れる健全な接合構造とすることができ、加えて従来の接
合構造に較べて高い引張強度を得ることができ、焼結セ
ラミックの剥離や割れを生じにくく、しかも優れた接合
強度の接合構造を得ることができる。また本発明法によ
ればこのような接合構造を適切且つ容易1こ得ることが
できる。
According to the present invention described above, the occurrence of thermal stress during cooling after joining and during use is appropriately reduced, and the maximum thermal stress generated in the ceramic is suppressed by about 5 to 20 Kyf/-1, resulting in a sound joint structure. In addition, it is possible to obtain a bonded structure that has higher tensile strength than conventional bonded structures, is less likely to cause peeling or cracking of the sintered ceramic, and has excellent bonding strength. Further, according to the method of the present invention, such a joining structure can be appropriately and easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の接合構造の一例を示す断面図である。 第2図は軟質金属層の厚さをLs。 接合用メタル層の厚さをtBとした場合のta/(tB
+tS)と焼結セラミック中に生じる最大熱応力σSと
の関係を示すものである。第3図(A) (B)は本発
明法による接合工程を示す説明図である。第4図は固相
拡散接合における接合時間とインサート材のクリープ変
形量との関係を示すものである。第5図は実施例で得ら
れた接合体の構造及び材質を示す説明図である。 図において、(1)は軟質金属層、(1)は軟質金属、
(2)は接合用メタル層、(2)は接合用メタル、(3
)は焼結セラミック、(4)は金属母材である。 特許出願人  日本鋼管株式会社 発  明  者   山   1)  武   海開 
         関    口   英   実開 
         岡   本   寛   己同  
       東       祥   玉量    
     北   村       昭第3 図 材料℃フナイフグ              加圧力
ロ無9u理第 2 図 te / (te+ tS) 第4図 1合o−B r4   ゛
FIG. 1 is a sectional view showing an example of the joining structure of the present invention. In Figure 2, the thickness of the soft metal layer is Ls. When the thickness of the bonding metal layer is tB, ta/(tB
+tS) and the maximum thermal stress σS generated in the sintered ceramic. FIGS. 3(A) and 3(B) are explanatory diagrams showing the bonding process according to the method of the present invention. FIG. 4 shows the relationship between the bonding time and the amount of creep deformation of the insert material in solid phase diffusion bonding. FIG. 5 is an explanatory diagram showing the structure and material of the joined body obtained in the example. In the figure, (1) is a soft metal layer;
(2) is a bonding metal layer; (2) is a bonding metal layer; (3) is a bonding metal layer;
) is a sintered ceramic, and (4) is a metal base material. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Yama 1) Kaikai Takeshi
Hide Sekiguchi Jitsuki
Hiroshi Okamoto
Higashi Sho ball quantity
Sho Kitamura 3rd Figure Materials ℃ Funaigu Pressure 9u 2nd Figure te / (te + tS) Figure 4 1 o-B r4 ゛

Claims (2)

【特許請求の範囲】[Claims] (1)固相拡散接合により得られる金属母材と焼結セラ
ミックとの接合構造において、 金属母材と焼結セラミツクとの間に、金属母材側から熱
応力緩和用の軟質金属層と接合用メタル層とを有し、接
合用メタル層の厚さt_Bと軟質金属層の厚さt_Sと
が下式を満足させることを特徴とする焼結セラミックと
金属との接合構造。 t_B/(t_B+t_S)≦0.5
(1) In the bonding structure between a metal base material and sintered ceramic obtained by solid-phase diffusion bonding, a soft metal layer for thermal stress relaxation is bonded between the metal base material and the sintered ceramic from the metal base material side. A bonding structure between a sintered ceramic and a metal, characterized in that a thickness t_B of the bonding metal layer and a thickness t_S of the soft metal layer satisfy the following formula. t_B/(t_B+t_S)≦0.5
(2)接合すべき金属母材と焼結セラミックとの間に、
金属母材側から軟質金属と接合用メタルとを介在させ、 真空中または不活性ガス雰囲気中で、 接合後の接合用メタル層t_Bと軟質金属層厚t_Sと
が、 t_B/(t_B+t_S)≦0.5 を満足するよう、加熱しつつ加圧し、固相拡散接合する
ようにしたことを特徴とする焼結セラミックと金属との
接合方法。
(2) Between the metal base material to be joined and the sintered ceramic,
A soft metal and a bonding metal are interposed from the metal base material side, and the bonding metal layer t_B and the soft metal layer thickness t_S after bonding are such that t_B/(t_B+t_S)≦0 in a vacuum or an inert gas atmosphere. .5 A method for joining sintered ceramic and metal, characterized by solid phase diffusion joining by applying pressure while heating.
JP7728886A 1986-04-03 1986-04-03 Method and structure of joining sintered ceramic to metal Pending JPS62235272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7728886A JPS62235272A (en) 1986-04-03 1986-04-03 Method and structure of joining sintered ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7728886A JPS62235272A (en) 1986-04-03 1986-04-03 Method and structure of joining sintered ceramic to metal

Publications (1)

Publication Number Publication Date
JPS62235272A true JPS62235272A (en) 1987-10-15

Family

ID=13629686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7728886A Pending JPS62235272A (en) 1986-04-03 1986-04-03 Method and structure of joining sintered ceramic to metal

Country Status (1)

Country Link
JP (1) JPS62235272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090121A (en) * 2007-10-10 2009-04-30 Zimmer Inc Method for bonding tantalum structure to cobalt-alloy substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090121A (en) * 2007-10-10 2009-04-30 Zimmer Inc Method for bonding tantalum structure to cobalt-alloy substrate

Similar Documents

Publication Publication Date Title
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
JPS62235272A (en) Method and structure of joining sintered ceramic to metal
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPH0729859B2 (en) Ceramics-Metal bonding material
JP3336485B2 (en) Tappet
JPH0437658A (en) Combined material and its production
JPS62235271A (en) Method and structure of joining sintered ceramic to metal
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPS62176966A (en) Method of joining ceramic to metal
EP0204276A1 (en) Components for engines and production therefor
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPS62187183A (en) Method of joining ceramic to metal
JPS61117171A (en) Heat stress alleviator
JPH0649621B2 (en) Method of joining metal and ceramics
JPS63185870A (en) Ceramic-metal joined member
JPS60200872A (en) Metal and ceramic bonding method
JPH0639348B2 (en) Bonded body of metal and ceramics
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPH0725598B2 (en) Method of joining metal and ceramics
JPS62130843A (en) Metallic ceramics joining body
JPS61215273A (en) Method of bonding ceramic and metal
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS5857944A (en) Composite metallic pipe and its manufacture
JPH0725597B2 (en) Bonded body of metal and ceramics