JPS62230914A - Method for reducing powdery ore in fluidized bed - Google Patents

Method for reducing powdery ore in fluidized bed

Info

Publication number
JPS62230914A
JPS62230914A JP7388586A JP7388586A JPS62230914A JP S62230914 A JPS62230914 A JP S62230914A JP 7388586 A JP7388586 A JP 7388586A JP 7388586 A JP7388586 A JP 7388586A JP S62230914 A JPS62230914 A JP S62230914A
Authority
JP
Japan
Prior art keywords
ore
fluidized bed
particles
unsinterable
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7388586A
Other languages
Japanese (ja)
Inventor
Shiko Takada
高田 至康
Hisao Hamada
浜田 尚夫
Kazuhiko Sato
和彦 佐藤
Katsutoshi Igawa
井川 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7388586A priority Critical patent/JPS62230914A/en
Publication of JPS62230914A publication Critical patent/JPS62230914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To increase the rate of utilization of a reducing gas and to improve the production efficiency by adding unsinterable particles which are mixed with powdery ore and fluidized to a fluidized bed so that the sintering of the ore is prevented even when the temp. of the reducing gas is raised. CONSTITUTION:Unsinterable particles and powdery ore are fed from an ore feeding hole 2 and a heated reducing gas from a reducing gas feeder 4 is fed from a part under a gas dispersion plate 3 to form a fluidized bed 1 contg. the unsinterable particles and the powdery ore. Particles jumping out of the bed 1 are captured with a circulation cyclone 6 and charged into a fluidized bed 7 for separating unsinterable particles. The separated unsinterable particles are circulated to the fluidized bed 1 through circulation holes 9, 10. The reduced powdery ore is discharged from a discharge hole 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粉鉱石の流動!’還元方法に関し。[Detailed description of the invention] [Industrial application field] The present invention is based on the flow of fine ore! ’Regarding the refund method.

流動層を用いて微粉鉱石を予@還元する方法に係るもの
である。
This relates to a method of pre-reducing fine ore using a fluidized bed.

〔従来の技術〕[Conventional technology]

鉄鉱石その他の金属鉱石資源は粉鉱石が多くなり、今後
益々粉鉱石の割合が増加する傾向にある。特に低品位鉱
石の品位を向上させるために。
Iron ore and other metal ore resources are increasingly composed of fine ore, and the proportion of fine ore is likely to increase in the future. Especially to improve the grade of low-grade ores.

浮選、磁選などの選鉱が行われ、粒鉱の比率が増加する
ことが予想される。粉鉱石を塊成化した後、これを還元
して溶融金属を得る方法は塊成化のためのコストが必要
であるため、粉状鉱石を流動層を用いて還元する方法お
よび装置が開発されている。
The ratio of grain ore is expected to increase as ore beneficiation such as flotation and magnetic separation is carried out. The method of agglomerating fine ore and then reducing it to obtain molten metal requires the cost of agglomeration, so a method and device for reducing fine ore using a fluidized bed has been developed. ing.

微粉鉱石の流動還元では、微粉鉱石が焼結し易い問題が
あり、これを防止するには還元ガスの温度を下げて操業
しなければならない、還元ガス温度を下げると還元反応
速度が遅くなるので、ガス利用率が低下し、また生産能
率が低下し、製品の再酸化が起こる。
In the fluidized reduction of fine ore, there is a problem that the fine ore tends to sinter, and to prevent this, it is necessary to lower the temperature of the reducing gas during operation, as lowering the temperature of the reducing gas slows down the reduction reaction rate. , gas utilization rate decreases, production efficiency also decreases, and product re-oxidation occurs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、流動層内における粉状鉱石の焼結を防止し、
できるだけ高温で還元反応を進行させ、ガス利用率を高
めると共に生産能率を高め、流動層還元法の効率を高め
ることを目的とする。
The present invention prevents sintering of powdered ore in a fluidized bed,
The purpose is to advance the reduction reaction at as high a temperature as possible to increase the gas utilization rate, increase production efficiency, and increase the efficiency of the fluidized bed reduction method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、次の技術手段を講じ
た。
In order to achieve the above object, the present invention has taken the following technical means.

(a)  粉状鉱石に焼結防止材を混入して流動層内で
還元反応させる。この場合、焼結防止材は、粉状鉱石の
還元反応雰囲気において、焼結性を有せず、粉状鉱石の
焼結を妨げる材料であって、かつ、粉状鉱石と共に流動
化し粉状鉱石の粒子間に介在するものでなければならな
い。
(a) A sintering prevention material is mixed into powdered ore and subjected to a reduction reaction in a fluidized bed. In this case, the sintering prevention material is a material that does not have sinterability and prevents the sintering of the powdered ore in the reducing reaction atmosphere of the powdered ore, and is fluidized together with the powdered ore. must be present between the particles.

(b)  この焼結防止材と共に還元鉱石を流動層から
取り出し、取り出し直後に焼結防止材を還元鉱石と分離
して流動層に循環する。
(b) The reduced ore is taken out from the fluidized bed together with the sintering prevention material, and immediately after being taken out, the sintering prevention material is separated from the reduced ore and circulated into the fluidized bed.

この分離は、流動層から取り出した直後の熱間で行い、
熱損失を極力防止する。
This separation is carried out hot immediately after removal from the fluidized bed.
Prevent heat loss as much as possible.

このような非焼結性物質粒子として、非焼結性耐火物、
セラミックス粉を用いることができる。
Such non-sintering material particles include non-sintering refractories,
Ceramic powder can be used.

またこれらと還元鉱石との高温における分離は、流動層
分離、磁性の有無による磁選、粒径差による篩分は分離
などによることができる。
Separation of these and reduced ores at high temperatures can be carried out by fluidized bed separation, magnetic separation based on the presence or absence of magnetism, sieving separation based on particle size differences, and the like.

〔作用〕 流動層内に、粉状鉱石と混合して流動する非焼結性物質
粒子を介在させるので還元ガス温度を高めても粉状鉱石
が焼結を起こすことなく、従って還元反応速度を高める
ことができ、還元ガス利用率が向上し、生産能率が向上
する。
[Operation] Since non-sintering material particles that mix with the powdered ore and flow are interposed in the fluidized bed, the powdery ore does not sinter even if the reducing gas temperature is increased, thus reducing the reduction reaction rate. This improves the reducing gas utilization rate and improves production efficiency.

流動層における流動条件を微粉鉱石と同等とすると、比
重の異なるものでは粒子径の異なるものとすることがで
きる。
If the fluidization conditions in the fluidized bed are the same as those for fine ore, particles with different specific gravities can have different particle sizes.

還元鉱石粉と非焼結性物質粒子との分離は、粒子径や密
度の異なるものでは流動層分離や振動グレー)−Wによ
る粒径分離によることができ、磁性を有する金属の還元
では磁性を有しない非焼結性物質粒子を用いることによ
り磁選によって容易に分離循環することができる。
Separation of reduced ore powder and non-sinterable material particles can be performed by fluidized bed separation or particle size separation using vibrating gray (W) for particles with different particle sizes and densities. By using non-sinterable material particles that do not have any sintering properties, they can be easily separated and circulated by magnetic separation.

流動層分離の場合その炭材や耐火材料粒子の持つ最低流
動化速度U■f(T)tbed+と粒子終末速度(系外
に粒子が飛び出す速度) U t(丁)(bed) を
流動化させる温度で測定しておき、その幾何平均値 Up(T)rbed) =  (Umf(T)rbed+ +1U t(T)+
bed) )  ”2を流動層分離炉の流動化ガス流速
の目安として採用する。そして還元された微粉鉱石の粒
子終末速度IJ t (T)(are)が上記流動層を
形成している炭材や耐火材料粒子の平均流動化速度U 
P(T)(bed> より大きくなるように炭材や耐火
材料粒子径を調整する。これにより還元された微粉鉱石
は流動層分離炉から選択的に飛び出して来て非焼結性物
質と高温で分離することができる。この高温状態で分離
された非焼結性物質は流動層還元炉に直接もどし、循環
使用することができる。
In the case of fluidized bed separation, the minimum fluidization speed U f (T) tbed+ of the carbonaceous material or refractory material particles and the particle terminal velocity (velocity at which the particles fly out of the system) U t (bed) are fluidized. The geometric mean value Up(T)rbed) = (Umf(T)rbed+ +1U t(T)+
bed) ) "2 is adopted as a guideline for the fluidizing gas flow rate in the fluidized bed separation furnace.Then, the particle terminal velocity IJ t (T) (are) of the reduced fine ore is the carbon material forming the fluidized bed. and the average fluidization velocity U of refractory material particles
P(T)(bed> Adjust the particle size of the carbonaceous material or refractory material so that it is larger than the P(T)(bed> The non-sinterable substances separated at this high temperature can be returned directly to the fluidized bed reduction furnace and recycled.

またこの場合、その流動層分離炉の流動化ガスとしては
流動層還元炉の高温排ガスを利用することができる。
In this case, high-temperature exhaust gas from a fluidized bed reduction furnace can be used as the fluidizing gas for the fluidized bed separation furnace.

〔実施例〕〔Example〕

第1図に本発明方法を好適に実施することのできる装置
を例示した。炉内径80mmの流動層lには非粘着性物
質や微粉鉱石を挿入するための鉱石供給口2があり、ま
た高温の還元ガスを製造する装置4.5を備え、さらに
該非粘着性物質や微粉鉱石を循環流動させる時の捕集用
の循環サイクロン6を具備している。このような循環流
動還元炉で微粉鉄鉱石を還元した。
FIG. 1 illustrates an apparatus that can suitably carry out the method of the present invention. The fluidized bed 1 with an inner diameter of 80 mm has an ore supply port 2 for inserting non-adhesive substances and fine ore, and is equipped with a device 4.5 for producing high-temperature reducing gas. It is equipped with a circulation cyclone 6 for collection when circulating ore. Fine iron ore was reduced in such a circulating fluidized reduction furnace.

操業はまず、非粘着性物質と微粉鉱石を循環流動層内に
挿入し、ガス分散板3の下からは高温の還元ガスを導入
し、非粘着性物質と微粉鉱石の安定な循環流動層を形成
させる。その際に非焼結性物質粒子分離用の流動層を運
転し、高温状態で非粘着性物質と還元鉱石の分離を可能
とし、非粘着性物質は全量流動層に、また還元鉱石は一
部は循環し、一部は製品として排出する。この場合、2
發製品として排出してもよい。
The operation begins by inserting a non-adhesive substance and fine ore into a circulating fluidized bed, and introducing high-temperature reducing gas from below the gas distribution plate 3 to create a stable circulating fluidized bed of the non-adhesive substance and fine ore. Let it form. At this time, a fluidized bed for separating non-sinterable material particles is operated, making it possible to separate the non-adhesive material and the reduced ore under high temperature conditions. is recycled and some is emitted as a product. In this case, 2
It may be discharged as a manufactured product.

微粉鉱石と非粘着性物質はその粒子の終末速度が還元炉
のガス流速以下であるような粒径のものとする0例えば
1本実施例のH2ガス量3851/minは、900℃
で約5m/secのガス流速を持ち、その温度で200
メツシユの粒子の持つ終末速度は約50cm/secで
ある。また60〜65メツシユのアルミナ粒子の終末速
度は4 m / Se Cであるψ 炉内から飛び出した粒子は循環サイクロン6で捕集し、
非焼結性物質粒子分離用の流動層に装入する。
Fine ore and non-adhesive substances should have particle sizes such that the terminal velocity of the particles is less than the gas flow rate of the reduction furnace.For example, the H2 gas amount of 3851/min in this example is 900°C.
It has a gas flow velocity of about 5 m/sec at 200 m/sec at that temperature.
The terminal velocity of mesh particles is about 50 cm/sec. In addition, the terminal velocity of alumina particles of 60 to 65 mesh is 4 m/Se C. Particles flying out from inside the furnace are collected by circulation cyclone 6,
Charged to a fluidized bed for separation of non-sinterable material particles.

操業条件および製品還元率は次の通りであった。The operating conditions and product return rate were as follows.

(A)循環流動層 還元炉反応管径:内径80mm 鉄 鉱 石 銘 柄:粒径200メツシユ以下のブラジ
ルMBR鉱石 非粘着性物質と粒径:アルミナ 60〜65メツシユ 鉄鉱石供給量:125g/min 還元ガス組成:H2100% 還  元  ガ  ス  量:3851/min還元炉
内温度:900℃ ガ  ス  利  用  率:15.9%(B)非焼結
性物質粒子分離用流動層 分離用流動層反応管径二内径8Omm 流 動 化 ガ ス:排ガス H2=85% H20=15% 流動化ガス温度=800℃ 流動化ガス流量ニア7見/ m i n製品還元率:8
1.7% この場合に非焼結性物質を入れない場合は、反応温度9
00℃では焼結が激しく鉱石粒径が200メツシユ以下
の鉱石を還元することはできなかった。還元温度を60
0℃にして初めて流動還元できたが、その時のガス利用
率は7%であった。
(A) Circulating fluidized bed reduction furnace Reaction tube diameter: Inner diameter 80mm Iron ore Brand: Brazilian MBR ore with particle size of 200 mesh or less Non-adhesive substance and particle size: Alumina 60-65 mesh Iron ore supply rate: 125 g/min Reducing gas composition: H2 100% Reducing gas amount: 3851/min Reduction furnace internal temperature: 900°C Gas usage rate: 15.9% (B) Fluidized bed reaction for separation of non-sinterable material particles Pipe diameter 2 inner diameter 80mm Fluidization gas: Exhaust gas H2 = 85% H20 = 15% Fluidization gas temperature = 800℃ Fluidization gas flow rate near 7/min Product reduction rate: 8
1.7% In this case, if no non-sintering material is added, the reaction temperature is 9.
At 00°C, sintering was severe and ore with an ore particle size of 200 mesh or less could not be reduced. Reduce the reduction temperature to 60
Fluid reduction was first possible at 0°C, but the gas utilization rate at that time was 7%.

〔発明の効果〕〔Effect of the invention〕

本発明により高温の還元ガスを用いて粉状鉱石の流動層
還元を行うことが可能となり、ガス利用率の向上、生産
能率の向上に寄与した。
The present invention has made it possible to perform fluidized bed reduction of powdered ore using high-temperature reducing gas, contributing to improved gas utilization and production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる装着例の縦断面図で
ある。 1・・・流動層 2・・・躯石供給口 3・・・分散板 4・・・還元ガス供給装置 5・・・予熱装置 6・・・循環サイクロン 7・・・非焼結性物質粒子分離用の流動層8・・・還元
鉱石排出口 9・・・分離された非焼結物質粒子の循環口10・・・
還元誠心の循環口 11・・・排ガス
FIG. 1 is a longitudinal cross-sectional view of an example of mounting used for carrying out the method of the present invention. 1... Fluidized bed 2... Stone supply port 3... Dispersion plate 4... Reducing gas supply device 5... Preheating device 6... Circulating cyclone 7... Non-sintering material particles Fluidized bed for separation 8... Reduced ore discharge port 9... Circulation port 10 for separated non-sintered material particles...
Kangen Seishin circulation port 11...exhaust gas

Claims (1)

【特許請求の範囲】[Claims] 1 微粉鉱石の流動層還元方法において、鉱石の流動還
元温度における非焼結性物質粒子を流動層内に供給し、
還元鉱石と共に排出された該物質粒子を排出直後に還元
鉱石と分離し流動層内に循環することを特徴とする粉状
鉱石の流動層還元方法。
1. In a fluidized bed reduction method for fine ore, supplying non-sinterable material particles at the fluidization reduction temperature of the ore into a fluidized bed,
A fluidized bed reduction method for powdery ore, characterized in that the material particles discharged together with the reduced ore are separated from the reduced ore and circulated in the fluidized bed immediately after being discharged.
JP7388586A 1986-03-31 1986-03-31 Method for reducing powdery ore in fluidized bed Pending JPS62230914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7388586A JPS62230914A (en) 1986-03-31 1986-03-31 Method for reducing powdery ore in fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7388586A JPS62230914A (en) 1986-03-31 1986-03-31 Method for reducing powdery ore in fluidized bed

Publications (1)

Publication Number Publication Date
JPS62230914A true JPS62230914A (en) 1987-10-09

Family

ID=13531110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7388586A Pending JPS62230914A (en) 1986-03-31 1986-03-31 Method for reducing powdery ore in fluidized bed

Country Status (1)

Country Link
JP (1) JPS62230914A (en)

Similar Documents

Publication Publication Date Title
PL193050B1 (en) Method of reducing non-ferrous metal content in slag in a non-ferrous metal manufacturing process occuring in a fluidized-bed smelting furnace
JPS62230914A (en) Method for reducing powdery ore in fluidized bed
US4207093A (en) Process for reducing metal oxide containing ores
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPH01184211A (en) Fluidized bed reduction device for ore
JPS6311609A (en) Prereduction device for iron ore
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPS62979B2 (en)
JPH0611884B2 (en) Smelting reduction ironmaking method
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JPH0629470B2 (en) Sintered ore manufacturing method
JPS6311611A (en) Prereduction device for iron ore
JPH0792343B2 (en) Iron ore preliminary reduction device
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP2502976B2 (en) Iron ore preliminary reduction device
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPS6311610A (en) Prereduction device for iron ore
JPH04210411A (en) Method for reducing iron-based dust with high efficiency
CN118318052A (en) Reduced iron production facility and reduced iron production method
JP2002533642A (en) Compound fluidized bed type fine iron ore reduction apparatus and method therefor
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPS59104410A (en) Fluidized bed type preliminary reducing furnace