JPS62230609A - Silica particle - Google Patents

Silica particle

Info

Publication number
JPS62230609A
JPS62230609A JP61072466A JP7246686A JPS62230609A JP S62230609 A JPS62230609 A JP S62230609A JP 61072466 A JP61072466 A JP 61072466A JP 7246686 A JP7246686 A JP 7246686A JP S62230609 A JPS62230609 A JP S62230609A
Authority
JP
Japan
Prior art keywords
particles
silica
average particle
solution
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072466A
Other languages
Japanese (ja)
Inventor
Takashi Otoma
音馬 敞
Hitoshi Kijimuta
雉子牟田 等
Katsutoshi Sumita
勝俊 簾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61072466A priority Critical patent/JPS62230609A/en
Publication of JPS62230609A publication Critical patent/JPS62230609A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays

Abstract

PURPOSE:Lightweight silica particles having porosity, improved mechanical strength, high water absorption rate and a large amount of water absorption, consisting of aggregate of specific fine particles. CONSTITUTION:1l organic medium (e.g. toluene) containing 100-50,000ppm surface active agent (e.g. sorbitan fatty acid ester) is blended with 0.1-0.6l aqueous solution containing 3-20wt% calculated as silica content of water-glass and stirred at 15-80 deg.C liquid temperature, solidification temperature of liquid medium + 5 deg.C - boiling point of liquid medium -25 deg.C at 4,000-12,000rpm for 10-100min. Then, the stirring rate is dropped to 800-2,500rpm, 5-25% dilute CO2 gas is introduced in a ratio of 0.05-0.40Nm<3>/hr to the solution for 5-40min. The solution temperature is kept at 15-30 deg.C and 100% CO2 gas is fed in a ratio of 0.01-0.80Nm<3>/hr to the solution for 5-40min to give silica particles which consist of spherical tertiary particles having 0.1-5,000mu average particle diameter wherein secondary particles having 200-1,000Angstrom average particle diameter are aggregated wherein approximately spherical primary particles having 100-200Angstrom average particles diameter are aggregated, have 50-200Angstrom distance between the primary particles and 200-1,000Angstrom distance between the secondary particles and constitute the whole porous material by these distances.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリカ系粒子、特に特異な畝粒子の集合に工り
、多孔性をMし、機械的強度が高く、速い吸水速度と多
電のj及水蓋を有する通量なシリカ系粒子に係るもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses silica-based particles, especially a collection of unique ridged particles, to increase porosity, have high mechanical strength, fast water absorption rate, and multi-electricity. This relates to voluminous silica-based particles having a water cap.

(従来の技術) 多孔性の非畠買シリカ系粒子としては、所謂ホワイトカ
ーボンヤアルミナが少を添加されたシリカアルミナ等の
粒子が知られている。
(Prior Art) Particles of silica alumina to which a small amount of so-called white carbon alumina is added are known as porous non-filtered silica particles.

ホワイトカーボンは、主として水ガラスを檀々の酸によ
り中相した後乾燥すること鋳造されるが、この様にして
得られたシリカ粒子は、単純な不定形粒子である。そし
てかかる中和工程において特定の界面活性剤を含Mした
有機質の媒体を用い、激しく攪拌しながら行なうと、球
状の多孔性非晶質の7リ力粒子が得られる。
White carbon is mainly cast by mixing water glass with an acid and then drying it, but the silica particles obtained in this way are simple irregular particles. When this neutralization step is carried out using an organic medium containing a specific surfactant and vigorously stirring, spherical porous amorphous particles can be obtained.

(発明の解決しようとする問題点) しかしながら、上記二重類の製法によって得たシリカ粒
子はゴわば単[な中実微粒子の二次東合体である。
(Problems to be Solved by the Invention) However, the silica particles obtained by the above-mentioned double production method are secondary aggregates of solid fine particles.

これらの粒子は何れも水系の分散媒体を用い、スラリー
にし、これを乾燥すると粒子同志の結合は弱く、簡単に
粉化する。
All of these particles are made into a slurry using an aqueous dispersion medium, and when this is dried, the bonds between the particles are weak and they are easily powdered.

この様なりリカ粒子を例えばインクジェットプリンター
用紙に用いる場合には所祠粉落ちが極めて多い欠点を有
している。さらに一般的には、細孔ス11造が単純であ
る九め、インクの吸収菫や1及収速度が必ずしも十分満
足するものではない。
When such liquefied particles are used, for example, in inkjet printer paper, they have the drawback of extremely large amounts of dust falling off during abrasion. Furthermore, in general, even if the pore structure is simple, the ink absorption rate and yield rate are not necessarily fully satisfactory.

(間磁点を解決するための手段) 本発明者は、吸水量が多く又その吸水速度を出来るだけ
速く出来、しかも軽量であって機械的強度が高く、クリ
えばこnをインクジェットプリンター用紙に用いた場合
には、インクの吸収量が多くしかもそれが速やかに行な
われ、又粉落ちを実質的に起さないシリカ系粒子を見出
すことを目的として種々研究、検討した結果、特定の粒
子形状と粒子相互間の間隙を保持せしめた超微粒子の集
合体にすることにエリ前記目的を達成し得ることを見出
した。
(Means for Solving Intermagnetic Spots) The present inventor has developed an inkjet printer paper using a clear material that absorbs a large amount of water, can increase the water absorption speed as much as possible, is lightweight, and has high mechanical strength. As a result of various studies and examinations aimed at finding silica-based particles that absorb a large amount of ink, do so quickly, and do not substantially cause powder shedding, we have found that a specific particle shape has been found. It has been found that the above object can be achieved by forming an aggregate of ultrafine particles in which gaps between the particles are maintained.

かくして本発明は、十均粒子匝100〜200Aのほぼ
球状の一次粒子、該一次粒子が集合した平均粒子匝20
0〜1000Åの二次粒子、該三次粒子が集合した平均
粒子径0.1〜500μの球状三次粒子から成り、ΦI
記−矢粒子闇の間隙が50〜200A、二次粒子間の間
隙が200〜1000ムであり、これら間隙によって全
体が多孔質体を、4成していることを1#徴とする7リ
力系粒子を提供するにある。
Thus, the present invention provides approximately spherical primary particles with a particle size of 100 to 200A, and an average particle size of 20A when the primary particles are aggregated.
Consisting of secondary particles of 0 to 1000 Å and spherical tertiary particles with an average particle diameter of 0.1 to 500 μ, which are aggregates of the tertiary particles, ΦI
Note - The gap between the arrow particles is 50 to 200 A, the gap between the secondary particles is 200 to 1000 mm, and these gaps form a porous body as a whole. To provide force-based particles.

・ト発明において一次粒子とは次の様に定−される。- In the invention, primary particles are defined as follows.

先づ平均粒子径は100〜200Aであり、水ガラスの
中和反工6によって得らnるシリカ粒子の場合には内部
は緻密であってほとんど空孔がなく、従って密度は約2
.2である。形状はほぼ球状である。
First, the average particle size is 100 to 200A, and in the case of silica particles obtained by neutralizing water glass 6, the inside is dense and has almost no pores, so the density is about 2
.. It is 2. The shape is approximately spherical.

又二次粒子とは次の様に定義される。平均粒子径が10
0〜200Aの一次粒子が通常4〜5tl!程度、少な
い場合には21ti1、多い場合には10数115凝集
結合して形成される粒子でほぼ球状もめればそうでない
ものもるり、内部に50〜200Aの一次粒子間間隙に
工って生じた微細孔を有するものである。一次粒子間の
f1合力は後述する二次粒子間の結合力に比較すると犬
であると考えらnる。
Further, secondary particles are defined as follows. Average particle size is 10
Primary particles of 0-200A are usually 4-5 tl! Particles formed by agglomeration and bonding, with a small amount of 21ti1 and a large number of 115 particles, are almost spherical, and some are not. It has fine pores. The f1 resultant force between primary particles is considered to be weaker than the bonding force between secondary particles, which will be described later.

又三次粒子とは次の様に定義される。二次粒子同志がご
く弱く結合して形成される球状粒子であって0.1〜5
000μV4度の平均粒子径を有する。本粒子径の制御
は後述する製造方法についていえば、界面活性剤の址や
攪拌の強度、撹拌機羽根の形状選定によっておよそ0.
1〜5000μの範囲で可能である。
Furthermore, tertiary particles are defined as follows. A spherical particle formed by very weak bonding of secondary particles, and 0.1 to 5
It has an average particle size of 000μV4 degrees. In terms of the production method described below, the particle size can be controlled to approximately 0.000000000000000000000000000000000000000000000000,0000.
It is possible in the range of 1 to 5000μ.

本発明に2けるシリカ系粒子は、第1図(写真)にその
走査電子顕微鏡写真(倍率50000倍)に工つて、一
つの粒子の一部分を示した如く、粒子自体が微細粒子の
集合体であり、その集合状態が多数の空隙を有しており
、これら微細粒子から成るところの前述の三次粒子が自
己結合性を有している。
The silica-based particles according to the second invention are aggregates of fine particles, as shown in Figure 1 (photograph), which shows a portion of one particle in a scanning electron micrograph (magnification: 50,000 times). The aggregated state has a large number of voids, and the above-mentioned tertiary particles made of these fine particles have self-bonding properties.

第2図は、第1図に示された微細粒子の東曾体を模式図
にしたものであり、lr1球状一次粒子であり、これが
集合して二次粒子2を形成し、更にこれが′48して三
次粒子3を形成している。4は一次粒子間の間隙であり
、5は二次粒子間の間隙である。
FIG. 2 is a schematic diagram of the Toso body of the fine particles shown in FIG. to form tertiary particles 3. 4 is a gap between primary particles, and 5 is a gap between secondary particles.

かかる本発明にLるシリカ系粒子の製造手渡としては、
例えばソルビタン脂肪涜エステルやポリオキシエチレン
アルキルフェニルエーテル等の界面活性剤を100〜s
ooooppm程度言有したトリクロロトリフルオロエ
タンやトルエン中に水ガラスをシリカ分トシて3〜20
i孟チき有する水m液を前記トルエン等のM磯媒体1!
に対し、0.1〜0.6!加え、先づ液温15〜80°
0、fL媒体の凝固温度+5°Q7)hら那点−25’
O(0261囲に2いて攪(半速度4000〜1200
0WPmにて10〜100分間攪拌し、次いで(St拝
速反を800〜2500 rpmVcflrとして攪拌
しつつ一度5〜25%程度の稀薄(空気や不活性ガスで
稀釈)な炭酸ガスな0.05〜0.40 Nm’/時の
割合で5〜40分間通した後、液温な15〜30゛0に
保持しつつ100%磯度の炭酸ガスを0.10−Q、3
ONm7時の割合で5〜40分間通すことに工り製造さ
れる。
As the production materials for the silica-based particles according to the present invention,
For example, surfactants such as sorbitan fatty acid esters and polyoxyethylene alkyl phenyl ethers are
Add water glass to silica in trichlorotrifluoroethane or toluene containing about 3 to 20 ppm of silica.
The liquid containing water is mixed with the medium 1, such as toluene.
0.1~0.6! Add the liquid temperature to 15-80°.
0, fL solidification temperature of medium +5°Q7) h ra na point -25'
O (0261) Stir at half speed 4000-1200
Stir for 10 to 100 minutes at 0 WPm, then add dilute (diluted with air or inert gas) carbon dioxide gas to a concentration of 5 to 25% (diluted with air or inert gas) once while stirring at 800 to 2500 rpmVcflr. After passing for 5 to 40 minutes at a rate of 0.40 Nm'/hour, 100% carbon dioxide gas was passed through the solution at 0.10-Q,3 while maintaining the liquid temperature at 15-30゛0.
It is manufactured by passing it for 5 to 40 minutes at a rate of ONm7.

これら操作条件のうち何れか一つでも前記条件を逸脱す
る場合には、本発明による粒子が安定して得られなかっ
たり、得られた粒子が従来から存する単なるシリカ粒子
と区別し嫌いものとなる。
If any one of these operating conditions deviates from the above conditions, the particles according to the present invention may not be stably obtained, or the obtained particles may be difficult to distinguish from conventional silica particles. .

本@明によるシリカ系粒子は、クリ力が100チでるる
ものの外、シリカがaOS以上含有される酸化物乃至部
分水酸化物にIA部がマグネシア、ボリア、アルミナ、
ジルコニアが含有されたものでも差支えない。
The silica-based particles according to this @Akira have a curing force of 100 degrees, as well as oxides or partial hydroxides containing silica of at least aOS, and the IA portion of magnesia, boria, alumina, etc.
A material containing zirconia may also be used.

本発明によるシリカ系粒子は、その三次粒子が極めて特
異な性質を有している。即ち、かかる二次粒子を時に酸
やアルカリ等の薬剤を添加することなく、水に分散させ
、所望の成形体に成形し、乾燥せしめるだけで曲げ強度
が数に#/−にも達する硬化物が得られ、しかもこれは
元の粒子の多孔性を殆んどそのまま保持しているという
自己結合性を有している。
The tertiary particles of the silica-based particles according to the present invention have extremely unique properties. That is, by simply dispersing such secondary particles in water without adding chemicals such as acids or alkalis, molding them into a desired molded product, and drying them, a cured product with a bending strength of #/- can be obtained. is obtained, and moreover, it has a self-bonding property that maintains almost the same porosity of the original particle.

かくして本発明によるシリカ系粒子は高い多孔性と強度
を有する為、例えばインクジェットプリンター用紙のイ
ンク吸収粒子、触媒担体、@置所熱材、多孔質膜、吸層
剤等の用途に適している。
Since the silica-based particles according to the present invention have high porosity and strength, they are suitable for applications such as ink-absorbing particles for ink-jet printer paper, catalyst carriers, in-place heat materials, porous membranes, and layer-absorbing agents.

(実画例) 実画例1 ソルビタン脂肪酸エステル2500ppmを含有したト
リクロロトリフルオロエタン1!当りに3号水ガラスを
7リ力分として12!tチ含有する水浴液を0.47加
え、ぺ温を18°0に保持して攪拌速度6500rpm
にて20分間撹拌し、次いで攪拌速度を1800rl)
mにし、突気で20%に櫂釈した炭酸ガスを0.2Nm
ン時の割合て10分間逃し、次いでioo**度の炭酸
ガスをQ、3NrrLン時の割合で20分間通してシリ
カ粒子を得た。
(Actual example) Actual example 1 Trichlorotrifluoroethane containing 2500 ppm of sorbitan fatty acid ester 1! It takes 7 liters of size 3 water glass and 12! Add 0.47% of the water bath solution containing t, maintain the temperature at 18°0, and set the stirring speed to 6500 rpm.
Stir for 20 minutes, then increase the stirring speed to 1800 rl)
0.2 Nm of carbon dioxide, which was stirred to 20% with a sudden blow.
Then, carbon dioxide gas of 100°C was passed through the solution for 20 minutes at a rate of Q, 3NrrL, to obtain silica particles.

得られた/リカ粒子は平均粒子径120ムのほぼ球状の
一次粒子と、この粒子が集合した平均粒子径600Aの
二次粒子及びこの粒子が集合した平y4ffl子径3μ
の球状三次粒子から成り、一次粒子間間隙が8OA。
The obtained Rica particles consist of approximately spherical primary particles with an average particle diameter of 120 μm, secondary particles with an average particle diameter of 600 A made up of aggregates of these particles, and secondary particles with an average particle diameter of 3 μm with aggregated particles of this particle size.
It consists of spherical tertiary particles, and the gap between the primary particles is 8OA.

二次粒子間の間隙が50OA)k肩する多孔質体でめっ
た。
This was achieved with a porous material in which the gaps between secondary particles were approximately 50 OA).

かかる多孔質シリカ粒子を固型分績1i16本被チにな
る様に水を加えて調製したスラリーをホモジナイザーで
5分間分数させた。
A slurry prepared by adding water to the porous silica particles so as to cover 16 solid particles was fractionated using a homogenizer for 5 minutes.

これをステンレス製型lfl” (50X 60 X 
100 was )−坏に流し込み、105°0で一昼
夜乾燥してブロックを得た。これは型枠からの線収縮率
が3.0チであり、全く亀裂は認められなかった。そし
て線密度は0.25g/−であり、テンシロンによる3
点曲げ強度は2.8すf/、dであった。
This is made into a stainless steel mold lfl” (50X 60X
100 was poured into a mold and dried at 105°0 overnight to obtain a block. The linear shrinkage rate from the formwork was 3.0 inches, and no cracks were observed. And the linear density is 0.25g/-, 3 by Tensilon.
The point bending strength was 2.8 f/, d.

実画例2 実画例1で調製したのと同一のスラリーを上貝祇表面に
パーコーターにより塗布し、乾燥した結果30μの多孔
性シリカのコート層を得た。
Actual Example 2 The same slurry as prepared in Actual Example 1 was applied to the surface of Kamigaishi using a percoater, and as a result of drying, a porous silica coating layer of 30 μm was obtained.

このものの折り曲げ試・遺及びセロノーンテープに=る
剥離試験を行なった処、コート層の剥離は焔んど4察さ
れなかった。
When this product was subjected to a bending test and a peeling test using Seronone tape, no peeling of the coating layer was detected.

尖m例3 実画例1で製造したシリカ粒子を同謙にして固型分濃度
20重量%のスラリーを調製し、押出し成形機により長
さ511II、直径1.5−の柱状物を作成し、105
゛0で乾燥した。柱状物の強度を本屋式強度試験機で測
定した処、3Kll+の1直を得た。
Point Example 3 A slurry with a solid content concentration of 20% by weight was prepared by mixing the silica particles produced in Example 1, and a columnar object with a length of 511 II and a diameter of 1.5 mm was created using an extrusion molding machine. , 105
It was dried at 0. When the strength of the columnar object was measured using a bookstore type strength tester, a score of 3Kll+ was obtained.

4・ −一の1司率な説明 第1図は本発明の一例にLるシリカ系粒子の構造を示す
電子顕微准写真、 第2図ri第1図の粒子構造の説明図である。
4. - Part 1 Explanation FIG. 1 is a quasi-electron micrograph showing the structure of a silica-based particle according to an example of the present invention, and FIG. 2 is an explanatory diagram of the particle structure of FIG. 1.

I 1 記I 1 Note

Claims (1)

【特許請求の範囲】[Claims] 1、平均粒子径100〜200Åのほぼ球状の一次粒子
、該一次粒子が集合した平均粒子径200〜1000Å
の二次粒子、該二次粒子が集合した平均粒子径0.1〜
5000μの球状三次粒子から成り、前記一次粒子間の
間隙が50〜200Å、二次粒子間の間隙が200〜1
000Åであり、これらの間隙によつて全体が多孔質体
を構成していることを特徴とするシリカ系粒子。
1. Almost spherical primary particles with an average particle diameter of 100 to 200 Å, and an aggregate of the primary particles with an average particle diameter of 200 to 1000 Å
secondary particles, the average particle diameter of the secondary particles aggregated from 0.1 to
Consisting of spherical tertiary particles of 5,000 μm, the gap between the primary particles is 50 to 200 Å, and the gap between the secondary particles is 200 to 1
000 Å, and the silica-based particles are characterized in that they constitute a porous body as a whole due to these gaps.
JP61072466A 1986-04-01 1986-04-01 Silica particle Pending JPS62230609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072466A JPS62230609A (en) 1986-04-01 1986-04-01 Silica particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072466A JPS62230609A (en) 1986-04-01 1986-04-01 Silica particle

Publications (1)

Publication Number Publication Date
JPS62230609A true JPS62230609A (en) 1987-10-09

Family

ID=13490112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072466A Pending JPS62230609A (en) 1986-04-01 1986-04-01 Silica particle

Country Status (1)

Country Link
JP (1) JPS62230609A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188287A (en) * 1989-01-18 1990-07-24 Jujo Paper Co Ltd Sheet for ink jet recording
KR100435561B1 (en) * 2001-06-27 2004-06-10 한국화학연구원 Organic doped silica microsphere and process for preparing the same
KR100651243B1 (en) 2005-03-04 2006-11-30 (주) 에스오씨 Manufacturing method for spherical silica
KR100759841B1 (en) 2005-10-12 2007-09-18 요업기술원 Preparation method for silica nanospheres
WO2009072218A1 (en) 2007-12-07 2009-06-11 Catalysts & Chemicals Industries Co., Ltd. Porous silica particle having surface smoothness, method for production of the porous silica particle, and cosmetic comprising the porous silica particle
JP2010197637A (en) * 2009-02-25 2010-09-09 Hitoo Okano Sheet for testing sharpness of cutlery
JP2010204131A (en) * 2009-02-08 2010-09-16 Hitoo Okano Manipulation training sheet
JP2010277003A (en) * 2009-04-28 2010-12-09 Seiwa-Dental Corp Organ model
JP2011008213A (en) * 2009-05-29 2011-01-13 Hitoo Okano Blood vessel model
JP2011076035A (en) * 2009-10-02 2011-04-14 Seiwa-Dental Corp Organ model
JP2011075907A (en) * 2009-09-30 2011-04-14 Hitoo Okano Blood vessel model
WO2015137399A1 (en) * 2014-03-11 2015-09-17 三菱マテリアル株式会社 Liquid composition for forming silica porous film and silica porous film formed from such liquid composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188287A (en) * 1989-01-18 1990-07-24 Jujo Paper Co Ltd Sheet for ink jet recording
KR100435561B1 (en) * 2001-06-27 2004-06-10 한국화학연구원 Organic doped silica microsphere and process for preparing the same
KR100651243B1 (en) 2005-03-04 2006-11-30 (주) 에스오씨 Manufacturing method for spherical silica
KR100759841B1 (en) 2005-10-12 2007-09-18 요업기술원 Preparation method for silica nanospheres
WO2009072218A1 (en) 2007-12-07 2009-06-11 Catalysts & Chemicals Industries Co., Ltd. Porous silica particle having surface smoothness, method for production of the porous silica particle, and cosmetic comprising the porous silica particle
US9327258B2 (en) 2007-12-07 2016-05-03 Jgc Catalysts And Chemicals Ltd. Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
JP2010204131A (en) * 2009-02-08 2010-09-16 Hitoo Okano Manipulation training sheet
JP2010197637A (en) * 2009-02-25 2010-09-09 Hitoo Okano Sheet for testing sharpness of cutlery
JP2010277003A (en) * 2009-04-28 2010-12-09 Seiwa-Dental Corp Organ model
JP2011008213A (en) * 2009-05-29 2011-01-13 Hitoo Okano Blood vessel model
JP2011075907A (en) * 2009-09-30 2011-04-14 Hitoo Okano Blood vessel model
JP2011076035A (en) * 2009-10-02 2011-04-14 Seiwa-Dental Corp Organ model
WO2015137399A1 (en) * 2014-03-11 2015-09-17 三菱マテリアル株式会社 Liquid composition for forming silica porous film and silica porous film formed from such liquid composition
JP2015187060A (en) * 2014-03-11 2015-10-29 三菱マテリアル株式会社 Liquid composition for forming silica porous film, and silica porous film formed from the liquid composition
US10457561B2 (en) 2014-03-11 2019-10-29 Mitsubishi Materials Corporation Liquid composition for forming silica porous film and silica porous film formed from such liquid composition

Similar Documents

Publication Publication Date Title
JPS62230609A (en) Silica particle
Sen et al. Synthesis and characterization of hierarchically ordered porous silica materials
KR101506413B1 (en) Heat insulation material and production method for same
TW201302611A (en) Metal oxide powder and method for manufacture thereof
JPS63190774A (en) Hydrophobic inorganic structure
CN112430103A (en) Photocuring 3D printing hierarchical pore ceramic material and preparation method thereof
Papa et al. Insights into the macroporosity of freeze-cast hierarchical geopolymers
CN109503197B (en) Preparation method of calcium hexaluminate porous ceramic
Smått et al. Formation of hierarchically porous metal oxide and metal monoliths by nanocasting into silica monoliths
JPH02212317A (en) Improved zirconium oxide fiber and preparation thereof
Meng et al. Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle‐stabilized foams
Li et al. Formation, Structure and Properties of Freeze‐Cast Kaolinite–Silica Nanocomposites
Tsuchiya et al. Development of wet process with substitution reaction for the mass production of Li2TiO3 pebbles
US20180111881A1 (en) Precursor Material for Additive Manufacturing of Low-density, High-porosity Ceramic Parts and Methods of Producing the Same
KR101858481B1 (en) Alumina composite, process for producing alumina composite, and polymer composition containing alumina composite
EA039534B1 (en) Catalytically active foam formation powder
Yang et al. Mullite ceramic foams with tunable pores from dual-phase sol nanoparticle-stabilized foams
Zhao et al. Fabrication of hollow silica spheres in an ionic liquid microemulsion
EP3801878A1 (en) Process for the preparation of homogeneous hybrid materials
CN114146578A (en) Glass porous membrane, preparation method and application thereof
WO2010146954A1 (en) Ceramic filter for supporting a catalyst, and manufacturing method therefor
US20220242787A1 (en) Cements reinforced with graphene nanoplatelets or helical carbon nanotubes
Liu et al. Synthesis and characterization of zirconia nanorods
Yang et al. Pore structure regulation of hierarchically porous TiO2 ceramics derived from printable foams
JP2013028501A (en) Powder, molded body, encapsulated body, and method for producing the powder