JPS622101A - Strain gauge - Google Patents

Strain gauge

Info

Publication number
JPS622101A
JPS622101A JP14115785A JP14115785A JPS622101A JP S622101 A JPS622101 A JP S622101A JP 14115785 A JP14115785 A JP 14115785A JP 14115785 A JP14115785 A JP 14115785A JP S622101 A JPS622101 A JP S622101A
Authority
JP
Japan
Prior art keywords
strain
deformation
resistance wire
strain gauge
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14115785A
Other languages
Japanese (ja)
Inventor
Tadatoshi Yamada
山田 忠利
Tasuku Saito
斉藤 翼
Kazuo Maie
真家 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP14115785A priority Critical patent/JPS622101A/en
Publication of JPS622101A publication Critical patent/JPS622101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure rapidly and easily dynamic strain deformations of human body,by using strain gauges adhered with resistance wire strain gauges an top of crests of a ribbon-type corrugated thin metallic sheet. CONSTITUTION:The strain gauge is composed of a ribbon body 1 of thin metallic sheet bent into corrugations and resistance wire strain gauges 2 adhered on top of the corrugations. When measuring, the strain gauge is adhered to the specimen with adhesive compound or tape. On this occasion as the ribbon body 1 is of a corrugated form, it follows a strain in a flexible manner and the amount of strain is detected by the strain gauge 2. Thus, dynamic strain deformations of human body on the occasion of design of wooden pattern of shoes and dress style can be measured rapidly and easily.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は計測対象物の動的な歪変形を迅速かつ簡単に計
測できる歪計測器に関するもの、であり。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a strain measuring instrument that can quickly and easily measure dynamic strain deformation of a measurement target.

とりわけ人体など、計測対象物が柔軟でありしかもその
変形量が大きい場合に適用するに好適な歪計測器に関す
るものである。
In particular, the present invention relates to a strain measuring instrument suitable for application when the object to be measured, such as a human body, is flexible and has a large amount of deformation.

[従来の技術1 シューブの木型設計や、衣服の型のブザ・イン設計を行
うに際しては、静止状態におけるモデル(人体)の寸法
を正しく測定する必要があることは当然であるが、履き
やすい或いは着心地のよいなど機能性に優れたシューブ
や衣服の製作を行うには、モデルが種々の動作をなして
いる動的状態における1人体各所の静止状態からの変形
量、即ち歪み、を正確に測定すべきである。
[Prior art 1] When designing the shoe shape or the buzzer-in design of the garment model, it is natural that the dimensions of the model (human body) in a static state must be accurately measured, but it is also necessary to accurately measure the dimensions of the model (human body) in a static state. In order to manufacture shoes and clothing that are comfortable to wear and have excellent functionality, it is necessary to accurately measure the amount of deformation, or distortion, of each part of the human body from a resting state in a dynamic state where the model performs various movements. should be measured.

しかも、このような歪みは、モデルが一定のポーズをと
っている状態のみならず、モデルの実際の動作により時
々刻々と変化する状態において、連続的に計測されるべ
きである。
Furthermore, such distortions should be continuously measured not only when the model is in a fixed pose, but also when the model changes from time to time due to the actual motion of the model.

しかして、従来、対象物の歪みを計測する方法としては
、高速カメラを用いた写真解析法、モアレ稿解析法、或
いは抵抗線歪ゲージを用いる方法などがある。
Conventionally, methods for measuring the distortion of an object include a photo analysis method using a high-speed camera, a moiré draft analysis method, and a method using a resistance wire strain gauge.

[発明が解決しようとする問題点] 写真解析法は、原理的には三次元計測ができ、精度もよ
いが、そのための実験、解析に高度な知識とノウハウを
要し、しかも結果を得るのに高額な費用と膨大な時間が
かかる。従ってこの写真解析法は実用性に欠くという問
題がある。
[Problems to be solved by the invention] In principle, the photographic analysis method can perform three-dimensional measurements and has good accuracy, but it requires advanced knowledge and know-how for experiments and analysis, and it is difficult to obtain results. It costs a lot of money and takes a lot of time. Therefore, there is a problem that this photo analysis method lacks practicality.

モアレ稿解析法は、二次元的な歪みは十分に解析できる
のであるが、解析時間がかかり、精度も低いという問題
点がある。また、三次元的な歪解析は不可能である。そ
のため、このモアレ稿解析法は、実際には定性的な観測
にしか使えない。
Although the moiré draft analysis method can sufficiently analyze two-dimensional distortions, it has problems in that the analysis takes time and accuracy is low. Furthermore, three-dimensional strain analysis is impossible. Therefore, this moiré draft analysis method can actually only be used for qualitative observations.

抵抗線歪ゲージを用いた計測法は、建築部材、土木構造
部材、金属製の機械部品など、剛性の高い対象物につい
ては、正確かつ迅速な歪計測が可能である。しかしなが
ら、人体のように計測対象物が柔軟な場合には、対象物
の変形がゲージに正しく伝えられないので正確な歪計測
は行えない。
The measurement method using a resistance wire strain gauge enables accurate and rapid strain measurement of highly rigid objects such as building members, civil engineering structural members, and metal mechanical parts. However, when the object to be measured is flexible, such as a human body, the deformation of the object is not properly transmitted to the gauge, so accurate strain measurement cannot be performed.

しかも、抵抗線歪ゲージは、高々数千用程度の歪量しか
計測できない、このようなことから5抵抗線歪ゲージを
直接に人体に貼着してその歪みを計測することは不可能
である。
Moreover, resistance wire strain gauges can only measure strain amounts of several thousand at most.For this reason, it is impossible to directly attach a 5-resistance wire strain gauge to the human body and measure the strain. .

[問題点を解決するための手段] 本発明の歪計測器は、波形に曲がった形状の薄肉金属製
の帯体と、この帯体の波頂点部に貼着された抵抗線歪ゲ
ージとを備えて構成されている。
[Means for Solving the Problems] The strain measuring instrument of the present invention includes a thin-walled metal strip bent in a waveform, and a resistance wire strain gauge attached to the wave peak of the strip. Configured with the necessary features.

[作用] 本発明の歪計測器を用いて対象物の歪計側を行うには、
この歪計測器を接着剤もしくは粘着テープを用いて対象
物の表面に取り付ける。
[Operation] In order to measure the strain meter of the object using the strain meter of the present invention,
This strain measuring device is attached to the surface of the object using adhesive or adhesive tape.

対象物の変形は、まず本発明の歪計測器の金属製帯体に
伝えられる。この金属製の帯体は波形に曲がっているか
ら、対象物が大なる変形を行った場合にも柔軟に追従し
て弾性的に変形する。そして、この金属製の帯体の波の
頂点部分には抵抗線歪ゲージが貼着されており、この抵
抗線歪ゲージによって金属製帯体の変形量が正確かつ迅
速に検出される。
The deformation of the object is first transmitted to the metal band of the strain measuring instrument of the present invention. Since this metal band is curved in a waveform, it flexibly follows and deforms elastically even when the object undergoes large deformation. A resistance wire strain gauge is attached to the peak portion of the wave of this metal band, and the amount of deformation of the metal band can be detected accurately and quickly by this resistance wire strain gauge.

しかして、上記金属製帯体の変形量は、対象物の変形量
に応じたものであるので、この帯体の変形量を抵抗線歪
ゲージで計測することにより、人体等の対象物の歪みを
該対象物の動的変形に迅速に追従しながら正しく検出す
ることが可能とされる。
However, since the amount of deformation of the metal band corresponds to the amount of deformation of the object, by measuring the amount of deformation of this band with a resistance wire strain gauge, it is possible to measure the strain of the object such as a human body. can be detected correctly while quickly following the dynamic deformation of the object.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の実施例に係る歪計測器の斜視図である
0本発明の歪計側器は薄肉金属製の帯体lと、この帯体
1に貼着された抵抗線歪ゲージ2とを備えて構成されて
いる。
FIG. 1 is a perspective view of a strain measuring instrument according to an embodiment of the present invention. 2.

本実施例において、薄肉金属製の帯体lは長辺部1a、
短辺部1b及び脚部1cを有する矩形状のものであり、
抵抗線歪ゲージ1は長辺部1aに貼着されている0図中
2aはゲージ2のリード線である。
In this embodiment, the thin metal band l has a long side portion 1a,
It has a rectangular shape having a short side portion 1b and a leg portion 1c,
The resistance wire strain gauge 1 is attached to the long side 1a. In the figure, 2a is a lead wire of the gauge 2.

このような歪計測器を用いて対象物の歪計測を行うには
、第2図に示すように、短辺部1bが対象物3の表面に
押し当てられるように設置し、かつこの短辺部1bを接
着剤や粘着テープ(図示せず)等を用いてこの対象物3
の表面にしっかりと取り付ける。この際、歪計測器の設
置方向は、対象物の最大変形方向と一致させるのが好ま
しい。
In order to measure the strain on an object using such a strain measuring instrument, as shown in FIG. The part 1b is attached to the object 3 using adhesive or adhesive tape (not shown).
firmly attached to the surface. At this time, it is preferable that the installation direction of the strain measuring device coincides with the maximum deformation direction of the object.

しかして、対象物3が変形すると、短辺1b同士の間隔
dが変化する0例えば、第3図のように対象物3の表面
が伸びる方向に変形すると1間隔dが大きくなり(d+
Δd)、これにより長辺laにδなる微小な伸びが生ず
る。この伸び変形量は、抵抗線歪ゲージ2により検出さ
れる。逆に、第4図のように対象物3の表面が縮む方向
に変形する場合には、短辺1b同士の間隔dが小さくな
り(d−Δd)、長辺1aに縮み変形が生ずる。この変
形量が抵抗線歪ゲージ2で検出される。(なお第3図及
び第4図は帯体1の変形を模式的に示すものであって、
帯体1の変形は実際のものよりも大きく示されている。
Therefore, when the object 3 deforms, the distance d between the short sides 1b changes. For example, when the surface of the object 3 deforms in the direction of elongation as shown in FIG. 3, the distance d increases by 1 (d+
Δd), this causes a minute elongation of δ on the long side la. This elongation deformation amount is detected by the resistance wire strain gauge 2. On the other hand, when the surface of the object 3 is deformed in the shrinking direction as shown in FIG. 4, the distance d between the short sides 1b becomes smaller (d-Δd), and the long sides 1a undergo shrinkage deformation. This amount of deformation is detected by the resistance wire strain gauge 2. (Note that FIGS. 3 and 4 schematically show the deformation of the band 1,
The deformation of the strip 1 is shown to be larger than it actually is.

) この抵抗線歪ゲージ2は、応力緩和特性がなく、しかも
歪みと電圧変化との間に直線性がある。しかも、対象物
3の変形量に応じた電圧特性の変化が極めて迅速である
ので、正確かつ迅速な歪計測を行うことが可能である。
) This resistance wire strain gauge 2 does not have stress relaxation characteristics and has linearity between strain and voltage change. Moreover, since the voltage characteristics change extremely quickly depending on the amount of deformation of the object 3, it is possible to perform strain measurement accurately and quickly.

本発明の抵抗線歪ゲージは、対象物の表面が伸び又は縮
みするような変形挙動をなした際にも、金属製帯体に変
形が生ずるので、対象物の変形量を計測することが可能
である。
The resistance wire strain gauge of the present invention can measure the amount of deformation of the object because the metal band is deformed even when the surface of the object undergoes deformation behavior such as expansion or contraction. It is.

なお、実際の計測を行うに先立って、短辺1b同士の間
隔dの歪と1.抵抗線歪ゲージの電圧特性の変化との関
係を予め求めておくことにより、抵抗線歪ゲージ2の特
性変化から直ちに対象物の変形量を計測することが可能
である。第5図は短辺1b同士の間隔dの歪Δd/dと
抵抗線歪ゲージの電圧変化ΔVとの関係を示す概略図で
あって、線分Aで示すように直線関係が成立する。
In addition, before carrying out the actual measurement, the distortion of the distance d between the short sides 1b and 1. By determining the relationship with the change in the voltage characteristics of the resistance wire strain gauge 2 in advance, it is possible to immediately measure the amount of deformation of the object from the change in the characteristics of the resistance wire strain gauge 2. FIG. 5 is a schematic diagram showing the relationship between the strain Δd/d of the distance d between the short sides 1b and the voltage change ΔV of the resistance wire strain gauge, and as shown by the line segment A, a linear relationship is established.

この間隔dの変化は、帯体lを対象物3にしっかりと止
め付けであるので、対象物表面の変形と一致したものと
なる。
This change in the distance d corresponds to the deformation of the surface of the object, since the band l is firmly attached to the object 3.

第6図は、第1図に示す実施例に係る歪計測器を人体に
取り付けてその人体表面の皮膚の変形量を計測する場合
の歪計測器の動作特性を示す図である。第6図において
、初め静止状態にあった人体が時刻1+において動作を
開始し時刻t2において最大変形に達し、その後復帰動
作を行い時刻t3において原姿勢に復帰し、その後静止
状態にあるものとする。このときの歪計測器の短辺部1
b同士の間隔dの歪Δd/dは、曲線Bで示す山形のも
のとなる。Δd/dとΔ■′との間には、上述のように
直線的な関係があるので、この直線関係を示す線を線分
Cとすると、抵抗線歪ゲージ2の電圧特性の変化ΔVは
曲線Rで示すものとなる。従って、この曲線Rのような
抵抗線歪ゲージの電圧特性の変化を検出することにより
、人体動作に応じた人体皮膚の変形を正確に検出するこ
とができる。
FIG. 6 is a diagram showing the operating characteristics of the strain measuring device according to the embodiment shown in FIG. 1 when the strain measuring device is attached to a human body and the amount of deformation of the skin on the surface of the human body is measured. In FIG. 6, it is assumed that the human body, which was initially in a stationary state, starts moving at time 1+, reaches maximum deformation at time t2, then performs a return movement, returns to its original position at time t3, and then remains in a stationary state. . Short side 1 of the strain measuring instrument at this time
The distortion Δd/d of the distance d between the curves B becomes a mountain shape as shown by the curve B. There is a linear relationship between Δd/d and Δ■' as mentioned above, so if the line showing this linear relationship is line segment C, the change ΔV in the voltage characteristics of the resistance wire strain gauge 2 is This is shown by curve R. Therefore, by detecting changes in the voltage characteristics of the resistance wire strain gauge as shown by the curve R, it is possible to accurately detect the deformation of the human skin in response to human body motion.

第1図の実施例においては、矩形状の金属製の帯体lを
有する歪計測器が示されているが、本発明においては、
第7図に示すサインカーブ状に湾曲した金属製の帯体4
や、第8図に示す台形形状を連結した形状の帯体5を用
いてもよい、(なお、帯体4.5の波の頂点部には抵抗
線歪ゲージ2が貼着されている。)但し、第1図の形状
のものが最も正確な測定を行うことができる。また、当
然ながら、本発明においては金属製の帯体は対象物の変
形に柔軟に追従し1弾性変形できるような形状及び寸法
を選択する。
In the embodiment shown in FIG. 1, a strain measuring instrument having a rectangular metal band l is shown, but in the present invention,
A metal band 4 curved in the shape of a sine curve as shown in FIG.
Alternatively, a band 5 having a shape of connected trapezoids as shown in FIG. 8 may be used (in addition, a resistance wire strain gauge 2 is attached to the wave apex of the band 4.5). ) However, the shape shown in Figure 1 allows for the most accurate measurement. Naturally, in the present invention, the shape and dimensions of the metal band are selected so that it can flexibly follow the deformation of the object and can be elastically deformed.

第1図に示す歪計測器の場合、金属製の帯体lの各部の
寸法は、計測対象物の性質、変形量等によって異なるが
、人体の皮膚を計測対象とする場合・1脚部1cの高さ
交電は5〜100 m m程度、帯体lの1llii 
l 2は1〜10 m m程度、短辺部1b同士の間隔
dは5〜100mm程度とするのが好ましい、また短辺
部1bの長さ文3については、帯体lを人体の皮膚にし
っかりと止め付けることができる範囲でなるべく小さく
するのが好ましい、なお、l+、412.dを上記の範
囲に設定することにより、最も正確な歪計測を行うこと
が可能な剛性及び変形量範囲を有する帯体を得ることが
でき、また皮膚変形量と抵抗線歪ゲージの電圧特性との
直線的関係が高められる。さらに、歪計側器の作製取り
扱いも容易なものとなる。また、上記のような寸法範囲
とすることにより、500%の歪みまで計測することが
できる。因みに1人体の皮膚の歪みは大きいところで数
百%程度といわれており11本発明の歪計測器によれば
、人体の動作に伴う変形をほぼ十分に計測することが可
能である。
In the case of the strain measuring instrument shown in Fig. 1, the dimensions of each part of the metal band l vary depending on the nature of the object to be measured, the amount of deformation, etc., but when measuring human skin, one leg 1c The height of the current is about 5 to 100 mm, and the height of the strip is about 1llii.
It is preferable that l 2 is about 1 to 10 mm, and the distance d between the short sides 1b is about 5 to 100 mm.Also, regarding the length of the short sides 1b (3), it is preferable to set the band l to about 1 to 10 mm. It is preferable to make it as small as possible as long as it can be firmly fastened. Note that l+, 412. By setting d within the above range, it is possible to obtain a band having a stiffness and deformation range that allows for the most accurate strain measurement, and also to ensure that the skin deformation amount and the voltage characteristics of the resistance wire strain gauge are The linear relationship between is enhanced. Furthermore, the strain gauge side device can be manufactured and handled easily. Moreover, by setting the dimension range as described above, it is possible to measure up to 500% strain. Incidentally, it is said that the strain of the skin of a human body is approximately several hundred percent at most, and the strain measuring instrument of the present invention can almost adequately measure the deformation associated with the movement of the human body.

なお、第1図の実施例に係る歪計測器の場合。In addition, in the case of the strain measuring instrument according to the embodiment shown in FIG.

矩形部の数は計測箇所の長さに応じて任意に変更するこ
とができる。また、各矩形部の寸法(見1.d、見3)
は同一でもよく、計測箇所に応じて互いに相違させても
よい。
The number of rectangular parts can be arbitrarily changed depending on the length of the measurement location. Also, the dimensions of each rectangular part (See 1.d, See 3)
may be the same or may be different depending on the measurement location.

また、抵抗線歪ゲージ2は帯体lの上下両面に取り付け
るようにすることが好ましくこのようにすれば、伸び又
は縮みのみを検出することができ、曲げ変形による歪み
を除去することが可能とされる。
Further, it is preferable that the resistance wire strain gauge 2 is attached to both the upper and lower surfaces of the band l, so that only elongation or contraction can be detected, and distortion caused by bending deformation can be removed. be done.

本発明の歪計測器を構成する帯体の材質は、燐青銅板が
好ましい、また、この帯体はその厚さが0.1−0.5
mm程度とするのが好ましい。
The material of the band constituting the strain measuring instrument of the present invention is preferably a phosphor bronze plate, and the thickness of this band is 0.1-0.5.
It is preferable to set it to about mm.

[効果] 以上詳述した通り1本発明の歪計測器は、計測対象物に
自由に取り付けることができ、平面的(二次元的)変化
のみならず、従来法では困難であった立体的(三次元的
)な変化のデータを容易かつ迅速に、しかも安価に得る
ことが可能とされる。
[Effects] As detailed above, the strain measuring instrument of the present invention can be freely attached to the object to be measured, and can detect not only two-dimensional (two-dimensional) changes but also three-dimensional (3D) changes, which were difficult with conventional methods. This makes it possible to obtain data on three-dimensional (three-dimensional) changes easily, quickly, and inexpensively.

また1本発明の歪計測器は、生体の皮膚のような柔らか
く変形の大きい対象物の動的な歪計測に適用可能である
0例えば、人間の歩行時における足の部分の歪(足の骨
の位置に対応した皮膚の歪み)或いは腕回り、腋の下等
が伸縮するときの歪計測を行うことができる。そのため
シューズや衣服のデザイン設計の際に必要とされる変形
特性データを正しくかつ定量的に求めることができ。
Furthermore, the strain measuring instrument of the present invention can be applied to dynamic strain measurement of soft and highly deformed objects such as the skin of a living body. (distortion of the skin corresponding to the position of the skin) or when the arm circumference, armpit, etc. expand and contract. Therefore, it is possible to accurately and quantitatively obtain the deformation characteristic data required when designing shoes and clothing.

フィツト性1着心地等の優れた衣服を製作することが可
能とされる。
It is possible to produce clothes with excellent fit and comfort.

シューズの木型設計を例にとると、従来の木型設計の際
に用いていた寸法は、人が静止しているときの足の寸法
であった。これに対し、本発明の歪計測器によれば1足
の任意の箇所の動的変形が正確かつ迅速に計測されるた
め1歩行時の足金体の変形状況が定量的に把握され、シ
ューズ機能とりわけフィツト性に直結する木型設計の精
度向上を図ることができる。
Taking shoe last design as an example, the dimensions used in conventional last design were the dimensions of a person's foot when standing still. In contrast, according to the strain measuring device of the present invention, the dynamic deformation of any part of one foot can be measured accurately and quickly, so the deformation status of the foot metal body during one walk can be quantitatively grasped, and the It is possible to improve the accuracy of the wooden mold design, which is directly linked to function, especially fit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る歪計測器の斜視図、第2
図はその取付状態を示す断面図、第3図及び第4図は同
実施例に係る歪計測器の変形状況を模式的に示す断面図
、第5図及び第6図は実施例に係る歪計測器の動作特性
図、第7図及び第8図は異なる実施例を示す側面図であ
る。 l、4,5・・・帯体、 2・・・抵抗線歪ゲージ。 3・・・計測対象物。
FIG. 1 is a perspective view of a strain measuring instrument according to an embodiment of the present invention, and FIG.
3 and 4 are sectional views schematically showing the state of deformation of the strain measuring instrument according to the same embodiment. FIGS. 5 and 6 are sectional views showing the strain measuring instrument according to the embodiment. The operating characteristic diagrams of the measuring instrument, FIGS. 7 and 8 are side views showing different embodiments. l, 4, 5...Band body, 2...Resistance wire strain gauge. 3...Measurement object.

Claims (1)

【特許請求の範囲】[Claims] (1)波形に曲がった形状を有する薄肉金属製の帯体と
、該帯体の波頂点部に貼着された抵抗線歪ゲージとを有
する歪計測器。
(1) A strain measuring instrument that includes a thin metal band having a wave-like shape and a resistance wire strain gauge affixed to the crest of the wave of the band.
JP14115785A 1985-06-27 1985-06-27 Strain gauge Pending JPS622101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14115785A JPS622101A (en) 1985-06-27 1985-06-27 Strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14115785A JPS622101A (en) 1985-06-27 1985-06-27 Strain gauge

Publications (1)

Publication Number Publication Date
JPS622101A true JPS622101A (en) 1987-01-08

Family

ID=15285454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14115785A Pending JPS622101A (en) 1985-06-27 1985-06-27 Strain gauge

Country Status (1)

Country Link
JP (1) JPS622101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366702A (en) * 1991-06-13 1992-12-18 Agency Of Ind Science & Technol Minute displacement detector
JP2008089588A (en) * 2006-09-14 2008-04-17 Commiss Energ Atom Process and acquisition device of deformable geometrical configuration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366702A (en) * 1991-06-13 1992-12-18 Agency Of Ind Science & Technol Minute displacement detector
JP2008089588A (en) * 2006-09-14 2008-04-17 Commiss Energ Atom Process and acquisition device of deformable geometrical configuration

Similar Documents

Publication Publication Date Title
US2316975A (en) Gauge
US5325869A (en) Apparatus for load and displacement sensing
Lu et al. Surface deformation measurements of a cylindrical specimen by digital image correlation
US9250146B2 (en) Multidimensional strain gage
Abbs et al. A strain gage transduction system for lip and jaw motion in two dimensions: Design criteria and calibration data
Maeno et al. Analysis and design of a tactile sensor detecting strain distribution inside an elastic finger
WO2001079785A2 (en) Transient thermal marking of objects
JPS622101A (en) Strain gauge
Amirbayat et al. The complex buckling of flexible sheet materials—Part II. Experimental study of three-fold buckling
Jessen et al. A new principle for a short-duration six component balance
Frost et al. A load cell and sole assembly for dynamic pointwise vertical force measurement in walking
JPH049703A (en) Angular displacement sensor
JP2019032239A (en) Fingertip contact state measurement device
JP2777242B2 (en) Apparatus for measuring flexural length and flexural shear modulus of textiles
JP2654184B2 (en) Semiconductor humidity sensor
JP3491294B2 (en) Bending method and apparatus
JP2663424B2 (en) Displacement detector
JPH0129526Y2 (en)
JPH0129527Y2 (en)
JPH03252501A (en) Strain distribution measuring method
JPH0277635A (en) Measuring robot
Zawieska et al. Moire technique utilization for detection and measurement of scoliosis
JP2554952B2 (en) Flatness measuring device
RU2029229C1 (en) Resistance strain gauge
SU805052A1 (en) Method of measuring bearing gaps in piston machine crank mechanism