JPS6222122B2 - - Google Patents

Info

Publication number
JPS6222122B2
JPS6222122B2 JP58238116A JP23811683A JPS6222122B2 JP S6222122 B2 JPS6222122 B2 JP S6222122B2 JP 58238116 A JP58238116 A JP 58238116A JP 23811683 A JP23811683 A JP 23811683A JP S6222122 B2 JPS6222122 B2 JP S6222122B2
Authority
JP
Japan
Prior art keywords
layer
plastic optical
film
optical component
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58238116A
Other languages
Japanese (ja)
Other versions
JPS60129701A (en
Inventor
Toshiaki Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58238116A priority Critical patent/JPS60129701A/en
Publication of JPS60129701A publication Critical patent/JPS60129701A/en
Publication of JPS6222122B2 publication Critical patent/JPS6222122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はプロジエクシヨンテレビ、ビデオカメ
ラ、スチルカメラなどの光学系に使用されるプラ
スチツク製光学部品の反射防止膜に関するもので
ある。 従来例の構成とその問題点 従来、レンズなどの光学部品には無機ガラスが
多く使用されてきたが、近年、軽量で加工が容易
であり、かつ量産に適している点ですぐれている
プラスチツクが光学部品の素材として用いられる
ようになつてきた。ところが、プラスチツクレン
ズなどのプラスチツク製光学部品は無機ガラスと
同様に表面での光の反射が大きいという欠点をも
つ上に、表面に傷が入りやすく耐久性が悪いとい
う欠点があつた。このような欠点を解消するため
に、プラスチツク製光学部品の表面に無機ガラス
表面に形成される反射防止膜と同様な反射防止膜
を形成することによつて表面反射を防止するこ
と、及び、前記光学部品の表面に何らかの硬化薄
膜を形成することによつて前記光学部品の表面を
硬化して耐久性を向上させることは、一般技術と
してよく知られている。 以下図面を参照しながら従来のプラスチツク製
光学部品の反射防止膜について説明する。第1図
はプラスチツク製光学部品の表面に無機ガラス表
面に形成される反射防止膜と同様な反射防止膜を
形成した構造を示す図であり、同図において1は
プラスチツク製光学部品、2は弗化マグネシウム
(MgF2)よりなる反射防止膜である。前記反射防
止膜2は一般には真空蒸着法によつて形成される
が、プラスチツクは流動温度、熱変形温度が低
く、また、プラスチツク内部からの放出ガスの問
題もあるため、無機ガラス基板に蒸着膜を形成す
る時のような基板加熱(通常200℃〜400℃)を行
なつて強固な蒸着膜の形成ができない。そのため
に従来は50℃〜60℃以下の低温でプラスチツク製
光学部品1の表面に反射防止膜2を形成していた
が、この低温で形成された反射防止膜は、プラス
チツク表面との密着性も悪く、耐久性も低いもの
であつた。そこで密着性、耐久性を向上させるた
めにプラスチツク製光学部品を60℃〜80℃に加熱
する方法やRFイオンプレーテイング法等を用い
て反射防止膜を形成する方法が行なわれている
が、これらの方法による反射防止膜にはクラツク
が生じることがあり、耐久性の向上には好ましく
ない問題が発生することがある。また、これらの
方法は反射防止膜の形成条件を一定にし、かつ、
プラスチツク表面の状態を一定に保持するのは困
難であり量産には適するものではない。 次に第2図を用いてプラスチツク製光学部品の
表面に硬化薄膜を形成した場合の反射防止膜につ
いて説明する。3はプラスチツク製光学部品1と
の密着性のよい熱硬化性有機薄膜あるいはガラス
の硬化薄膜である。この場合、熱硬化性有機薄膜
を形成するには通常、塗布あるいは浸漬法によつ
て前記有機薄膜を1〜4μm形成するが、膜厚を
一定に維持することが困難であるため前記光学部
品1の面精度を悪化させてしまうおそれがある。
また、ガラスの硬化薄膜を蒸着によつて形成する
場合には、膜厚を厚く蒸着する必要があるために
クラツクがガラスの硬化薄膜に発生しやすいとい
う問題が発生する。 また、反射防止膜2は、前記硬化薄膜3の上に
存在するため、反射防止膜2自体の耐久性にも前
記従来例と同様な問題が発生する。 以上のように従来のプラスチツク製光学部品の
反射防止膜には、プラスチツク表面との密着性が
悪く、耐久性にも劣るという問題点を有してい
た。 発明の目的 本発明の目的は、プラスチツク表面との密着性
および耐久性にすぐれ、かつ、量産に適したプラ
スチツク製光学部品の反射防止膜を提供すること
である。 発明の構成 本発明のプラスチツク製光学部品の反射防止膜
は、プラスチツク製光学部品の表面に、前記表面
側から空気側へ順に、第1層、第2層、第3層の
3層構造の蒸着膜を形成して、反射防止膜を構成
する構造であつて、前記第1層は二酸化ケイ素
(SiO2)からなり、前記第2層は弗化マグネシウ
ム(MgF2)からなり、前記第3層は二酸化ケイ
素(SiO2)からなることを特徴とするものであつ
て、前記第1層、第2層および第3層はプラスチ
ツク製光学部品を、60℃以下に保持した状態で形
成されている。 これにより、プラスチツク表面との密着性およ
び耐久性にすぐれ、かつ、量産に適した反射防止
膜を得ることが出来る。 実施例の説明 以下本発明の一実施例について、図面を参照し
ながら説明する。 第3図は本発明のプラスチツク製光学部品の反
射防止膜の構成図を示すものである。第3図にお
いて、4は二酸化ケイ素からなる第1層、5は弗
化マグネシウムからなる第2層、6は二酸化ケイ
素からなる第3層であり、本発明の実施例におけ
るその具体的内容は下記の第1表に示すとおりで
ある。
INDUSTRIAL APPLICATION FIELD The present invention relates to an antireflection coating for plastic optical components used in optical systems such as projection televisions, video cameras, and still cameras. Conventional configurations and their problems Traditionally, inorganic glass has been widely used for optical parts such as lenses, but in recent years plastics have become popular as they are lightweight, easy to process, and suitable for mass production. It has come to be used as a material for optical parts. However, plastic optical parts such as plastic lenses have the same disadvantage as inorganic glass in that they reflect a large amount of light on their surfaces, and they also have the disadvantage that their surfaces are easily scratched and have poor durability. In order to eliminate such drawbacks, it is necessary to prevent surface reflection by forming an antireflection film similar to the antireflection film formed on the surface of inorganic glass on the surface of the plastic optical component, and It is well known in the general art to harden the surface of an optical component to improve its durability by forming some kind of hardened thin film on the surface of the optical component. Hereinafter, a conventional antireflection coating for plastic optical components will be explained with reference to the drawings. Figure 1 is a diagram showing a structure in which an antireflection film similar to the antireflection film formed on the surface of inorganic glass is formed on the surface of a plastic optical component. This is an anti-reflection film made of magnesium chloride (MgF 2 ). The anti-reflection film 2 is generally formed by a vacuum deposition method, but since plastic has a low flow temperature and thermal deformation temperature, and there is also the problem of gases released from inside the plastic, the film is deposited on an inorganic glass substrate. It is not possible to form a strong deposited film by heating the substrate (usually 200°C to 400°C) as in the case of forming. For this purpose, the antireflection film 2 was conventionally formed on the surface of the plastic optical component 1 at a low temperature of 50 to 60°C, but the antireflection film formed at this low temperature has poor adhesion to the plastic surface. It was bad and had low durability. In order to improve adhesion and durability, methods of heating plastic optical components to 60°C to 80°C and methods of forming antireflection films using RF ion plating methods, etc., have been used. Cracks may occur in the antireflection film produced by the above method, which may cause problems that are undesirable for improving durability. In addition, these methods keep the formation conditions of the antireflection film constant, and
It is difficult to maintain a constant state of the plastic surface, and it is not suitable for mass production. Next, referring to FIG. 2, an explanation will be given of an antireflection film in which a hardened thin film is formed on the surface of a plastic optical component. 3 is a thermosetting organic thin film or a hardened glass thin film that has good adhesion to the optical component 1 made of plastic. In this case, to form a thermosetting organic thin film, the organic thin film is usually formed with a thickness of 1 to 4 μm by coating or dipping, but since it is difficult to maintain a constant film thickness, the optical component 1 There is a risk of deteriorating the surface accuracy.
Furthermore, when a hardened thin film of glass is formed by vapor deposition, it is necessary to deposit a thick film, which causes the problem that cracks are likely to occur in the hardened thin glass film. Further, since the anti-reflection film 2 is present on the cured thin film 3, the durability of the anti-reflection film 2 itself suffers from the same problems as in the conventional example. As described above, conventional antireflection coatings for plastic optical components have had the problem of poor adhesion to the plastic surface and poor durability. OBJECTS OF THE INVENTION An object of the present invention is to provide an antireflection coating for plastic optical components that has excellent adhesion to plastic surfaces and durability, and is suitable for mass production. Structure of the Invention The antireflection coating for a plastic optical component of the present invention has a three-layer structure that is deposited on the surface of the plastic optical component in order from the surface side to the air side, consisting of a first layer, a second layer, and a third layer. The first layer is made of silicon dioxide (SiO 2 ), the second layer is made of magnesium fluoride (MgF 2 ), and the third layer is made of magnesium fluoride (MgF 2 ). is characterized in that it is made of silicon dioxide (SiO 2 ), and the first layer, second layer, and third layer are formed while the plastic optical component is maintained at a temperature of 60° C. or lower. . This makes it possible to obtain an antireflection film that has excellent adhesion to the plastic surface and durability, and is suitable for mass production. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a structural diagram of the antireflection coating of the plastic optical component of the present invention. In FIG. 3, 4 is a first layer made of silicon dioxide, 5 is a second layer made of magnesium fluoride, and 6 is a third layer made of silicon dioxide. As shown in Table 1.

【表】 また、それぞれの層はプラスチツク製光学部品
を60℃以下に保持した状態の下で、真空蒸着法に
より形成した。 上記本発明の実施例の反射防止膜と従来の反射
防止膜との耐久性を比較するために行なつた試験
は、(1)耐湿試験(温度40℃、相対湿度95%の高
温・高湿雰囲気中に1000時間放置)、(2)耐熱試験
(温度85℃の高温雰囲気中に1000時間放置)、(3)熱
衝撃試験(温度−30℃、70℃の低温および高温の
雰囲気中に交互に30分間ずつの放置を約100時
間)で、比較のための従来の反射防止膜は、前記
従来例の1つであるプラスチツク製光学部品の表
面に弗化マグネシウムの反射防止膜を真空蒸着法
によつて約1000Åの厚さに形成したものであり、
第1図に示す構造のものである。耐久性試験の結
果は第2表に示すとおりである。
[Table] In addition, each layer was formed by a vacuum evaporation method while the plastic optical component was maintained at 60°C or lower. The tests conducted to compare the durability of the anti-reflective film of the above embodiment of the present invention and the conventional anti-reflective film were as follows: (1) Humidity test (temperature of 40°C, relative humidity of 95% (2) Heat resistance test (Leave for 1000 hours in a high temperature atmosphere of 85℃), (3) Thermal shock test (Leave it in a high temperature atmosphere of -30℃, 70℃ alternately) The conventional anti-reflective film for comparison was one of the conventional examples mentioned above, in which an anti-reflective film of magnesium fluoride was vacuum-deposited on the surface of a plastic optical component. It was formed to a thickness of approximately 1000 Å by
It has the structure shown in FIG. The results of the durability test are shown in Table 2.

【表】 上記第2表からわかるように本発明の反射防止
膜は従来の反射防止膜より耐久性の点ですぐれて
いる。また第4図は分光反射率を比較する図で、
aは反射防止膜のないプラスチツク製光学部品、
bは従来の反射防止膜を有するプラスチツク製光
学部品、cは本発明の実施例の反射防止膜を有す
るプラスチツク製光学部品の分光反射率を示して
いる。同図からわかるように分光特性上も従来例
とほとんど変わりなく、プラスチツク表面との密
着性もすぐれていた。 さらに従来例は、反射防止膜形成時にクラツク
が発生することがあつたが本発明の実施例におい
ては反射防止膜は常時安定していた。 なお、上の実施例では、各膜厚を第1表に示す
ようなものにしたが、膜厚は特に上記の値に限定
されるものではなく、設計波長に応じて変化させ
ればよく、構造が第3図に示すようなものになつ
ていれば何でもよい。 発明の効果 以上の説明から明らかなように、本発明のプラ
スチツク製光学部品の反射防止膜は、二酸化ケイ
素からなる第1層、弗化マグネシウムからなる第
2層、二酸化ケイ素からなる第3層という3層構
造をとることによつて、反射防止膜の耐久性を向
上すると共にクラツクの発生を阻止するので従来
例のもつ欠点を解消する効果を有する。また、本
発明のプラスチツク製光学部品の反射防止膜は量
産にも適しているため、その実用上の価値は大な
るものがある。
[Table] As can be seen from Table 2 above, the antireflection film of the present invention is superior in durability to the conventional antireflection film. Figure 4 is a diagram comparing the spectral reflectance.
a is a plastic optical component without anti-reflection coating;
b shows the spectral reflectance of a plastic optical component having a conventional antireflection film, and c shows the spectral reflectance of a plastic optical component having an antireflection film according to an embodiment of the present invention. As can be seen from the figure, the spectral characteristics were almost the same as those of the conventional example, and the adhesion to the plastic surface was also excellent. Furthermore, in the conventional example, cracks sometimes occurred during the formation of the antireflection film, but in the embodiments of the present invention, the antireflection film was always stable. In addition, in the above embodiment, each film thickness was set as shown in Table 1, but the film thickness is not particularly limited to the above values, and may be changed according to the design wavelength. Any structure may be used as long as it has a structure as shown in FIG. Effects of the Invention As is clear from the above explanation, the antireflection coating of the plastic optical component of the present invention has three layers: a first layer made of silicon dioxide, a second layer made of magnesium fluoride, and a third layer made of silicon dioxide. By adopting a three-layer structure, the durability of the anti-reflection film is improved and the occurrence of cracks is prevented, which has the effect of eliminating the drawbacks of the conventional example. Furthermore, the antireflection coating for plastic optical components of the present invention is suitable for mass production, and therefore has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来のプラスチツク製
光学部品の反射防止膜の構成を示す図、第3図
は、本発明の実施例におけるプラスチツク製光学
部品の反射防止膜の構成を示す図、第4図は、本
発明および従来のプラスチツク製光学部品の分光
反射率を示す図である。 1……プラスチツク製光学部品、2……反射防
止膜、3……熱硬化性有機薄膜あるいはガラスの
硬化薄膜、4,6……二酸化ケイ素からなる薄
膜、5……弗化マグネシウムからなる薄膜。
1 and 2 are diagrams showing the structure of an antireflection film of a conventional plastic optical component, and FIG. 3 is a diagram showing the structure of an antireflection film of a plastic optical component in an embodiment of the present invention. FIG. 4 is a diagram showing the spectral reflectance of the present invention and conventional plastic optical components. 1...Plastic optical component, 2...Antireflection film, 3...Thermosetting organic thin film or hardened glass thin film, 4, 6... Thin film made of silicon dioxide, 5... Thin film made of magnesium fluoride.

Claims (1)

【特許請求の範囲】 1 プラスチツク製光学部品の表面に、前記表面
側から空気側へ順に、第1層、第2層、第3層の
3層構造の蒸着膜を形成して反射防止膜を構成す
る構造であつて、前記第1層は二酸化ケイ素
(SiO2)からなり、前記第2層は弗化マグネシウ
ム(MgF2)からなり、前記第3層は二酸化ケイ
素(SiO2)からなることを特徴とするプラスチツ
ク製光学部品の反射防止膜。 2 第1層、第2層および第3層はプラスチツク
製光学部品を、60℃以下に保持した状態で形成さ
れたものであることを特徴とする特許請求の範囲
第1項記載のプラスチツク製光学部品の反射防止
膜。
[Claims] 1. An antireflection film is formed on the surface of a plastic optical component by forming a vapor deposited film having a three-layer structure of a first layer, a second layer, and a third layer in order from the surface side to the air side. The first layer is made of silicon dioxide (SiO 2 ), the second layer is made of magnesium fluoride (MgF 2 ), and the third layer is made of silicon dioxide (SiO 2 ). An anti-reflection coating for plastic optical parts characterized by: 2. The plastic optical component according to claim 1, wherein the first layer, second layer, and third layer are formed by maintaining a plastic optical component at 60° C. or lower. Anti-reflection coating for parts.
JP58238116A 1983-12-16 1983-12-16 Antireflection film of plastic optical component part Granted JPS60129701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238116A JPS60129701A (en) 1983-12-16 1983-12-16 Antireflection film of plastic optical component part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238116A JPS60129701A (en) 1983-12-16 1983-12-16 Antireflection film of plastic optical component part

Publications (2)

Publication Number Publication Date
JPS60129701A JPS60129701A (en) 1985-07-11
JPS6222122B2 true JPS6222122B2 (en) 1987-05-15

Family

ID=17025414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238116A Granted JPS60129701A (en) 1983-12-16 1983-12-16 Antireflection film of plastic optical component part

Country Status (1)

Country Link
JP (1) JPS60129701A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111484B2 (en) * 1989-06-26 1995-11-29 松下電器産業株式会社 Antireflection film for plastic optical parts and method for forming the same

Also Published As

Publication number Publication date
JPS60129701A (en) 1985-07-11

Similar Documents

Publication Publication Date Title
JPS6064301A (en) Antireflecting film of optical parts and formation thereof
JP3624082B2 (en) Antireflection film and method for manufacturing the same
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS5860701A (en) Reflection preventing film
JPS6222122B2 (en)
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPS62186202A (en) Antireflection film for plastic optical parts
JPS60156001A (en) Reflection preventive film of plastic optical parts
US11204446B2 (en) Anti-reflection film and an optical component containing the anti-reflection film
JPH0474681B2 (en)
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH04260004A (en) Synthetic resin reflecting mirror
JPS63220101A (en) Antireflection film for plastic optical parts
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JP2986521B2 (en) Synthetic resin reflector
JPH0255302A (en) Antireflection film of plastic optical parts
JPH0894802A (en) Optical element
JPH0687081B2 (en) Anti-reflective coating for plastic optical parts
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JPS60129702A (en) Antireflection film of plastic lens
JPS60151602A (en) Antireflection film for plastic optical parts
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPH04240802A (en) Rear surface reflection mirror of optical parts made of synthetic resin and production thereof
JPS62186203A (en) Antireflection film for plastic optical parts
JPH05313001A (en) Reflection preventing film for plastic made optical part