JPS6221722A - Production of tubular body - Google Patents

Production of tubular body

Info

Publication number
JPS6221722A
JPS6221722A JP15917285A JP15917285A JPS6221722A JP S6221722 A JPS6221722 A JP S6221722A JP 15917285 A JP15917285 A JP 15917285A JP 15917285 A JP15917285 A JP 15917285A JP S6221722 A JPS6221722 A JP S6221722A
Authority
JP
Japan
Prior art keywords
raw material
tubular body
liquid
fluid raw
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15917285A
Other languages
Japanese (ja)
Inventor
Masahisa Ikejiri
昌久 池尻
Sadaichirou Mori
森 禎一郎
Sadao Kanbe
貞男 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15917285A priority Critical patent/JPS6221722A/en
Publication of JPS6221722A publication Critical patent/JPS6221722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/04Other methods of shaping glass by centrifuging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Moulding By Coating Moulds (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PURPOSE:To obtain a tubular body of high accuracy having a specular surface without uneven wall thickness at a low cost in a simple apparaturs, by solidifying a solidifiable fluid raw material while rotating a rotating body containing the fluid raw material and a liquid having a higher specific gravity than the fluid raw material. CONSTITUTION:(A) A fluidized raw material 7 which becomes a solid at room temperature and changes into a fluid state by heating, e.g. silica sol, thermoplastic resin or glass raw material, and (B) a liquid 6, mutually insoluble in the component (A) and having a higher specific gravity than the component (A), e.g. a compound having a halogen based atom such as dichloroethane or fluorinate, metal which is liquid at room temperature, etc., are put in a tubular rotating body 1 or 5 rotatably provided on a support table 4 through bearings 2 and a motor 3 and rotated at a number of revolutions so as to give >=1G centrifugal force by rotation applied to the component (A) 7. Thereby, a tubular body 7 of the component (A) 7 is formed to be in contact with the free surface of the component (B) 6 formed on the outside and the fluid raw material 7 is solidified while rotating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管状体の製造方法に関し、特に高精度な管状体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a tubular body, and particularly to a method for manufacturing a tubular body with high precision.

〔発明の概要〕 本発明は管状体の製3ii[において、工程中は、常に
流動状態でかつ比重の大きな液体と、工程中、最初流動
状体であるが、′iJ&後には固化する原料を用い、両
流動液体を回転可能な管状の回転体にいれ、回転させ、
比重の大きな液体で外側に管状の自由表面を作り、その
自由表面に接するように原料の管状体を作り、そのまま
回転させながら原料を固化させることによシ高精度な管
状体を実現したものである。
[Summary of the Invention] The present invention uses a liquid that is always in a fluid state and has a large specific gravity during the manufacturing process of a tubular body, and a raw material that is initially in a fluid state during the process but solidifies afterward. Put both flowing liquids into a rotatable tubular rotating body and rotate it,
A high-precision tubular body is created by creating a tubular free surface on the outside using a liquid with a high specific gravity, creating a tubular body of raw material in contact with the free surface, and solidifying the raw material while rotating. be.

〔従来の技術〕[Conventional technology]

従来の管状体の製造法には以下のような方法がある。円
柱状素材から中をくりぬき、研磨等を行ない高品質の管
状体を得る。この方法により光フアイバ用のジャケット
管を得ていた。一方法1あるいは溶融物をマンデレルと
ダイスを通し、管状物を得る。一方法2 (Phili
ps tech RevVol 5296〜IQ1 1
971 45/4)あるいはプラスチックパイプ、コン
クリート管は流動状態で原料を回転チューブにいれ、回
転させながら固化させ、管状体を得る。□方法3(強化
プラスチック VO126411P485〜〔発明が解
決しようとする問題点および目的〕このように製造方法
は色々あるが、従来の製造法はいずれも欠点があつ友。
Conventional methods for manufacturing tubular bodies include the following methods. A high-quality tubular body is obtained by hollowing out the inside of a cylindrical material and performing polishing. A jacket tube for optical fiber was obtained by this method. Alternatively, in Method 1, the melt is passed through a manderel and a die to obtain a tubular product. One method 2 (Phili
ps tech RevVol 5296~IQ1 1
971 45/4) Alternatively, for plastic pipes and concrete pipes, raw materials in a fluid state are put into a rotating tube and solidified while being rotated to obtain a tubular body. □Method 3 (Reinforced plastic VO126411P485 ~ [Problems and objectives to be solved by the invention]) There are various manufacturing methods as described above, but all of the conventional manufacturing methods have drawbacks.

例えば方法1においては精度がでるが、研磨等の工程か
はいる之めコスト高になる。長尺のものができない等の
欠点がある。又、方法2においてはコストは安くなるが
ダイス、マンデレル等の磨耗により高精度の管状体は得
られなくなる。特に高融点の石英ガラス管を作るときは
顕著となる。
For example, method 1 provides high accuracy, but requires steps such as polishing, which increases costs. There are drawbacks such as the inability to produce long items. Further, in method 2, although the cost is lower, a highly accurate tubular body cannot be obtained due to wear of the die, manderel, etc. This is especially noticeable when making quartz glass tubes with high melting points.

又、方法5によれば、高精度の管状体が得られ安くなる
が、元の管のn度が悪いとでき上りの管状体のn度が悪
くなる欠点がある。
Further, according to method 5, a highly accurate tubular body can be obtained and the cost is low, but there is a drawback that if the n-degree of the original tube is poor, the n-degree of the finished tubular body will be poor.

本発明はこの様な問題点を解決するもので、その目的と
するところは、簡単な装置で非常に高精度の管状体を安
く提供できる製造方法を提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a manufacturing method that can provide extremely high-precision tubular bodies at low cost using simple equipment.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

本発明の管状体の製造方法は方法5と同じ遠心力を利用
する方法であるが、上記製造方法の欠点を改良するため
に、管状体となる原料以外に、比重の大きな液体を原料
と共に回転体にいれ回転させながら原料を固化させ、管
状体を得たことを特徴とする。
The method for manufacturing a tubular body of the present invention is a method that utilizes centrifugal force as in method 5, but in order to improve the drawbacks of the above manufacturing method, in addition to the raw material that becomes the tubular body, a liquid with a high specific gravity is rotated together with the raw material. It is characterized by solidifying the raw material while rotating it in the body to obtain a tubular body.

本発明に用いられる製造装置は、第1図に示されるよう
な簡単な装置で良い。図において、1は管状の回転体、
2は軸受け、5はモーター、4は支持台を示す。装置の
条件としては軸受けかしつかり固足されていれば良く、
回転体の精度はあまり必要としない。
The manufacturing apparatus used in the present invention may be a simple apparatus as shown in FIG. In the figure, 1 is a tubular rotating body;
2 is a bearing, 5 is a motor, and 4 is a support base. The only requirement for the device is that it has a bearing or is firmly supported.
The rotating body does not require much precision.

このような装置の回転体の中に流動状原料と比重の大き
な液体を一緒に仕込み、回転体を回転させれば、回転体
の中は第2図に示すような状態となる。第2図において
5は回転体、6は比重の大きな液体、7は原料をそれぞ
れ示す。
If a fluid raw material and a liquid with a large specific gravity are charged together into a rotating body of such an apparatus and the rotating body is rotated, the inside of the rotating body will be in a state as shown in FIG. In FIG. 2, 5 is a rotating body, 6 is a liquid with a large specific gravity, and 7 is a raw material.

このような状態にて流動状原料を固体化させれば、高精
度な回転体を得ることができる。
If the fluid raw material is solidified in such a state, a highly accurate rotating body can be obtained.

流動状原料として室温では固体であるが、加熱すれば液
体状態になる原料(熱可塑性樹脂、ガラス原料等ンを用
いる場合は、加熱して液体状態とし、回転させながら冷
却すれば良い。
When using raw materials that are solid at room temperature but become liquid when heated (thermoplastic resins, glass raw materials, etc.) as fluid raw materials, they may be heated to a liquid state and cooled while rotating.

流動状原料として熱硬化性樹脂を用いる場合は、回転さ
せながら加熱すれば良い。
When using a thermosetting resin as a fluid raw material, it may be heated while rotating.

流動状原料としてゾルを用いる場合、得られた管状体を
乾燥させれば、多孔質の管状の乾燥ゲルを得ることがで
きる。さらに、高温に加熱すれば、管状のセラミックス
を得ることができる。シリカ系の原料が主成分のゾルを
用い、高温で処理し九場合、ガラス管あるいは石英ガラ
ス管を得ることができる。
When a sol is used as a fluid raw material, a porous tubular dried gel can be obtained by drying the obtained tubular body. Furthermore, by heating to a high temperature, tubular ceramics can be obtained. A glass tube or quartz glass tube can be obtained by using a sol whose main component is silica-based raw material and treating it at high temperature.

回転体の回転数は、流動状原料に加わる回転による遠心
力が1G(Gは重力の加速Iり以上になる回転数であれ
ば良いが、極端に大きいか、極端に小さいと、品質、歩
留りに影響がでてくる。
The rotation speed of the rotating body should be such that the centrifugal force due to the rotation applied to the fluid raw material is 1 G (G is the acceleration of gravity I) or more, but if it is extremely large or small, the quality and yield may be affected. will be affected.

比重の大きな液体としてハロゲン系の原子がつい友化合
物を用いる場合、たとえば、ジクロロエタン、ジブロモ
エタン等が利用できる。また、フッ素原子がつい次化合
物としては、フロリナート(÷CFt CFt OF、
 CFt O+nモンテジリンの商品名)等が利用でき
る。
When using a compound having a halogen-based atom as a liquid with a large specific gravity, for example, dichloroethane, dibromoethane, etc. can be used. In addition, as a compound with a fluorine atom, fluorinate (÷CFt CFt OF,
CFt O+n Montegiline (trade name) etc. can be used.

比重の大きな液体として室温では固体であるが7104
すれば液体状態となる物質(金属等〕を用いる場合、加
熱して液体状態とし、回転させれば良い。ここで用いる
金属としては、比較的隅点の低い、錫、鉛あるいはそれ
らの合金等が利用しゃすいO なお、高f#度の管状体を望む場合は、回転軸は水平で
あることが望ましいが、流動状原料に加わる遠心力か、
重力に比べて十分に大きくなるような回転数で回転させ
れば、回転軸は水平でなくても良い。
Although it is a solid at room temperature as a liquid with a large specific gravity, 7104
When using a substance (metal, etc.) that becomes a liquid state, it is sufficient to heat it to a liquid state and rotate it.The metal used here is a material with a relatively low corner point, such as tin, lead, or an alloy thereof. Note that if you want a tubular body with a high f# degree, it is desirable that the rotation axis be horizontal, but the centrifugal force applied to the fluid raw material,
The axis of rotation does not have to be horizontal as long as it is rotated at a rotation speed that is sufficiently large compared to gravity.

〔作用〕[Effect]

上記方法によれば、回転軸さえ変動しなければ回転体の
精度には関係なく、比重の大きな液体により、回転軸を
中心にし友、高精度の管状の自由表面が得られる。原料
はこの自由表面に接し、同心円状の管状構造をとる。も
ちろん原料自身の内面も自由表面となる。このような状
態のまま回転を続け、原料のみを固化させれば、内面、
外面ともに鏡面の、偏肉かなく、真円度、真直度のよい
高精度の管状体を得ることができる。
According to the above method, a high-precision tubular free surface centered around the rotation axis can be obtained using a liquid with a high specific gravity, regardless of the accuracy of the rotating body as long as the rotation axis does not change. The raw material is in contact with this free surface and assumes a concentric tubular structure. Of course, the inner surface of the raw material itself also becomes a free surface. If the rotation is continued in this state and only the raw material is solidified, the inner surface,
It is possible to obtain a highly accurate tubular body with mirror surfaces on both outer surfaces, no uneven thickness, good roundness, and straightness.

〔実施例1〕 シリカゾル940−と70リナート(÷OF、 OIF
[Example 1] Silica sol 940- and 70 linat (÷OF, OIF
.

CF、OF!O+Q、比重1.9 Ill 、モノテジ
リンの商品名)710−を内径50mm、長さ1mのス
テンレス製円筒形容器にとシ、管軸のまわりに100 
Orpmで回転させな−71らゲル化させたところ、外
径40層、内径20m、長さ1鵬の管状ゲルが得られ友
CF, OF! O+Q, specific gravity 1.9 Ill, product name of monotigiline) 710- was placed in a stainless steel cylindrical container with an inner diameter of 50 mm and a length of 1 m, and 100 mm was placed around the tube axis.
When gelatinized using Orpm-71, a tubular gel with an outer diameter of 40 layers, an inner diameter of 20 m, and a length of 1 inch was obtained.

なお、このときの回転による遠心力は、得られる管状ゲ
ルの内周において1(Qである。”!fc、’/リカゾ
ルとフロリナートは相互溶解しない得られた管状ゲルを
乾燥し、焼結゛すると、外径20 gIm。
Note that the centrifugal force due to the rotation at this time is 1 (Q) at the inner periphery of the tubular gel obtained.''!fc,'/Licasol and Fluorinert do not dissolve in each other.The obtained tubular gel is dried and sintered. Then, the outer diameter is 20 gIm.

内径10園、長さSOO閣の石英ガラス管が得られ友。A quartz glass tube with an inner diameter of 10 mm and a length of SOO was obtained.

得られた石英ガラス管の真円度は7μ肩、真直度は0.
2 wm 、表面粗さはQ、05μmであり極めて高精
度であつ友。
The roundness of the obtained quartz glass tube was 7μ, and the straightness was 0.
2 wm, surface roughness is Q, 05 μm, and extremely high precision.

〔実施例2〕 実施例1と同様に、シリカゾル940第1!!と、フロ
リナート710dft内径50■、長さ11mのステン
レス製円筒形容器にとり、管軸のまわりに50Orpm
(回転による遠心力は、得られる管状ゲルの内周におい
て1G)又は2000rpm (回転による遠心力は、
得られふ管状ゲルの内周において45G)で回転させな
がらゲル化させ次ところ、いずれの場合も、実施例1と
同様に外径40鶴、内径20■、長さInsの管状ゲル
が得られた。
[Example 2] Similar to Example 1, Silica Sol 940 No. 1! ! and placed in a stainless steel cylindrical container with a Fluorinert 710 dft inner diameter of 50 cm and a length of 11 m, and a 50 rpm rotation around the tube axis.
(The centrifugal force due to rotation is 1G at the inner periphery of the resulting tubular gel) or 2000 rpm (The centrifugal force due to rotation is
The obtained tubular gel was gelatinized while being rotated at 45 G on the inner periphery, and in both cases, as in Example 1, a tubular gel with an outer diameter of 40 mm, an inner diameter of 20 cm, and a length of Ins was obtained. Ta.

得られ友管状ゲルを乾燥し、焼結すると、外径20 m
 、内径10fi、長さ500mの石英ガラス管か得ら
れ友。
When the resulting tubular gel is dried and sintered, it has an outer diameter of 20 m.
, a quartz glass tube with an inner diameter of 10fi and a length of 500m was obtained.

〔実施例5〕 シリカゾル940−と、ジブロモエタン71〇−を内径
50+w、長さ1講のポリプロピレン製円筒形容器にと
り、管軸のまわりに50Orpmで回転させながらゲル
化させ友ところ、外径40■。
[Example 5] Silica sol 940- and dibromoethane 710- were placed in a polypropylene cylindrical container with an inner diameter of 50+W and a length of 1 inch, and gelled while rotating at 50 Orpm around the tube axis. ■.

内径20日、長さ1mの管状ゲルが得られた。得られた
管状ゲルを乾燥し、焼結すると、外径201、内径10
1I++1.長さ500+wの石英ガラス管が得られた
A tubular gel with an inner diameter of 20 days and a length of 1 m was obtained. When the obtained tubular gel is dried and sintered, it has an outer diameter of 201 mm and an inner diameter of 10 mm.
1I++1. A quartz glass tube with a length of 500+w was obtained.

〔実施例4〕 シリカゾル140w1と、水銀710−を内径50晴、
長さ1+nのポリプロピレン製円筒形容器にとり、管軸
のまわりに1500rpmで回転させfLからゲル化さ
せたところ、外径40目、内径20目、長さ1隠の管状
ゲルが得られた。得られた管状ゲルを乾燥し、焼結する
と、外径20 m 。
[Example 4] Silica sol 140w1 and mercury 710- in inner diameter 50mm,
When placed in a cylindrical polypropylene container with a length of 1+n and rotated around the tube axis at 1500 rpm to gel from fL, a tubular gel with an outer diameter of 40 meshes, an inner diameter of 20 meshes, and a length of 1 mm was obtained. The resulting tubular gel, when dried and sintered, has an outer diameter of 20 m.

内径10鴫、長さ500mの石英ガラス管が得られた。A quartz glass tube with an inner diameter of 10 mm and a length of 500 m was obtained.

〔実施例5〕 ポリエチレン150fとフロリナート150wtを内径
103.長さ20cInのステンレス製円筒形容器にと
り、200rpnaで回転させながら成形可能な湛If
まで加熱し友後、冷却し友ところ、外径9.5の、長さ
20 cm 、内厚5閣のポリエチレン管が得られた。
[Example 5] Polyethylene 150f and Fluorinert 150wt were made with an inner diameter of 103mm. If it can be placed in a stainless steel cylindrical container with a length of 20 cIn and molded while rotating at 200 rpm.
After heating to a temperature of 100 cm, a polyethylene pipe with an outer diameter of 9.5 mm, a length of 20 cm, and an inner thickness of 5 mm was obtained.

〔実施例6〕 フェノール樹り旨75tとフロリナート15o−を内径
10 cm 、長さ20ctnのステンレス製円筒形容
器にとり、200rpmで回転させながら硬化i度まで
加熱した後、冷却したところ、外径9.5 cm。
[Example 6] Phenol resin 75 tons and Fluorinert 15 o- were placed in a stainless steel cylindrical container with an inner diameter of 10 cm and a length of 20 ctn, heated to a hardening degree while rotating at 200 rpm, and then cooled. .5 cm.

長さ20 cm 、内LitE 5 mのフェノール樹
脂管が得られた。
A phenolic resin tube with a length of 20 cm and an inner LitE of 5 m was obtained.

〔実施例7〕 エボギシ樹脂145−と70リナート150−を内径1
0 cm 、長さ206nのステンレス製円筒形容器に
とり、200 rpmで回転させながら硬化させたとこ
ろ、外径9.5備、長さ20m、肉厚5■のエポキシ樹
m管が得られた。
[Example 7] Evogishi resin 145- and 70 linat 150- were made with an inner diameter of 1
The mixture was placed in a stainless steel cylindrical container with a diameter of 0 cm and a length of 206 nm, and was cured while rotating at 200 rpm, to obtain an epoxy tree tube with an outer diameter of 9.5 cm, a length of 20 m, and a wall thickness of 5 cm.

〔実m列8〕 ソーダガラス560tと錫11QQfを内径10anの
アルミナ管中に入れ、20cInの間隔に密閉し、20
0rpmで回転させながら、ソーダガラスの溶融4vL
まで加熱し、冷却し九ところ、外径9、5 an 、長
さ20 cm e肉厚5■のガラス管が得られた。
[Actual m row 8] 560t of soda glass and 11QQf of tin were placed in an alumina tube with an inner diameter of 10an, sealed at intervals of 20cIn, and
Melt 4vL of soda glass while rotating at 0 rpm.
After heating and cooling, a glass tube with an outer diameter of 9.5 mm, a length of 20 cm, and a wall thickness of 5 mm was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、固体化可能な流動状
原料と該流動状原料より比重の大きな液体を管状の回転
体にとり、該回転体を回転させながら流動状原料を固体
化させ友ので、簡単な装置で非常に高精度の管状体を安
価に製造することがテキル。したがって、高精度が要求
されるプラスチック管、セラミック管、ガラス管等に広
く応用7することができる。
As described above, according to the present invention, a fluid raw material that can be solidified and a liquid having a higher specific gravity than the fluid raw material are placed in a tubular rotating body, and while the rotating body is rotated, the fluid raw material is solidified. Therefore, it is possible to manufacture extremely high-precision tubular bodies at low cost using simple equipment. Therefore, it can be widely applied to plastic tubes, ceramic tubes, glass tubes, etc. that require high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本実施例において、室温において流動状原料
を固体化させるときに使用する回転装置の説明図である
。 1・・・管状の回転体 2・・・軸受け 5・・・モーター 4・・・支持台 第2図は、回転体を回転させているときの回転体の中の
説明図である。 5・・・回転体 6・・・比重の大きな液体 7・・・原料 以   上 4、+flit体 2.軸切ず 4、支持台 回転袋′yL1読曲目 第1図 ζ、1回転体 4、  Lピー11≦、6ヘフにミア「−「 ジオ1鹸
:イ本Vr、詭粁 1鮎に棒(A中へ説明1コ 第2図
FIG. 1 is an explanatory diagram of a rotating device used when solidifying a fluid raw material at room temperature in this example. 1... Tubular rotating body 2... Bearing 5... Motor 4... Support base FIG. 2 is an explanatory diagram of the interior of the rotating body when the rotating body is being rotated. 5...Rotating body 6...Liquid with large specific gravity 7...Raw material or above 4, +flit body 2. Axle cut 4, support base rotary bag'yL1 reading number 1 ζ, 1 rotating body 4, L p11≦, 6 Hef to Mia "-" 1 explanation to A middle figure 2

Claims (15)

【特許請求の範囲】[Claims] (1)固体化可能な流動状原料と該流動状原料より比重
の大きな液体を管状の回転体にとり、該回転体を回転さ
せながら流動状原料を固体化させることを特徴とする管
状体の製造方法。
(1) Production of a tubular body characterized by placing a fluid raw material that can be solidified and a liquid having a higher specific gravity than the fluid raw material in a tubular rotating body, and solidifying the fluid raw material while rotating the rotating body. Method.
(2)固体化可能な流動状原料と比重の大きな液体は相
互溶解しないか、互いに溶解度が小さいことを特徴とす
る特許請求の範囲第1項記載の管状体の製造方法。
(2) The method for manufacturing a tubular body according to claim 1, wherein the solidizable fluid raw material and the liquid having a high specific gravity do not dissolve each other or have low solubility with each other.
(3)回転体の回転数は、流動状原料に加わる回転によ
る遠心力が1G(Gは重力の加速度)以上になる回転数
であることを特徴とする特許請求の範囲第1項記載の管
状体の製造方法。
(3) The rotational speed of the rotating body is such that the centrifugal force due to the rotation applied to the fluid raw material is 1G or more (G is the acceleration of gravity). How the body is manufactured.
(4)流動状原料としてゾルを用いることを特徴とする
特許請求の範囲第1項記載の管状体の製造方法。
(4) The method for producing a tubular body according to claim 1, characterized in that a sol is used as the fluid raw material.
(5)流動状原料としてシリカゾルを用いることを特徴
とする特許請求の範囲第4項記載の管状体の製造方法。
(5) The method for producing a tubular body according to claim 4, characterized in that silica sol is used as the fluid raw material.
(6)流動状原料として室温では固体であるが、加熱す
れば液体状態になる原料を用いることを特徴とする特許
請求の範囲第1項記載の管状体の製造方法。
(6) The method for manufacturing a tubular body according to claim 1, characterized in that a raw material that is solid at room temperature but becomes liquid when heated is used as the fluid raw material.
(7)流動状原料として熱可塑性樹脂を用いることを特
徴とする特許請求の範囲第6項記載の管状体の製造方法
(7) The method for manufacturing a tubular body according to claim 6, characterized in that a thermoplastic resin is used as the fluid raw material.
(8)流動状原料としてガラス原料を用いることを特徴
とする特徴請求の範囲第6項記載の管状体の製造方法。
(8) The method for manufacturing a tubular body according to claim 6, characterized in that a glass raw material is used as the fluid raw material.
(9)流動状原料として熱硬化性樹脂を用いることを特
徴とする特許請求の範囲第1項記載の管状体の製造方法
(9) The method for manufacturing a tubular body according to claim 1, characterized in that a thermosetting resin is used as the fluid raw material.
(10)流動状原料として室温で硬化する樹脂を用いる
ことを特徴とする特許請求の範囲第1項記載の管状体の
製造方法。
(10) The method for producing a tubular body according to claim 1, characterized in that a resin that hardens at room temperature is used as the fluid raw material.
(11)比重の大きな液体としてハロゲン系の原子がつ
いた化合物を用いることを特徴とする特許請求の範囲第
1項記載の管状体の製造方法。
(11) A method for producing a tubular body according to claim 1, characterized in that a compound having a halogen-based atom is used as the liquid having a large specific gravity.
(12)ハロゲン系の原子がついた化合物としてフッ素
原子がついた化合物を用いることを特徴とする特許請求
の範囲第11項記載の管状体の製造方法。
(12) The method for manufacturing a tubular body according to claim 11, characterized in that a compound having a fluorine atom is used as the compound having a halogen atom.
(13)比重の大きな液体として室温では固体であるが
、加熱すれば液体状態になる物質を用いることを特徴と
する特許請求の範囲第1項記載の管状体の製造方法。
(13) A method for manufacturing a tubular body according to claim 1, characterized in that a substance that is solid at room temperature but becomes liquid when heated is used as the liquid having a large specific gravity.
(14)比重の大きな液体として金属を用いることを特
徴とする特許請求の範囲第13項記載の管状体の製造方
法。
(14) The method for manufacturing a tubular body according to claim 13, characterized in that a metal is used as the liquid having a large specific gravity.
(15)比重の大きな液体として室温で液体の金属を用
いることを特徴とする特許請求の範囲第1項記載の管状
体の製造方法。
(15) The method for manufacturing a tubular body according to claim 1, characterized in that a metal that is liquid at room temperature is used as the liquid having a large specific gravity.
JP15917285A 1985-07-18 1985-07-18 Production of tubular body Pending JPS6221722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15917285A JPS6221722A (en) 1985-07-18 1985-07-18 Production of tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15917285A JPS6221722A (en) 1985-07-18 1985-07-18 Production of tubular body

Publications (1)

Publication Number Publication Date
JPS6221722A true JPS6221722A (en) 1987-01-30

Family

ID=15687858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15917285A Pending JPS6221722A (en) 1985-07-18 1985-07-18 Production of tubular body

Country Status (1)

Country Link
JP (1) JPS6221722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096627A (en) * 1990-09-17 1992-03-17 Minnesota Mining And Manufacturing Company Method of molding optical recording drums
EP0533482A1 (en) * 1991-09-17 1993-03-24 Xerox Corporation Processes for preparing imaging members
ES2137873A1 (en) * 1997-11-12 1999-12-16 Artesanias Jiman S L Process for moulding hollow pieces from polymeric concrete
CN107487984A (en) * 2016-06-10 2017-12-19 康宁公司 High optical quality glass tubular thing and manufacture method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096627A (en) * 1990-09-17 1992-03-17 Minnesota Mining And Manufacturing Company Method of molding optical recording drums
US5342682A (en) * 1990-09-17 1994-08-30 Minnesota Mining And Manufacturing Company Method of molding optical recording drums
EP0533482A1 (en) * 1991-09-17 1993-03-24 Xerox Corporation Processes for preparing imaging members
ES2137873A1 (en) * 1997-11-12 1999-12-16 Artesanias Jiman S L Process for moulding hollow pieces from polymeric concrete
CN107487984A (en) * 2016-06-10 2017-12-19 康宁公司 High optical quality glass tubular thing and manufacture method
CN107487984B (en) * 2016-06-10 2022-08-16 康宁公司 High optical quality glass tube and method of manufacture

Similar Documents

Publication Publication Date Title
US2265226A (en) Cast resins having integral sheen
US3010153A (en) Construction of paraboloid surfaces
SU555835A3 (en) Method for centrifugal molding of hollow cylindrical bodies
US3885016A (en) Process for molding hollow thermoplastic articles and resulting articles
JPS6221722A (en) Production of tubular body
US4726828A (en) Method of manufacturing rotationally symmetrical glass bodies
US5342682A (en) Method of molding optical recording drums
JP2962976B2 (en) Quartz glass crucible
JPH0822526B2 (en) Method for manufacturing hollow ceramic shell
US1920022A (en) Bearing manufcture
US10029399B2 (en) Method for producing a core brush comprising polyvinyl formalin bristles
JPS62100445A (en) Production of base material for optical fiber
JPS63100029A (en) Production of tubular glass body
JPS63242608A (en) Rotational molding of fluoroplastic
JPH06238686A (en) High-rigidity rotational molded form and manufacture thereof
JPH03202329A (en) Molding process of leather
JPH05131470A (en) Manufacture of polyvinyl chloride resin bellows-like tubular body and mold therefor
JPH0731957B2 (en) Resin lining method for the inner surface of insulator
JPS5850198A (en) Powder molding method
US1146386A (en) Process for making phonograph-records.
JPS6374924A (en) Production of glass tube
JPS63242609A (en) Rotational molding of fluoroplastic
JPH04147807A (en) Manufacture of cylindrical silicon carbide body
JPS5941905A (en) Production of parabolic antenna
JPS5892554A (en) Vessel made of fiber reinforced plastic, inner surface thereof is lined with polyolefin resin